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Astrocytes play vital roles in the central nervous system, contributing significantly 
to both its normal functioning and pathological conditions. While their 
involvement in various diseases is increasingly recognized, their exact role 
in demyelinating lesions remains uncertain. Astrocytes have the potential to 
influence demyelination positively or negatively. They can produce and release 
inflammatory molecules that modulate the activation and movement of other 
immune cells. Moreover, they can aid in the clearance of myelin debris through 
phagocytosis and facilitate the recruitment and differentiation of oligodendrocyte 
precursor cells, thereby promoting axonal remyelination. However, excessive or 
prolonged astrocyte phagocytosis can exacerbate demyelination and lead to 
neurological impairments. This review provides an overview of the involvement 
of astrocytes in various demyelinating diseases, emphasizing the underlying 
mechanisms that contribute to demyelination. Additionally, we  discuss the 
interactions between oligodendrocytes, oligodendrocyte precursor cells and 
astrocytes as therapeutic options to support myelin regeneration. Furthermore, 
we explore the role of astrocytes in repairing synaptic dysfunction, which is also 
a crucial pathological process in these disorders.
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Distribution of astrocytes

Astrocytes are the dominant and most diverse cell type in the mammalian central nervous 
system (CNS), accounting for 20%–40% of all glial cells (Rowitch and Kriegstein, 2010). 
Astrocytes are named from their star-shaped appearance, with numerous long and branched 
processes radiating from their cell bodies to occupy the interstitial spaces between neuronal 
cells, thereby supporting and separating neurons. Astrocytes can be classified into two main 
types according to the number of glial filaments and the shape of their processes. Fibrous 
astrocytes, also known as spider cells, are prevalent in the cortex of the brain and spinal cord. 
They have thin and sparsely branched processes and a high concentration of glial filaments in 
the cytoplasm. In contrast, protoplasmic astrocytes are abundant in gray matter with thick and 
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densely branched processes (Freeman and Rowitch, 2013). In addition 
to these two types, there are some specialized types, such as Bergmann 
glia in the cerebellum, Müller cells in the retina (also termed as radial 
glia), pituicytes in the pituitary gland, and tanycytes in the median 
eminence and other areas (Misson et al., 1988).

Functions of astrocytes in CNS 
function

Astrocytes fulfill vital functions in the CNS. They regulate blood–
brain barrier (BBB) endothelial cells to prevent harmful substance 
entry (Figley and Stroman, 2011). Additionally, Nutrient supply, ion 
balance maintenance, and potassium buffering prevent neuronal 
overactivity (Walz, 2000; Bélanger et al., 2011; Czech-Damal et al., 
2014; Yang et  al., 2014; Bronzuoli et  al., 2017). Astrocytes adjust 
cerebral blood flow based on neuronal activity (Díaz-Castro et al., 
2023). They influence neurotransmitter metabolism and release, 
impacting signal transmission (Fiacco et al., 2009; Xie et al., 2022). 
Additionally, astrocytes guide neural migration, differentiation, 
growth, and synapse formation, ensuring CNS homeostasis (Freitag 
et al., 2023).

Astrocytes contribute to myelination processes (Barnett and 
Linington, 2013). They secrete factors promoting oligodendrocyte 
differentiation and myelination (Sharma et  al., 2010). Metabolic 
regulation supplies energy and nutrients to oligodendrocytes (Weber 
and Barros, 2015). Astrocytes also safeguard oligodendrocytes and 
myelin via BBB participation (Hu et al., 2023). Depending on their 
subtype and environment, astrocytes can exacerbate inflammation 
and demyelination (Wheeler et al., 2020; Xia et al., 2020; Hg et al., 
2022; Sen et al., 2022; Wan et al., 2022).

In CNS diseases like stroke, Parkinson’s, and Alzheimer’s, 
astrocytes impact demyelination. Stroke-triggered astrocyte-mediated 
excitotoxicity worsens demyelination (Belov Kirdajova et al., 2020). 
PD and AD also exhibit myelin disruption, impacting cognitive and 
motor functions (Chen et al., 2021; Han et al., 2022). Oligodendrocytes 
and oligodendrocyte precursor cells (OPCs) are crucial for 
remyelination (Duncan et  al., 2018). Oligodendrocytes maintain 
myelin and efficient signal conduction (Bradl and Lassmann, 2010; 
Simons and Nave, 2016), while OPCs respond to demyelination by 
activation, migration, and differentiation (Simons and Nave, 2016; 
Kuhn et al., 2019; Xia et al., 2020). This review explores astrocytes’ role 
in demyelination diseases and their impact on OPCs, oligodendrocytes, 
and synaptic repair.

