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Variance analysis as a method to
predict the locus of plasticity at
populations of non-uniform
synapses
Lucas B. Lumeij, Aile N. van Huijstee, Natalie L. M. Cappaert and
Helmut W. Kessels*

Cellular and Computational Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam
Neuroscience, University of Amsterdam, Amsterdam, Netherlands

Our knowledge on synaptic transmission in the central nervous system has often

been obtained by evoking synaptic responses to populations of synapses. Analysis

of the variance in synaptic responses can be applied as a method to predict

whether a change in synaptic responses is a consequence of altered presynaptic

neurotransmitter release or postsynaptic receptors. However, variance analysis is

based on binomial statistics, which assumes that synapses are uniform. In reality,

synapses are far from uniform, which questions the reliability of variance analysis

when applying this method to populations of synapses. To address this, we used

an in silico model for evoked synaptic responses and compared variance analysis

outcomes between populations of uniform versus non-uniform synapses. This

simulation revealed that variance analysis produces similar results irrespectively

of the grade of uniformity of synapses. We put this variance analysis to the test

with an electrophysiology experiment using a model system for which the loci

of plasticity are well established: the effect of amyloid-β on synapses. Variance

analysis correctly predicted that postsynaptically produced amyloid-β triggered

predominantly a loss of synapses and a minor reduction of postsynaptic currents

in remaining synapses with little effect on presynaptic release probability. We

propose that variance analysis can be reliably used to predict the locus of synaptic

changes for populations of non-uniform synapses.

KEYWORDS

synapse, hippocampus, variance, uniformity, amyloid–beta, excitatory postsynaptic
current (EPSC)

Introduction

Synaptic plasticity is a crucial mechanism for the brain to adapt behavior based on
experience (Kessels and Malinow, 2009). Specifically, strengthening and weakening of
hippocampal synapses play a pivotal role in memory formation and forgetting (Martin
et al., 2000). However, when a change in synaptic strength occurs, it is often unknown what
the underlying mechanism and locus of that change is, e.g., whether this change is either
presynaptic or postsynaptic.
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The efficacy of synaptic communication is determined by
three main parameters: the number of functional vesicle release
sites (N), the probability of presynaptic vesicle release per release
site (Pr) and the postsynaptic response size to the release of
a single vesicle of neurotransmitter (i.e., a quantum), which is
called the quantal size (Q) (Korn and Faber, 1991). In the central
nervous system, neurotransmitter is released stochastically, leading
to fluctuations in postsynaptic responses that roughly follow a
binomial distribution when axon bundles are repeatedly stimulated
(Korn and Faber, 1991). Quantal analysis on the variance in
synaptic responses can be used to predict changes in N, Pr ,
and Q (Del Castillo and Katz, 1954). If one assumes a binomial
distribution, the mean amplitude of postsynaptic responses (µ) and
its variance (σ2) can be calculated using the following equations:

µ = N Pr Q (1)

σ2
= N Pr (1− Pr) Q2 (2)

To dissect which of these three parameters is affected when synaptic
changes occur, simple indices can be derived from these equations.
Firstly, the inverse square of the coefficient of variation (1/CV2)
is revealing, because it is independent of Q (Bekkers and Stevens,
1990; Malinow and Tsien, 1990; Redman, 1990):

1
CV2 =

µ2

σ 2 =
N Pr

1− Pr
(3)

The 1/CV2 has been used extensively to predict whether a synaptic
change was presynaptic (Pr) or postsynaptic (Q) in origin, provided
that the number of functional release sites (N) stays constant within
an experiment (Bekkers and Stevens, 1990; Malinow and Tsien,
1990). The variance-to-mean ratio (VMR) is a useful index to
further dissect the synaptic loci, because it is independent of N
(Lupica et al., 1992; van Huijstee and Kessels, 2020):

VMR =
σ2

µ
= (1− Pr) Q (4)

Applying the combination of 1/CV2 and VMR on evoked synaptic
responses has been validated as a method to decipher the
contributions of N, Pr , and Q to a change in synaptic strength (van
Huijstee and Kessels, 2020; Hogrefe et al., 2022).

There are a number of assumptions underlying a binomial
release model (Brock et al., 2020), of which the first two are largely
met at central synapses. Firstly, variance analysis assumes that at
most one quantum is released at each functional release site per
action potential. Most central synapses indeed release at most one
vesicle per action potential, although multivesicular release within
a single synapse, and even within a single active zone, can occur
at central synapses (Korn and Faber, 1991; Quastel, 1997; Oertner
et al., 2002; Conti and Lisman, 2003; Jensen et al., 2019; Maschi
and Klyachko, 2020; Dürst et al., 2022). Therefore, in situations
where multivesicular release is prevalent, one should regard N as
the number of functional release sites rather than the number
of synapses. A second assumption is that the release of a vesicle
happens independently from other release sites, meaning that
released quanta summate linearly. This assumption appears to be
largely true, since release sites are considered to act autonomously
(Ventura and Harris, 1999; Oertner et al., 2002; Christie and Jahr,
2006; Dürst et al., 2022).