Role of astrocytes in demyelination in 
traumatic brain injury (TBI)

TBI is characterized by brain damage caused by external forces and 
is closely associated with demyelination, where the protective sheath 
around nerve fibers is lost (Table 1). The mechanisms behind this 
process are multifaceted. One of the key mechanisms is that physical 
trauma can cause direct breakage, crushing, or tearing of axons and 
myelin sheaths, causing myelin impairment (Shi et al., 2015). TBI can 
also expose neural antigens, originally hidden behind the BBB, to the 
immune system, such as myelin basic protein and neuron-specific 
enolase, which can induce autoimmune responses, causing 

autoimmune demyelination (Ying et al., 2018; Needham et al., 2021). 
Reduced blood flow to the brain caused by TBI can lead to vasospasm 
or thrombosis, thus causing ischemia and hypoxia of axons and myelin 
sheaths (Logsdon et al., 2015). The process can trigger a cascade of 
pathophysiological changes, such as energy metabolism disorders, 
intracellular calcium overload, and free radical production, resulting 
in myelin dysfunction or necrosis (Logsdon et al., 2015; Shi et al., 2015).

Furthermore, TBI can activate the immune and inflammation 
responses, leading to infiltration and release of inflammatory cells and 
mediators ultimately causing inflammatory demyelination (Simon 
et al., 2017; Ying et al., 2018; Linnerbauer et al., 2020). Specifically, 
activated astrocytes release pro-inflammatory cytokines (like TNF-𝛼, 
IL-1β), chemokines, nitric oxide, danger-associated molecular patterns, 
matrix metalloproteinase-9, IL-33 and S100B (Kabadi et  al., 2015; 
Jassam et al., 2017; Wicher et al., 2017; Selvaraj et al., 2019), fostering 
an inflammatory cascade and attracting toxic microglia to damage 
myelin. Moreover, microRNAs (miRs) have gained attention due to 
their regulatory effects on inflammation-mediated demyelination. 
MiR155, predominantly expressed in activated astrocytes, contributes 
to a self-perpetuating cycle of brain inflammation (Korotkov et al., 
2020). These mechanisms are not yet fully understood, further detailed 
exploration is necessary before the clinical therapeutic application.

Additionally, TBI-induced oxidative stress can damage myelin. 
Astrocytes are involved in maintaining brain redox balance, but TBI may 
overwhelm antioxidant defense, resulting in demyelination. The hypoxia-
inducible factor-1α (HIF-1α) signaling pathway is implicated in 
TBI-related demyelination (Arias et  al., 2023). Activated HIF-1α in 
astrocytes can influence energy metabolism and oxidative stress, 
affecting myelin integrity (Chen et al., 2020). Studies have suggested that 
the activation of HIF-1α in astrocytes promotes lactate production and 
release, while a reduction in fatty acid synthesis in oligodendrocytes leads 
to demyelination (Dimas et al., 2019; Afridi et al., 2020; Hou et al., 2023).

Role of astrocytes in demyelination in 
stroke

Stroke, stemming from ruptured or blocked brain blood vessels, 
results in brain tissue ischemia or hypoxia (Table  1). Besides 
inflammation and myelin disruption, other mechanisms underlie 
astrocytes’ role in post-stroke demyelination. Firstly, stroke induces 
oxidative stress and apoptosis, damaging myelin-associated cells like 
oligodendrocytes and OPCs (Mifsud et al., 2014; Spaas et al., 2021). 
Additionally, reduced neurotrophic factors like brain-derived 
neurotrophic factor (BDNF), nerve growth factor (NGF), and insulin-
like growth factor (IGF), impair myelin regeneration (Rodríguez-
Frutos et al., 2016; Wang et al., 2018).