However, the assumption related to variance analysis that is
clearly not met is that Pr and Q are uniform across synapses.
In fact, previous studies reported a large variety in Pr between
release sites (Hessler et al., 1993; Rosenmund et al., 1993; Dobrunz
and Stevens, 1997; Oertner et al., 2002; Dürst et al., 2022).
Similarly, the postsynaptic response (Q) to each released vesicle
varies between release sites, as Q depends on receptor density
and receptor conductance (Dobrunz and Stevens, 1997; Hanse
and Gustafsson, 2001), although the amount of neurotransmitter
released per vesicle is thought to be relatively uniform (Rost
et al., 2015; Dürst et al., 2022). Based on these considerations,
we questioned whether this non-uniform distribution of Pr and
Q would cause extra variance to the synaptic responses, making
variance analysis potentially unreliable for predicting changes at
populations of synapses.

In this study we aimed to test the effects of a non-uniform
distribution of Pr and Q in populations of synapses on the outcome
parameters of variance analysis (i.e., 1/CV2 and VMR). We did
this by simulating whole-cell patch clamp experiments, to study
the variance in evoked excitatory postsynaptic currents (EPSCs)
in a controlled manner. Comparing uniform and non-uniform
input parameters N, Pr , and Q in silico and testing their effects
on µ, 1/CV2, and VMR, allows us to assess the importance of
the assumption that synaptic populations should be uniform when
conducting variance analysis. To validate our model, we compared
the outcomes of our in silico model with an actual patch clamp
experiment on AMPA receptor (AMPAR) currents in hippocampal
CA1 pyramidal neurons receiving Schaffer collateral input from
CA3 neurons (i.e., Sc-CA1 synapses) (Kessels et al., 2013). In these
experiments, we studied the effect of the expression of the amyloid
precursor protein (APP) on the AMPAR EPSCs in CA1 neurons
in organotypic hippocampal rat slices. Dual recordings from pairs
of APP-expressing and control neurons were used to assess the
effects of the overproduction of amyloid-β (Aβ), an important
protein in the pathogenesis of Alzheimer’s disease, on synaptic
transmission (Selkoe, 2002). Multiple studies that used this model
system show that the production of Aβ oligomers reduces synaptic
transmission onto CA1 neurons (Kamenetz et al., 2003; Hsieh et al.,
2006; Kessels et al., 2010, 2013; Knafo et al., 2016; Reinders et al.,
2016). We tested whether variance analysis can be used to make
a prediction about the contributions of changes in N, Pr , and/or
Q that cause this decrease in EPSC amplitude. Together, this study
provides more insight into the strengths and limitations of variance
analysis and shows its merit when predicting pre- and postsynaptic
plasticity in the hippocampus and possibly in central synapses
overall.

Materials and methods

Electrophysiology

Organotypic hippocampal slices were prepared, as previously
described, from P6-7 female and male Sprague Dawley rats and
kept in culture for 6–13 days (Stoppini et al., 1991; Kessels
et al., 2013). APPCT100 was sparsely expressed using Sindbis viral
vectors that were injected into CA1 20–30 h before recording.
Sparse expression is relevant to avoid immune responses to viral
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particles (Uyaniker et al., 2019) and to ensure that the majority of
synapses from control neurons are sufficiently separated from Aβ-
producing neurons (Wei et al., 2010). On the day of recording a
cut was made between CA3 and CA1 to prevent stimulus-induced
bursting. Whole-cell recordings were obtained simultaneously
from neighboring uninfected and infected CA1 neurons; infected
neurons were identified by fluorescence using co-expression of
GFP. Two stimulating electrodes were placed 100 µm apart laterally
and 200 µm in opposite directions (e.g., 100 and 300 µm) along
the apical dendrite in the stratum radiatum (Figure 5A). For the
recordings 3- to 5-M� pipettes were used containing internal
solution of 115 mM cesium methanesulfonate, 20 mM CsCl, 10 mM
Hepes, 2.5 mM MgCl2, 4 mM Na2ATP, 0.4 mM Na3GTP, 10 mM
sodium phosphocreatine (Sigma), and 0.6 mM EGTA (Amresco),
at pH 7.25. During recording, slices were perfused with artificial
cerebrospinal fluid containing 119 mM NaCl, 2.5 mM KCl, 26 mM
NaHCO3, 1mM NaH2PO4, and 11 mM glucose (pH 7.4), and
gassed with 5% CO2/95% O2 at 27 ◦C with 4 mM MgCl2, 4 mM
CaCl2, 4 µM 2-chloroadenosine (Sigma), and 100 µM picrotoxin
(Sigma). During each recording, neurons received input from the
two stimulating electrodes, sweeps from each individual electrode
were 3 s apart. The resulting EPSCs were averaged and count as
n = 1. AMPAR EPSCs were measured as peak inward currents at
−60 mV.

In silico simulation

Evoked whole-cell patch clamp experiments were simulated
using MATLAB 2021a. To match the electrophysiological data,
experimental groups always consisted of 27 in silico neurons. In
these simulations, populations of neurons were given values for N,
Pr , and Q. The number of synapses (N) differed between 5 and
25, depending on the experiment. Each synapse was assigned a
release probability (Pr) between 0 and 1. In a uniform population
all synapses had the same Pr , but in a non-uniform population,
synapses were randomly assigned a value drawn from a beta
distribution with a specific mean Pr and corresponding standard
deviation (SD). An example of randomly drawn Pr values within
such a distribution is depicted in Supplementary Figure 1 (i.e.,
27 neurons with 15 synapses each). Regarding quantal response
size (Q), each synapse was given a value between 5 and 25 pA,
depending on the experiment. Again, in uniform populations Q
was the same for each synapse, but in non-uniform populations Q
was attributed randomly per synapse from the distribution in the
Pearson system with mean, standard deviation, skewness (between
0.75 and 1) and kurtosis (4). An exemplar distribution of randomly
drawn Q values for one experiment is depicted in Supplementary
Figure 1 (i.e., 27 neurons with 15 synapses each).

Each simulated experiment consisted of 48 sweeps, based on
the average number of sweeps used in the electrophysiological
experiments (Figure 5A). Each sweep meant the stimulation of one
population of synapses that was activated. However, to mimic the
stochastic process of neurotransmitter release, a go/no go value was
randomly drawn from a uniform distribution in the interval (0,1)
for each synapse for each sweep. If this go/no go value was equal
to or lower than the Pr of that synapse a “vesicle was released” and
the EPSC amplitude of that synapse would be equal to its Q. If the

go/no go value would lead to no release, the EPSC amplitude of
that synapse would be 0. Per sweep, the currents of all the synapses
in which release took place were summated giving the total EPSC
amplitude of that sweep. Per neuron/recording this was done 48
times (i.e., nr. of sweeps), leading to a mean EPSC amplitude and
its variance per neuron.

Variance analysis

For the electrophysiological recordings, variance analysis was
performed on the mean EPSC amplitudes and variance of responses
to 30–80 sweeps, on average 48 sweeps, per neuron. For the in silico
neurons, 48 sweeps were used. The EPSC amplitudes per sweep
and variance per neuron were used to calculate their mean EPSC
amplitude, 1/CV2 and VMR (equations 2 and 3). These three
values were averaged over 27 neurons per group and compared
between conditions. Note that multiplying 1/CV2 with VMR per
neuron leads to its µ value. As a consequence, 1/CV2 and VMR
are negatively correlated for both simulated and recorded neurons
(Supplementary Figure 2).

Statistics

Multiple t-tests with a Holm-Šídák correction were performed
on log2-normalized data to test whether they differed significantly
from 0 or if there were differences between groups. One-way
ANOVAs were used to test if there were differences between
multiple groups. Paired t-tests were used to detect differences
between two groups in the electrophysiological experiments
and unpaired t-tests were used for two-group comparisons in
the in silico experiments. For all experiments, p < 0.05 was
considered significant.

Results

Variance analysis outcomes are similar
between uniform and non-uniform
populations of in silico synapses

To examine whether a uniform versus a non-uniform input
variable distribution (N, Pr and Q) would lead to different
outcomes in variance analysis output (i.e., µ, 1/CV2 and VMR),
we simulated whole-cell electrophysiological experiments in which
excitatory postsynaptic currents are determined by stimulating a
population of 27 neurons. In this simulation, for each in silico
neuron 15 synapses were stimulated (N = 15). Release was set
to be univesicular, indicating that in this model N represents
the number of release sites and also the number of synapses.
These in silico synapses had physiological values for the mean and
standard deviation of the release probability (Pr = 0.3 ± 0.15)
and quantal size (Q = 15 ± 4.5 pA) based on previous literature
for Sc-CA1 hippocampal synapses that receive Schaffer collateral
input (Hessler et al., 1993; Rosenmund et al., 1993; Dobrunz and
Stevens, 1997; Hanse and Gustafsson, 2001; Oertner et al., 2002).
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In the non-uniform distributions, Pr ranged from 0.04 to 0.81 and
Q values ranged from and 6 to 28 pA (Supplementary Figure 1).
We used these values to design four populations with the same N,
mean Pr and mean Q, but with different distributions for Pr and
Q.