Secondly, astrocytes worsen neuronal and myelin damage through 
free radicals release, apoptotic signals, axonal growth inhibition, and 
remyelination hindrance (Chen et al., 2020; Reid and Kuipers, 2021; 
Li L. et al., 2022). Elevated reactive oxygen species (ROS) and nitric 
oxide (NO) levels after stroke contribute to cellular component 
deterioration, exacerbating neuronal and myelin damage (Kıray et al., 
2016; Li L. et  al., 2022). Apoptotic signals like TNF-𝛼, Fas ligand 
(FasL) and IL-1β trigger apoptotic cascades, promoting neuronal and 
myelin damage directly, or by inducing apoptosis in neurons and 
oligodendrocytes, further exacerbating myelin damage (Qin et al., 
2022). Additionally, post-stroke activated astrocytes release excessive 
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amounts of glutamate, triggering excitotoxicity, neuron 
overstimulation, and myelin damage (Belov Kirdajova et al., 2020).

Thirdly, reactive astrocytes form a glial scar around the lesion site 
post-stroke, inhibiting axonal regeneration and remyelination 
(Wheeler et al., 2019). Scar formation involves the Janus kinase/signal 
transducer and activator of transcription (JAK/STAT), mitogen-
activated protein kinase (MAPK), and transforming growth factor-
beta (TGF-β) pathways (Choudhury and Ding, 2016; Zhang et al., 
2018; Xu et  al., 2020). Recent research suggests stroke-triggered 
reactive astrocytes overexpress lipocalin 2 (LCN2), binding to 
low-density lipoprotein receptor-related protein 1 (LRP1), activating 
phagocytosis and inducing astrocytes to phagocytose myelin 
fragments, causing demyelinating lesions (Wan et al., 2022).

Conversely, astrocytes shield neurons and myelin by releasing 
neurotrophic factors like BDNF, NGF and IGF for neuronal survival 
and axonal growth. They secrete antioxidants like glutathione and 

superoxide dismutase, combatting oxidative stress and preventing 
neuronal and myelin damage (Wang et al., 2018; Chen et al., 2020; Zhu 
et al., 2022). Astrocytes also release anti-inflammatory factors (IL-10, 
TGF-β), cubing inflammation and promoting a conducive 
environment for neuronal and myelin repair (Burmeister and 
Marriott, 2018; Giovannoni and Quintana, 2020). Moreover, 
astrocytes facilitate extracellular matrix remodeling through secreting 
metalloproteinases (MMP) inhibitors, growth factors, and chondroitin 
sulfate proteoglycans (CSPGs) to provide a supportive environment 
for axonal growth (Cunningham et al., 2005; Lau et al., 2013; Hemati-
Gourabi et al., 2022; Li L. et al., 2022). Astrocytes also provide trophic 
support to oligodendrocytes and OPCs, offering energy substrates and 
growth factors to enhance cell survival for effective axon myelination 
(Hibbits et al., 2012; Madadi et al., 2019; Tognatta et al., 2020). Overall, 
the intricate astrocyte-stroke-induced demyelination relationship 
underscores potential therapeutic avenues for neurological recovery.

TABLE 1 The etiology of demyelination in various CNS disorders and the involvement of astrocytes in these processes.

Disorders Risk factors Symptoms Causes of 
demyelination

Role of astrocytes in 
demyelination

Traumatic Brain Injury 

(TBI)

Traffic accidents, athletic 

competitions (falls), military 

service (war injuries)

Mild TBI: headaches, 

confusion, dizziness, 

behavioral or mood 

alterations, memory 

impairment, concentration, 

etc.

Moderate or severe TBI: 

symptoms in mild TBI and 

additional indications like 

repeated vomiting or nausea, 

seizures or convulsions, 

inability to rouse from sleep, 

limb weakness or numbness, 

coordination loss, irritability.

Physical injury, disturbed energy 

metabolism, excessive intracellular 

calcium, generation of free radicals, 

activation of the inflammatory 

response.

Exacerbation of demyelination by 

releasing inflammatory factors 

(such as IL-33, s100b), microRNAs, 

and other substances.

Stroke Hypertension, coronary 

heart disease, diabetes, age, 

gender, race, lifestyle 

(smoking, unhealthy diet, 

obesity, excessive alcohol 

consumption)

Speech impairment, facial or 

limb numbness, visual 

disturbances in one or both 

eyes, headaches, gait 

difficulties.

Oxidative stress, inflammation and 

apoptosis, altering the expression of 

neurotransmitters and neurotrophic 

factors.