In the first population, all 15 synapses were uniform having an
identical Pr and Q (Figure 1A; Pr = 0.3 ± 0; Q = 15 ± 0 pA).
In the second set of in silico experiments, we tested groups of
15 synapses per neuron that varied in Pr but with Q uniform
(Figure 1B; Pr = 0.3 ± 0.15; Q = 15 ± 0 pA). The third
experiment used 15 synapses with uniform Pr and with different
values for Q (Figure 1C; Pr = 0.3 ± 0; Q = 15 ± 4.5 pA). In
the fourth experiment both Pr and Q were non-uniform in the
15 synapses (Figure 1D; Pr = 0.3 ± 0.15; Q = 15 ± 4.5 pA).
Because the N of each neuron and the Pr and Q of the
synapses were on average the same in all four experiments,
the average EPSC amplitudes were also highly similar to each
other (Figures 1A–D). We calculated the 1/CV2 and VMR values
for the 4 populations to assess whether the uniformity of the
input variables affect the output (Figures 1A–D). We make a
distinction between “predicted values” (i.e., 1/CV2 and VMR)
that result from variance analysis, and “expected values” that
are calculated by input variables N, Pr and Q in equations 1, 3
and 4. Normalizing the predicted values of 1/CV2 and VMR to
their expected values showed that the prediction did not deviate
significantly from the expected outcome for both the uniform and
non-uniform populations of in silico synapses (Figure 1E). More
importantly, these normalized values gave similar values when
comparing between the four in silico experiments (Figure 1E).
Furthermore, changing the distribution further by using either
smaller or larger values as standard deviation for Pr and Q also did
not affect the average EPSC amplitude, 1/CV2 or VMR significantly
(Supplementary Figure 3). These data indicate that the uniformity
of a population of synapses did not affect the outcomes of variance
analysis.

Variance analysis correctly predicts
changes in N, pr, and Q in both uniform
and non-uniform populations of in silico
synapses

In the previous experiment, we simulated synaptic responses
upon stimulation of 15 Sc-CA1 synapses per neuron. It may
be possible that when stimulating a lower number of synapses,
differences in variance between uniform and non-uniform
populations of synapses become more apparent. To examine the
effect of changing the number of synapses, we chose different
numbers for N ranging from 5 to 25 with Pr (0.3) and Q (15 pA)
kept constant (Figure 2). We compared synapses that were uniform
in both Pr (0.3 ± 0) and Q (15 ± 0 pA) or non-uniform in
both Pr (0.3 ± 0.15) and Q (15 ± 4.5 pA). The mean EPSC
and 1/CV2 changed linearly with a change in N (Figures 2A, B),
whereas the VMR was not affected by changes in N (Figure 2C),
indicating that changing N has the expected effects on the variance
analysis parameters in both uniform and non-uniform populations
of synapses. The values for average EPSC amplitude, 1/CV2 and
VMR normalized to their expected values showed that the uniform

FIGURE 1

Non-uniform in silico populations of synapses do not affect
variance analysis outcomes. (A–D) Left panel: example traces of
summated EPSC amplitudes of 15 stimulated synapses per sweep of
one in silico neuron. Right panels: average EPSC, 1/CV2 and VMR
(n = 27 neurons). (A) Both Pr (0.3 ± 0) and Q (15 ± 0 pA) uniform
across synapses (grey). (B) Pr (0.3 ± 0.15) non-uniform and Q
uniform (15 ± 0 pA) across synapses (yellow). (C) Pr (0.3 ± 0)
uniform and Q (15 ± 4.5 pA) non-uniform across synapses (orange).
(D) Both Pr (0.3 ± 0.15) and Q (15 ± 4.5 pA) non-uniform across
synapses (red). (E) Log2 values of 1/CV2 and VMR for all four
conditions normalized to their expected values. Statistics:
normalized values were compared to 0 using multiple t-tests with a
Holm-Šídák correction and to each other by one-way ANOVAs.
Error bars indicate SEM.

and the non-uniform populations did not deviate from each other
(Figures 2A–C), indicating the number of stimulated synapses does
not influence the reliability of variance analysis.

It was previously suggested that variance analysis outcomes for
non-uniform populations of synapses would deviate more from
expected values at high release probability than at low release
probabilities (Silver et al., 1998). We therefore asked whether
variance analysis comparisons between uniform and non-uniform
populations of synapses depend on average release probability.
The effects of changes in release probability were assessed by
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FIGURE 2

Changes in N lead to similar variance analysis outcomes in both uniform and non-uniform in silico populations of synapses. (A–C) Left panels:
effects of changes in number of synapses (N) on average EPSC (A), 1/CV2 (B), and VMR (C) in uniform (grey circles) and non-uniform (red squares)
populations. Right panel: average log2 values of EPSC (A), 1/CV2 (B), and VMR (C) normalized to expected values of uniform (grey circles) and
non-uniform populations (red squares). For uniform populations Pr = 0.3 ± 0 and Q = 15 ± 0 pA; for non-uniform populations Pr = 0.3 ± 0.15 and
Q = 15 ± 4.5 pA (n = 27). Statistics: effect of number of synapses on average EPSC, 1/CV2 and VMR values (left panels) were tested using one-way
ANOVAs. Normalized values were compared to 0 and between uniform and non-uniform using multiple t-tests with a Holm-Šídák correction. Error
bars indicate SEM; ∗∗∗∗p < 0.0001.

selecting five values for Pr ranging from 0.2 to 0.8 (Figure 3).
Note that we avoided including in silico synapses with a Pr lower
than 0 or higher than 1 by setting the standard deviation for
non-uniform populations to 0.14 instead of 0.15 for Pr = 0.2
and 0.8. In accordance with the prediction, the mean EPSC
increased proportionally with an increase in Pr for both uniform
and non-uniform groups of synapses (Figure 3A). However, only
for a low average release probability (Pr = 0.2), the average
EPSC amplitude was significantly lower for non-uniform synapses
compared with uniform synapses (p = 0.001; Figure 3A). This
result was unexpected, since the average EPSC should be similar
when average N, Pr and Q are the same. Repeating this in silico
experiment did give similar average EPSC amplitudes for changes
at Pr = 0.2 (p = 0.924; Supplementary Figure 4) and for all
other outcome values, which supports the notion that statistical
differences can be based on chance. Nevertheless, irrespectively
of having obtained a significant difference in EPSC amplitude at
average Pr = 0.2, 1/CV2 increased exponentially with an increase
in Pr without differences between the uniform and non-uniform
populations of synapses (Figure 3B). In addition, increases in
Pr lead to the expected linear decrease in VMR and also here
no differences were found between uniform and non-uniform

populations (Figure 3C). This simulation indicates that changes in
average Pr resulted in expected changes in 1/CV2 and VMR in both
uniform and in non-uniform populations of in silico synapses.

We next selectively varied the quantal response size by varying
the Q from 5 to 25 pA in steps of 5 pA, with a standard deviation
of 0 (uniform) or 4.5 (non-uniform) (Figure 4). We chose these
values of average Q (15 pA) and standard deviation (4.5 pA)
based on previous literature (Dobrunz and Stevens, 1997; Hanse
and Gustafsson, 2001). To prevent the inclusion of synapses with
negative values for Q, in the non-uniform populations the SD for
the lowest value (Q = 5 pA) was set to 2.5 instead of 4.5. The
average EPSC of synaptic responses increased proportionally with
an increase in Q and did not differ between uniform and non-
uniform populations for any of the Q values (Figure 4A). The
1/CV2 is expected to be independent of Q, which was indeed
reflected by variance analysis of both uniform and non-uniform
populations of synapses (Figure 4B). VMR values increased linearly
with Q and similarly for uniform and non-uniform populations of
in silico synapses (Figure 4C), which is in line with the expectation
that changes in Q are reflected in altered VMR values.
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FIGURE 3

Changes in Pr lead to similar variance analysis outcomes in both uniform and non-uniform in silico populations of synapses. (A–C) Left panels:
effects of changes in release probability (Pr) on average EPSC (A), 1/CV2 (B), and VMR (C) in uniform (grey circles) and non-uniform (red squares)
populations. Right panel: average log2 values of EPSC (A), 1/CV2 (B), and VMR (C) normalized to expected values of uniform (grey circles) and
non-uniform populations (red squares). For all populations N = 15 and Q = 15 pA; in uniform populations SDs of Pr and Q were 0; in non-uniform
populations SDs of Pr were 0.15 (0.14 for Pr = 0.2 and 0.8) and SDs of Q were 4.5 pA (n = 27). Statistics: effect of release probability on average EPSC,
1/CV2 and VMR values (left panels) were tested using one-way ANOVAs. Normalized values were compared to 0 and between uniform and
non-uniform using multiple t-tests with a Holm-Šídák correction. Error bars indicate SEM; ∗∗p < 0.01, ∗∗∗∗p < 0.0001.

Combined, these results indicate that variance analysis
correctly predicts changes in N, Pr and Q for non-uniform groups
of in silico synapses.

Validation of variance analysis to predict
effects of amyloid-β on synapses

To validate variance analysis as a predictor for the
locus of synaptic plasticity, we previously demonstrated in
electrophysiological experiments that changing a single parameter,
i.e. either N, Pr or Q individually, resulted in the expected changes
in 1/CV2 and VMR (van Huijstee and Kessels, 2020). To further
investigate the value of variance analysis in a more complex
situation where potentially more than one parameter may be
altered, we compared our in silico model to a previously published
ex vivo whole-cell patch clamp experiment in which synaptic
transmission is affected by the production of Aβ (Kessels et al.,

2013). To induce elevated Aβ levels in CA1 pyramidal neurons,
organotypic hippocampal slices were injected with viral vectors
expressing APPCT100, the β-secretase product of APP and substrate
for Aβ after γ-secretase cleavage. Dual whole-cell recordings
from pairs of neighboring uninfected and infected neurons were
performed, and AMPAR currents at Sc-CA1 synapses were evoked
by stimulating the same axonal input to both neurons. Excitatory
transmission was on average 47% lower in APPCT100-infected
CA1 neurons compared with their neighboring control neurons
(p < 0.0001; Figure 5A). We subsequently tested whether variance
analysis could predict a synaptic locus of the observed synaptic
depression. We found that the 1/CV2 decreased significantly in
these recordings by 40% (p = 0.0056; Figure 5A). The VMR also
tended to decrease by on average 23%, but did not reach statistical
significance (p = 0.058; Figure 5A).