Secretion of neurotrophic factors, 

antioxidants, and anti-

inflammatory substances 

promoting remyelination. Secretion 

of inflammatory factors and other 

substances facilitating 

demyelination. LCN2 triggers the 

generation of reactive astrocytes.

Parkinson’s disease (PD) Occupational exposure 

(pesticides, herbicides), 

dairy intake, age, alcohol 

consumption, TBI

Tremor, limb stiffness, 

reduced motor function, gait 

abnormalities, cognitive 

dysfunction depressive 

conditions, and anxiety 

disorders.

Misfolded alpha-synuclein 

(α-synuclein) forming Lewy bodies. 

Iron deposition.

Maintaining iron homeostasis in 

brain cells, enabling the 

accumulation of iron in 

dopaminergic neurons. Secretion of 

neurotrophic factors to reduce 

neuronal iron accumulation.

Alzheimer’s disease (AD) Hypertension, diabetes, 

depression, age, sleep 

deprivation, gender, 

smoking

Memory impairment, aphasia, 

function loss, recognition 

loss, visuospatial skill 

impairment, executive 

dysfunction, and alterations 

in personality and behavior.

Amyloid β (Aβ) binds directly to 

myelin, inducing oxidative stress, 

immune cells activation, and 

suppression of OPCs differentiation. 

Oxidative stress and excitotoxicity 

caused by Aβ, tau protein, iron 

overload, and mitochondrial 

dysfunction.

Involving in the metabolism and 

clearance of Aβ, secretion of pro-

inflammatory substances, such as 

IL-1β and TNF-α, regulating energy 

metabolism between neurons and 

oligodendrocytes, disruption of 

interactions between neurons and 

oligodendrocytes.
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Role of astrocytes in demyelination in 
Parkinson’s disease (PD)

PD, characterized mainly by the loss of dopaminergic neurons in 
the substantia nigra and motor dysfunction, involves astrocytes in 
demyelination and neurodegenerative changes (Table  1) (Alcacer 
et al., 2017). One of the key mechanisms involves inflammation and 
reactive gliosis. Activated astrocytes release pro-inflammatory 
cytokines, contributing to neuroinflammation and the recruitment of 
immune cells like microglia, disrupting the integrity of myelin sheaths 
and exacerbating neuronal damage (Saijo et al., 2009; Qian et al., 2020; 
Zhang et  al., 2022; Lawrence et  al., 2023). During the immune 
dysregulation and the reactive gliosis environment in PD, the normal 
supportive functions to neurons and oligodendrocytes of astrocytes 
may be impaired, further contributing to the loss of myelin integrity 
(Haas et al., 2016; Troncoso-Escudero et al., 2018).

PD’s astrocytic mitochondrial dysfunction leads to energy deficits, 
oxidative stress, and myelin damage (Dias et al., 2013; Subramaniam 
and Chesselet, 2013; Bantle et  al., 2021). Imbalanced glutamate 
neurotransmission results in excitotoxicity-induced myelin damage if 
astrocytic glutamate regulation falters (Mahmoud et al., 2019; Satarker 
et al., 2022). Furthermore, alpha-synuclein pathology, characterized 
by protein aggregation in PD, can affect astrocytes and impair protein 
clearance mechanisms, leading to the release of toxic molecules and 
potential demyelination (Valdinocci et al., 2017; Zhang et al., 2022; 
Calabresi et  al., 2023). Reduced neurotrophic factors also impact 
myelination and contribute to demyelination in PD (Nasrolahi et al., 
2018). Nevertheless, the accumulation of astrocyte-derived ROS in PD 
induces astrocytic apoptosis, thus impairing myelin integrity support 
(Bantle et al., 2021; Ding et al., 2021).

Astrocytes’ involvement in iron and copper metabolism influences 
PD. They maintain brain iron balance, uptaking and storing excess 
iron in ferritin, releasing it as needed (Porras and Rouault, 2022). 
Astrocytes also transport iron to neurons, crucial in iron-demanding 
areas like the substantia nigra affected in PD (Booth et  al., 2017; 
Reinert et  al., 2019; Foley et  al., 2022). Similarly, astrocytes are 
involved in copper metabolism. They regulate copper uptake, storage, 
and distribution (Dringen et  al., 2013). Copper is a cofactor for 
various enzymes, including those involved in dopamine metabolism, 
which is particularly relevant to PD since dopamine plays a crucial 
role in the brain’s movement control centers (Montes et al., 2014). 
Studies highlight iron/copper accumulation, oxidative stress, protein 
aggregation, mitochondrial dysfunction, and neuronal death interplay 
in PD pathology (Montes et  al., 2014). Altered iron and copper 
metabolism may indirectly contribute to demyelination in PD. Their 
precise influence, along with astrocyte interactions, and demyelination 
in PD, necessitates further study. Specifics of astrocyte-driven PD 
demyelination within iron/copper metabolism remain unclear, 
requiring extensive exploration.

Role of astrocytes in demyelination in 
Alzheimer’s disease (AD)

AD, a neurodegenerative disease marked by progressive memory 
loss and cognitive decline, impacts white matter alongside grey matter 
(Table  1). White matter loss and demyelination, indicative of its 
progression, stem from the malfunctioning of oligodendrocytes and 

myelin-forming glial cells (Chen et al., 2021). Demyelination in AD 
involves varied pathways. Firstly, the accumulation of amyloid beta 
(Aβ), a hallmark pathological marker of AD, can directly impact 
oligodendrocytes and myelin by binding to myelin, inducing oxidative 
stress, activating immune cells, and inhibiting OPCs differentiation 
(Chen et  al., 2021; Han et  al., 2022). Astrocytes-involved Aβ 
metabolism and clearance can also affect myelin stability and function 
(Chen et al., 2021). Secondly, oxidative stress in AD results from Aβ, 
tau protein, iron overload, and mitochondrial dysfunction, disrupting 
myelin structure and function through lipid oxidation, DNA damage, 
and inflammation (Nunomura et  al., 2006; Wang et  al., 2014; 
Simunkova et  al., 2019; Llanos-González et  al., 2020). Moreover, 
excitotoxicity, caused by overstimulation of neuronal N-methyl-D-
aspartic acid (NMDA) receptors, also contributes to demyelination in 
AD by increasing ROS production, activating calcium-dependent 
proteases, and inducing autophagy (Zhang et  al., 2020; Chen 
et al., 2021).

AD-linked astrocyte reactivity varies (Brandebura et al., 2023). 
For instance, reactive astrocytes can also release pro-inflammatory 
factors, leading to apoptosis or activation of oligodendrocytes, and 
subsequent myelin damage and shedding in AD (Shi et al., 2017; Chen 
et  al., 2021). Additionally, reactive astrocytes produce hydrogen 
peroxide (H2O2), leading to amyloid plaques, neuronal death, brain 
atrophy, and cognitive impairment in AD (Chun et  al., 2020; 
Brandebura et al., 2023). Reducing reactive astrocytes or removing 
H2O2 mitigates AD-related neurodegeneration and demyelination 
(Chun et  al., 2020). Finally, in addition to influencing energy 
metabolism in oligodendrocytes (Chen et al., 2021), astrocytes can 
alter their morphology and function, such as hypertrophy, 
proliferation, gene expression changes, disrupting neuron-
oligodendrocyte interactions, ultimately affecting myelin integrity and 
repair (Shi et al., 2017).

In summary, astrocytes’ involvement in AD-related demyelination 
spans Aβ metabolism, inflammation, energy metabolism, and altered 
morphology and function. Comprehending these mechanisms is 
crucial for developing targeted therapeutic strategies to preserve 
myelin integrity and alleviate neurodegeneration in AD.

Influence of astrocytes on OPCs

OPCs, specialized glial cells responsive to synaptic activity, 
significantly shape brain plasticity (Ge et al., 2006; Birey et al., 2017). 
Their interaction with astrocytes is essential for myelination and CNS 
stability. Disruption here can hinder remyelination and exacerbate 
demyelinating diseases (Hu et al., 2023). For instance, in demyelinating 
diseases like MS, reactive astrocytes become inflammatory, secreting 
cytokines and chemokines that impede OPC function and myelination 
(Nair et al., 2008). Inflammatory demyelination in MS also involves 
autoimmune mechanisms, where autoantibodies target aquaporin 4 
(AQP-4) on astrocytes, triggering complement-mediated astrocyte 
lysis (Sofroniew, 2015).