To further entangle the prediction for a synaptic locus, we
reproduced the 47% decrease of the EPSC amplitude in silico by
lowering N, Pr and Q separately by∼47% (Figures 5B–D). In these
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FIGURE 4

Changes in Q lead to similar variance analysis outcomes in both uniform and non-uniform in silico populations of synapses. (A–C) Left panels:
effects of changes in quantal size (Q) on average EPSC (A), 1/CV2 (B), and VMR (C) in uniform (grey circles) and non-uniform (red squares)
populations. Right panel: average log2 values of EPSC (A), 1/CV2 (B), and VMR (C) normalized to expected values of uniform (grey circles) and
non-uniform (red squares) populations. For all populations N = 15 and Pr = 0.3; in uniform populations SDs of Pr and Q were 0; in non-uniform
populations SDs of Pr were 0.15 and SDs of Q were 4.5 pA (2.5 pA for Q = 5 pA) (n = 27). Statistics: effect of quantal size on average EPSC, 1/CV2 and
VMR values (left panels) were tested using one-way ANOVAs. Normalized values were compared to 0 and between uniform and non-uniform using
multiple t-tests with a Holm-Šídák correction. Error bars indicate SEM; ∗∗∗∗p < 0.0001.

experiments, we attempted to use values for N, Pr , and Q that
would match the electrophysiological experiments in organotypic
slices of the rat hippocampus. An important factor here is that the
ex vivo slice recordings were conducted with 4 mM extracellular
Ca2+ and Pr is known to depend strongly on extracellular Ca2+

concentration (Dodge and Rahamimoff, 1967; Rosenmund et al.,
1993; Dobrunz and Stevens, 1997; Oertner et al., 2002). To estimate
Pr in our in silico experiments, we used the VMR of the uninfected
neurons (Figure 5A) and assumed that Q was on average 15 pA,
since Q is not affected by changing Ca2+ concentrations when
Mg2+ levels are kept high at 4 mM (Hardingham et al., 2006).
By using this VMR (8.13) and Q (15 pA) in equation 4, we
calculated a Pr of ∼0.46. This value is approximately in line with
the relationship between Ca2+ concentration and Pr reported in
literature (Rosenmund et al., 1993; Dobrunz and Stevens, 1997;
Oertner et al., 2002). A factor that was considered to influence
variance analysis when comparing EPSC recordings with in silico
results is random electrical noise. When we included noise with a
bandwidth of 10 pA to the in silico model by adding a random value
between +5 pA and −5 pA to the amplitude generated by each

sweep, the 1/CV2 and VMR values are minimally affected except
for recordings with low average EPSC amplitudes (Supplementary
Figure 5).

To simulate a loss of functional synapses as the cause of ∼47%
decrease in EPSC, we analyzed the effect of lowering N from
10 to 5 synapses per neuron, which resulted in a 43% decrease
in the 1/CV2 while the VMR remained unchanged (Figure 5B).
Decreasing Pr from 0.46 ± 0.23 to 0.24 ± 0.15 to achieve a
47% decrease in EPSC amplitude led to a 65% decrease in 1/CV2

and a 49% increase in VMR (Figure 5C), which particularly for
VMR does not match experimental results. When decreasing Q
by 47% from 15 to 7.96 pA, we found that 1/CV2 decreased
by 20% and VMR decreased by 33% (Figure 5D). This result
is partially in line with expectation, since the significant change
in 1/CV2 (p = 0.029) unexpectedly predicts a decrease in N or
Pr . An advantage of in silico experiments over electrophysiology
experiments is that they can be effortlessly repeated many times. To
assess the probability of finding statistically significant differences,
we ran experiments of Figures 5B–D and subsequent statistics
for each parameter (EPSC, 1/CV2, VMR) 1,000 times. Whereas
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FIGURE 5