Astrocytes promote OPCs proliferation and differentiation via ATP 
releasing (Nguyen et al., 2010; Yang et al., 2023). They also release 
growth factors and cytokines like platelet-derived growth factor (PDGF) 
and fibroblast growth factor (FGF) that guide OPC proliferation and 
differentiation (Cui and Almazan, 2007; Li D. et al., 2022). PDGF binds 
to its receptor, PDGFRα, triggering pathways (like PI3K/Akt and 
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MAPK/ERK) that spur OPC proliferation (Li D. et al., 2022). Similarly, 
FGF influences OPC expansion through FGFR signaling (like Ras/
MAPK pathway) (Linnerbauer and Rothhammer, 2020). Astrocytes’ 
cytokines, including Sema3a/6a, detach OPCs from blood vessels and 
facilitate OPCs differentiation (Su et al., 2023), while also aiding OPCs 
migration and localization by secreting fatty acid binding protein 7 
(FABP7) (Lovejoy and Krauzlis, 2010). Furthermore, the canonical Wnt 
pathway was initially characterized as inhibitory for OPC differentiation, 
countered by a positive regulator afterward (Fancy et al., 2009; Soomro 
et al., 2018). Therefore, astrocyte-derived Wnt activators, crucial for 
neurovascular unit and neurogenesis, might delicately balance OPC 
differentiation regulation (L’Episcopo et al., 2011; Guérit et al., 2021).

On the other hand, astrocytes have the potential to inhibit OPC 
differentiation. As shown in Figure  1, for instance, the release of 
inflammation/immune factors (like TNF-𝛼, interferon-gamma, 
CXCL2 and CXCL10) can prevent OPC development (Nutma et al., 
2020; Traiffort et  al., 2020). Astrocyte-derived Endothelin-1 also 
impedes OPC differentiation and myelinating by Notch activation, 
binding to Notch-1 receptor on OPC via induction of Jagged-1 
expression in reactive astrocytes (Hammond et al., 2014). Moreover, 
astrocytes may curb OPC proliferation by secreting CH3L1, which 
binds to the CRTH2 receptor, triggering lipid apoptosis (Li et al., 
2018). Therefore, enhancing astrocytes’ protective ability over OPCs 
by targeting these pathways could promote myelin regeneration.

In addition, astrocytes express guidance cues like chemokine, 
Ephrins, and Semaphorins that influence OPC migration and 
positioning during development and remyelination (Miron et  al., 
2011; Sánchez-Mendoza et  al., 2013; Nutma et  al., 2020). During 
remyelination, recruitment of OPCs to the lesion area occurs via 
astrocyte chemokine signalling of IL-1β and CCL2 (Nutma et al., 
2020). Ephrins bind to Eph kinases on OPCs, guiding their movement 
and signaling bidirectionally during myelin repair (Yang et al., 2018). 
Similarly, Semaphorin signaling through receptors like Plexins and 
Neuropilins control OPC migration and positioning within the CNS 
(Carulli et  al., 2021). Finally yet importantly, astrocytes provide 
metabolic support to OPCs by supplying lactate, lipids, and growth 
factors (Kıray et al., 2016; Nutma et al., 2020). Lactate is vital for OPC 
maturation, transported through monocarboxylate transporters 
(MCTs). Lipids, essential for myelin synthesis, are supplied to 
oligodendrocytes via lipid-rich droplets. Growth factors like insulin-
like growth factor-1 (IGF-1), glial cell-derived neurotrophic factor 
(GDNF), and BDNF released by astrocytes promote oligodendrocyte 
survival and myelination (Kıray et al., 2016; Nutma et al., 2020).

In summary, astrocytes wield significant influence over OPCs, 
impacting signaling pathways crucial for OPC proliferation, 
differentiation, migration, positioning, and metabolism. Disruptions, 
especially amid reactive astrocytes and inflammation, can hinder 
remyelination and worsen demyelinating disorders. Grasping these 
complex signaling pathways is crucial for designing targeted therapies 
to promote remyelination and safeguard myelin integrity in 
demyelinating diseases.

Astrocyte-oligodendrocyte crosstalk: 
balancing myelination

The dynamic interplay between astrocytes and oligodendrocytes 
is pivotal for CNS health (Figure  1B). Astrocytes are crucial for 

regulating the maturation and remyelination through diverse 
mechanisms. Firstly, astrocytes boost oligodendrocyte proliferation 
and differentiation through growth factors, including FGF, IGF-1, and 
PDGF. These mitogens enhance oligodendrocyte survival and 
myelination (Kıray et  al., 2016; Nutma et  al., 2020). Secondly, 
neurotrophic factors (like BDNF, GDNF, CNTF) released by 
astrocytes, further bolster oligodendrocyte function and remyelination 
post-demyelination (Miyamoto et  al., 2015; Nutma et  al., 2020). 
Thirdly, astrocytes are key regulators of the extracellular environment, 
vital for ion and water balance crucial to oligodendrocyte health. 
Disruption here can lead to osmotic stress and impaired 
oligodendrocyte function (Sofroniew and Vinters, 2010).

Yet, in demyelination, astrocytes can exacerbate disease 
progression. Jagged1-rich reactive astrocytes inhibit oligodendrocyte 
maturation and myelin formation via Notch activation (Seifert et al., 
2007; Hammond et al., 2014; Zhou et al., 2022). Inflammation-driven 
reactive astrocytes release pro-inflammatory cytokines, impacting 
oligodendrocyte survival (Nutma et  al., 2020). They may hinder 
remyelination and contribute to scar formation, thwarting myelin 
regeneration. Astrocytes induce oligodendrocyte apoptosis via 
neurotoxic factors like TNF-α, FasL and glutamate, curtailing myelin 
regeneration (Linnerbauer et  al., 2020). Additionally, astrocytes 
secrete Semaphorin 3a/6a, binding to Plexin receptors on 
oligodendrocytes, repelling them from blood vessels and hindering 
differentiation (Breunig et  al., 2011). They also compete with 
oligodendrocytes for BBB junctions, heightening CNS inflammation 
(Lovejoy and Krauzlis, 2010; Horng et al., 2017; Kadry et al., 2020). 
Besides, neurotoxic reactive astrocytes, mediated by saturated lipids 
in APOE and APOJ lipoparticles, drive oligodendrocytes’ death 
probably via the harmful free fatty acids and very-long-chain fatty 
acid acyl chains (Guttenplan et al., 2021).

Oligodendrocytes reciprocate by influencing astrocytes’ calcium 
signaling and metabolism through ATP, adenosine, and glutamate 
release (Cakir et al., 2007; Takano et al., 2020). Specific molecules, 
such as N-cadherin, facilitate their interaction, crucial for nervous 
system development, myelin restoration, and cognitive functions 
(Linnerbauer et  al., 2020; Chen et  al., 2023). Boosting astrocyte 
protection of oligodendrocytes along these pathways emerges as a 
promising therapeutic avenue for myelin regeneration.

Astrocytes in synaptic repair

Astrocytes orchestrate synaptic function through various 
mechanisms, as depicted in Figure  1C. During development, 
astrocytes sculpt synaptic connections, releasing molecules like 
transforming TGF-β, EphA4 controlling synaptic stability and 
potentially also synapse elimination and refinement (Chung et al., 
2015; Shan et al., 2021). Astrocytes also play a fundamental role by 
clearing excess neurotransmitters like glutamate, GABA, and 
dopamine from the synaptic cleft. Glutamate removal is mediated by 
high-affinity transporters EAAT1 and EAAT2, ensuring proper 
neurotransmission, preventing excitotoxicity and supporting synaptic 
plasticity (Malik and Willnow, 2019; Pajarillo et al., 2019; Satarker 
et al., 2022). Additionally, astrocytes influence NMDA-type glutamate 
receptors by releasing co-agonists D-serine and glycine, shaping 
synaptic plasticity and facilitating long-term potentiation (LTP) 
(Panatier et al., 2006; Skowrońska et al., 2019).
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FIGURE 1

The impact of astrocytes on oligodendrocyte precursor cells (OPCs) and oligodendrocytes, as well as their role in synaptic repair. (A) Astrocytes promote 
OPC proliferation and differentiation by releasing ATP, PDGF, and FGF. Cytokines Sema3a/6a detach OPCs from blood vessels, facilitate differentiation, and 
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Astrocytes further balance synaptic strength and timing by 
releasing purinergic substances ATP and adenosine. These signals 
modulate excitatory and inhibitory inputs to neurons, finely tuning 
synaptic dynamics (Boddum et al., 2016; Matos et al., 2018; Liu et al., 
2021). Astrocytes also foster synaptic growth, secreting growth factors 
that promote neuronal survival and differentiation (Pascual and 
Guerri, 2007; Ma et al., 2012; Chiareli et al., 2021). Working alongside 
microglia, they oversee synaptic pruning, crucial for refining neural 
circuits (Cakir et al., 2007; Shan et al., 2020; Takano et al., 2020).