Variance analysis predicts the effects of Aβ on synapses. (A) Left panel: example traces of EPSCs from uninfected neuron (black circles) and infected
neighboring neuron expressing APPCT100 (yellow squares). Middle panels: with averages of EPSC, 1/CV2 and VMR in uninfected neurons and their
neighboring APPCT100-infected neurons. Right panel: schematic representation of two CA1 neurons (uninfected and infected) that are recorded
simultaneously. (B–E) Left panel: example traces of in silico control neuron (grey circles; N = 10, Pr = 0.46 ± 0.23, Q = 15 ± 4.5 pA) and test neuron
in which N, Pr, and Q are changed to achieve a ∼47% reduction in EPSC amplitude (orange squares). Middle panels: averages of EPSC, 1/CV2 and
VMR between control and test neurons (n = 27). Right panel: simulations were run 1,000 times and differences in EPSC, 1/CV2 and VMR were
assessed using t-tests and checked for statistical significance. (B) N is reduced by ∼47% (N = 5); Pr and Q are unchanged compared to control. (C) Pr

is reduced by 47% (Pr = 0.24 ± 0.15); N and Q are unchanged compared to control. (D) Q is reduced by 47% (Q = 7.95 ± 4.5 pA); N and Pr are
unchanged compared to control. (E) N is decreased by 30% (N = 7) and Q is decreased by 24% (Q = 11.36 ± 4.5 pA), Pr is unchanged compared to
the control. Statistics: paired t-test (A); unpaired t-test (B–D). Error bars indicate SEM; ∗p < 0.05; ∗∗p < 0.01, ∗∗∗∗p < 0.0001.
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comparisons were either statistically significant or non-significant
in nearly all repetitions for Figures 5B, C, the change in 1/CV2

upon a decrease in Q reached significance in only 239 out of
1,000 repetitions (Figure 5D). In conclusion, this variance analysis
predicts that APPCT100 expression predominantly causes a loss
of functional release sites, with possibly also a contribution of a
decrease in quantal size at remaining functional release sites, and
little change in presynaptic release probability.

For a more tailored reproduction, we based our in silico
parameters on previous findings in similar models to the
experiment described here (Kessels et al., 2013). APP and APPCT100
expression consistently cause a ∼30% spine loss in CA1 dendrites
across different studies (Hsieh et al., 2006; Kessels et al., 2010;
Reinders et al., 2016). APP expression was reported not to affect
presynaptic release probability in Sc-CA1 synapses, shown by an
absence of change in paired-pulse facilitation (Kamenetz et al.,
2003). There is also evidence that APP expression causes AMPAR
removal in remaining Sc-CA1 synapses. Specifically, a ∼25% spine
surface reduction of GluA1-expressing AMPARs was found (Hsieh
et al., 2006), which predominantly contribute to AMPAR currents
(Renner et al., 2017). This observation indicates a decrease in Q
in the remaining synapses that did not undergo spine loss. Based
on these findings we decided to decrease N by 30% (from 10 to
7 synapses) and cover the remaining EPSC amplitude reduction
by lowering Q by 24% (from 15 to 11.36 ± 4.5 pA) (Figure 5E).
With these manipulations, 1/CV2 decreased significantly by 39%
(p = 0.019) and VMR decreased by 15%, without reaching statistical
significance (p = 0.097). Repeating this in silico experiment a 1,000
times, 1/CV2 lowered significantly in 798/1,000 repetitions and the
VMR lowered significantly in 667/1,000 repetitions (Figure 5E).
These results obtained by in silico simulations approach the
biological electrophysiology data (Figure 5A), demonstrating the
validity of variance analysis for predicting the locus of synaptic
changes.

Discussion

We show that a non-uniform distribution of release probability
and postsynaptic response size in a population of synapses
does not affect the outcomes of variance analysis. Testing
this assumption is relevant because uniformity is implausible
for any population of central synapses (Hessler et al., 1993;
Rosenmund et al., 1993; Dobrunz and Stevens, 1997; Hanse
and Gustafsson, 2001; Oertner et al., 2002; Dürst et al., 2022).
Therefore, non-uniform populations would violate the binomial
release model. We intuitively anticipated observing larger variance
in synaptic responses for non-uniform populations of synapses
in comparison to uniform synapses, thus the model requiring
a multinomial instead of a binomial fit. Previous studies used
elegant mathematical solutions by incorporating intrasynaptic and
intersynaptic quantal variance of Pr and Q, thereby incorporating
a multinomial model and extending equations for variance
analysis (Frerking and Wilson, 1996; Silver et al., 1998). However,
our simulation shows that incorporating these factors into the
equations is in practice not necessary and that simple indices
for 1/CV2 and VMR do comply with non-uniform populations
of synapses. Therefore, the use of binomial statistics and 1/CV2

and VMR to predict the synaptic locus of plasticity is justified in
the physiological context of hippocampal synapses. Importantly,
our model to test the effects of non-uniformity was validated by
testing effects of changes in N, Pr, and Q on variance analysis
output parameters, as these output parameters did not deviate from
the expected outcomes in either the uniform or the non-uniform
populations. Note that non-uniform populations of in silico
synapses show a larger range in outcomes for EPSC amplitude
compared with uniform populations, without seeing this larger
spread for 1/CV2 and VMR. This indicates that non-uniformity
does lead to a larger variability in results for EPSCs, but that the
change in variance relative to EPSC amplitude (i.e., 1/CV2 and
VMR) remains largely unchanged in non-uniform versus uniform
populations.