In addition, astrocytes actively regulate extracellular potassium levels 
within the brain (Cheung et al., 2015). This is particularly crucial during 
periods of heightened synaptic activity when excessive potassium ions 
accumulate within the synaptic cleft (Cheung et al., 2015). Through 
inward-rectifying potassium channels (Kir4.1), astrocytes efficiently 
remove excess potassium (Hertz et al., 2013; Kıray et al., 2016). This 
meticulous regulation helps maintain optimal potassium levels for 
precise synaptic transmission and plasticity (Kıray et al., 2016).

These mechanisms showcase astrocytes’ indispensable role in 
sustaining synaptic health, fostering plasticity, and promoting neural 
recovery. Targeting astrocyte-mediated pathways holds the potential 
for addressing synaptic-related disorders and advancing neurological 
treatments. A comprehensive understanding of astrocyte contributions 
promises groundbreaking insights into brain dynamics and innovative 
approaches to synaptic dysregulation.

Conclusion and outlook

In conclusion, astrocytes play a multifaceted role in demyelinating 
diseases, either promoting remyelination or exacerbating myelin 
disruption through inflammatory responses. Emerging therapeutic 
strategies target reactive astrocytes in various CNS disorders. Notably, 
bumetanide and VEGF inhibitors show promise for traumatic brain 
injury (TBI) (Michinaga and Koyama, 2021), while monoamine 
oxidase B (MAO-B) inhibitors and A2A receptor antagonists hold 
potential for AD (Sanmarco et al., 2021; Nam et al., 2023). Innovative 
approaches, including spinal cord injury treatment with synthetic 
nanoparticles, highlight astrocyte-focused interventions (Wang et al., 
2008; Nance et al., 2015; Zhang et al., 2016).

Advanced technologies, such as transgenic techniques, in vivo 
imaging, optogenetics, chemogenetics, in situ sequencing, and 
single-cell RNA sequencing (scRNA-seq), have unveiled specific 
astrocytic molecules influencing various diseases. These molecules 
offer therapeutic targets for neurological and neuropsychiatric 
disorders. However, crucial challenges persist. Establishing 
correlations between transcriptionally defined astrocyte 
subpopulations and real-time neuronal activity, behavior, and disease 
characteristics remains pivotal. Understanding unique and shared 
roles of astrocytes across diseases, their distribution in the CNS, and 
common pathogenic mechanisms is essential. Addressing these 

questions is critical for harnessing astrocyte-mediated pathways for 
targeted therapies.

The intricate role of astrocytes and their interactions in health and 
disease underscores their potential as viable therapeutic targets for a 
broad spectrum of neurological and neuropsychiatric disorders. 
Future research should focus on unraveling astrocyte-specific 
mechanisms, clarifying their contributions to disease progression, and 
developing precise interventions to preserve myelin integrity and 
restore CNS function. By unlocking the full potential of astrocyte-
targeted strategies, we pave the way for innovative treatments and 
transformative insights into the complex landscape of 
demyelinating diseases.
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attract OPCs to inflammatory areas through chemokines, promoting myelin formation. In addition, astrocytes express Ephrins and Semaphorins, as well as 
IL-1β and CCL2 to guide OPCs to the lesion during remyelination. (B) Astrocytes secrete various factors that stimulate oligodendrocyte differentiation and 
proliferation, including FGF, IGF-1 and PDGF. Oligodendrocytes affect calcium signaling and astrocyte metabolism by releasing ATP, adenosine, and 
glutamate. Astrocytes can also induce oligodendrocyte apoptosis, impairing myelin regeneration and leading to neuronal death. (C) Astrocytes regulate 
synaptic transmission by removing excessive glutamate through glutamate transporters (EAAT1 and EAAT2). They modulate NMDA receptors with co-
agonists and release purinergic substances (ATP and adenosine), impacting the balance between excitatory and inhibitory inputs to neurons.
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