We argue that variance analysis can be used to predict whether
a change in synaptic strength is of pre- or postsynaptic origin, and
our in silico model may be used to help making such predictions.
In our simulation, we programmed synapses to release maximally
one vesicle per in silico synapse. The majority of CA1 synapses in
reality contain multiple vesicle docking sites per synapse, which
are potential release sites that operate independently (Schikorski
and Stevens, 1997; Rudolph et al., 2015; Pulido and Marty, 2017;
Sakamoto et al., 2018). As long as the release probability is
sufficiently low that maximally one docked vesicle is released in
response to a single action potential, N represents both the number
of active release sites as well as the number of active synapses.
However, predominantly at large synapses that have many docked
vesicles and under conditions that allow high release probabilities,
multivesicular release can occur at CA1 synapses (Oertner et al.,
2002; Conti and Lisman, 2003; Jensen et al., 2019; Dürst et al.,
2022). In addition, in many other types of synapses multivesicular
release may be more common than previously thought (Rudolph
et al., 2015). For instance, a recent study that used a combination of
electron microscopy and variance analysis of electrophysiological
recordings demonstrates that in the mouse neocortex the number
of release sites appeared to be at least 2.7-fold higher than the
number of anatomical synapses (Holler et al., 2021). Therefore,
when applying variance analysis on groups of synapses that may
have multivesicular release, a decrease in N may not necessarily
predict a loss or silencing of synapses (Isaac et al., 1995; Liao
et al., 1995; Kerchner and Nicoll, 2008) but instead should be
interpreted as presynaptic inactivation of vesicle release sites or
postsynaptic silencing of active zones. Another potential factor
of caution in interpreting variance analysis data is whether Q
solely represents postsynaptic changes or also presynaptic changes.
There is evidence that the amount of neurotransmitter stored in
vesicles can vary slightly (Hanse and Gustafsson, 2001; Wu et al.,
2007; Goh et al., 2011; Takamori, 2016). However, vesicles that
are not completely filled have much lower release probabilities
(Rost et al., 2015), suggesting that the relationship between the
amount of neurotransmitter in a vesicle and its release probability
can be a mechanism that ensures quantal uniformity (Rost et al.,
2015; Dürst et al., 2022). These studies imply that when variance
analysis predicts a change in Q, this can most likely be attributed to
postsynaptic plasticity.

As an example to assess the predictive value of variance
analysis, we applied it to an experiment that has been used
to study the effects of Aβ on synapses. In this model system,
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CA1 neurons in rat organotypic slices that acutely overproduce
APP or APPCT100 show reduced synaptic plasticity and a loss
of ∼30% of spines at their apical dendrites (Hsieh et al., 2006;
Kessels et al., 2010; Wei et al., 2010; Reinders et al., 2016). The
remaining synapses in APPCT100-expressing CA1 neurons have
reduced AMPAR levels, with a substantial loss of GluA3-containing
AMPARs and to a lesser extent GluA1-containing ones are removed
from synapses (Hsieh et al., 2006). Because GluA3-containing
AMPARs contribute little to synaptic currents of CA1 neurons
under basal conditions (Renner et al., 2017), the removal of 25%
of GluA1-containing AMPARs will predominantly cause a reduced
synaptic transmission in these neurons. Although Aβ can affect
presynaptic release (Barthet and Mulle, 2020), in this model system
release probability is not affected (Kamenetz et al., 2003), likely
because APPCT100 is only acutely produced at the postsynaptic
neuron and not presynaptically. The outcomes of variance analysis
in our electrophysiological recordings of APPCT100-expressing CA1
neurons are in line with these previous observations. Moreover, if
we mimic these effects by reducing N and Q in the in silico model,
the variance analysis parameters closely match the changes caused
by Aβ overproduction in the electrophysiological data. We note
that Aβ overproduction appears to mainly target smaller spines,
because PSD-95, a prominent synaptic scaffolding protein that is
relatively more enriched at large synapses, protects synapses from
Aβ (Dore et al., 2021). As a consequence, Aβ overproduction would
also change the distribution of Pr and/or Q. Yet, as we demonstrate
in this study, such a change in distribution does not affect variance
analysis results.

We here propose that variance analysis using both 1/CV2 and
VMR can have a predictive value to assess how a change in synaptic
transmission has occurred. Although we here show that variance
analysis results are independent of the uniformity of synapses, we
remain cautious for using variance analysis to predict absolute
values of N, Pr, or Q. Instead we advocate this method as a
useful tool to predict whether a change in synaptic transmission is
caused by a change in N, Pr, and/or Q (van Huijstee and Kessels,
2020). As such, variance analysis can be reliably used as a simple
and effective tool to characterize synaptic changes identified in
evoked electrophysiological recordings to give direction in further
experiments to measure parameters of synaptic plasticity more
directly and in a quantitative manner.
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