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Editorial on the Research Topic

New insights into schizophrenia-related neural and behavioral

phenotypes

The etiology of schizophrenia (SCZ) is multifactorial and complex. Scientists employed

animal models, human post-mortem tissue, imaging, bioinformatics, and recently human

induced pluripotent stem cell (hiPSC)-basedmodeling to dissect the underlyingmultifaceted

mechanisms of the disease. The emerging consensus is that cortical pathology is one of

the fundamental features of schizophrenia (Selemon, 2001; Selemon and Zecevic, 2015;

Parnanzone et al., 2017; Di Biase et al., 2019). The neocortex consists of around 80% of

glutamatergic excitatory pyramidal neurons and 20% of GABAergic inhibitory interneurons

(Harris and Shepherd, 2015; Lodato and Arlotta, 2015; Tatti et al., 2017; Musall et al.,

2023). Mounting evidence suggests that aberrant connectivity of cortical macrocircuitry and

microcircuitry plays a pivotal role in SCZ, especially excitation/inhibition (E/I) imbalance at

themolecular, cellular, cell-type, and regional levels (Yizhar et al., 2011; Lisman, 2012; Marin,

2012; Gao and Penzes, 2015; Sohal and Rubenstein, 2019; Liu et al., 2021). The imbalance in

excitatory and inhibitory information can cause disruption in sensory and working memory

(Casanova et al., 2007; Opris and Casanova, 2014). The knowledge derived from the article

collection in this Research Topic will be of help for understanding and unraveling the

pathophysiology of SCZ under the framework of E/I imbalance.

At the molecular and cellular level, dysfunction of corticolimbic glutamatergic

neurotransmission plays a critical role in the manifestations of schizophrenia (Coyle, 1996;

Paz et al., 2008; Egerton et al., 2020). Glutamatergic neurons represent the primary excitatory

afferent and efferent systems innervating the cortex, limbic regions (e.g., hippocampus

and amygdala), and striatum (Coyle, 1996; Moghaddam, 2003). This orchestrates intricate

interplays amongst neuronal networks (e.g., glutamatergic, GABAergic, dopaminergic,

serotonergic neurotransmission, etc.). Dysfunction in one of those neuronal networks could

alter an E/I balance (Belmer et al., 2016; Hayashi-Takagi, 2017; Sonnenschein et al., 2020).

Let us now focus on the units of neuronal networks, i.e., neuronal synapses. It is well

documented that synaptopathy underlies a variety of psychiatric disorders (Hayashi-Takagi,

2017; Obi-Nagata et al., 2019; Friston, 2023). Our study based on hiPSC modeling showed

that an array of genes involving glutamatergic, GABAergic, dopaminergic, and cholinergic

synapses are downregulated in the neurons derived from clozapine-responsive SCZ patients
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(e.g., GRIN2A, GRM1, VGLUT3, VGLUT2, GNB2, ADCY1,

ADCY2, ADCY5, ADRBK1, GABBR2, GABBR3, GAT1, VGAT,

GAD1, GABARAPL2, DRD1, CAMK2A, CAMK2B, PPP2R2C,

PPP2CB, PPP2R5B, MAOA, MAPK11, KIF5A; CHRM3, KCNQ2).

The majority of those genes are restored by clozapine, especially

the function of NMDA receptors (Hribkova et al., 2022). It

was also observed a significant reduction in VGLUT1/PSD95-

positive synapses in SCZ neurons (Hribkova et al., 2022).

PSD95 plays critical roles in maintaining the balance between

excitatory and inhibitory synapses, synapse development, and

synaptic plasticity (Zeng et al., 2016; Lambert et al., 2017; Smith

et al., 2017). In this Research Topic, Chen et al. report that

defective dendritic spines and autism-like behaviors observed in

the Fragile X messenger ribonucleoprotein 1 (Fmr1) knockout

mice are rescued by dihydrotestosterone (DHT), whereby DHT

increases PSD95 expression by abating the Fragile X messenger

ribonucleoprotein (Fmrp)-mediated miR-125a/RISC inhibition of

PSD95 productions. Moreover, neuronal extracellular vesicles

(EVs) are also a key player in neuronal synapses. CD63 is one of the

EV proteins and facilitates vesicular trafficking through endosomal

pathways. Hendricks et al. find that Tsp42Ee and Tsp42Eg (Tsps),

CD63 homologs in Drosophila, influence the synaptic cytoskeleton

and membrane composition by regulating Futsch loop formation

and synaptic levels of SCAR and PI(4,5)P 2. Tsps influence the

synaptic localization of several vesicle-associated proteins including

Synapsin, Synaptotagmin, and Cysteine String Protein. In a review

article, Jiao et al. delineate the roles of neuronal EVs in cellular

homeostasis, intercellular communication, and phenotypic changes

in the recipient cells via sophisticated machineries. Aberrant

EVs cause neuropathy and lead to neurological disorders, which

echoes the EVs’ role in SCZ (Wang et al., 2022). Others and

we also observed abnormalities in EVs in SCZ. A study reported

that peripheral EVs in psychotic patients contain higher levels

of proteins involving the regulation of glutamatergic synaptic

plasticity (Tunset et al., 2020). Our study showed that some of

the genes responsible for synaptic vesicle cycle (e.g., VGLUT2,

VGLUT3, VGAT, CPLX2, RAB3A, STX1B1, and ATP6V1A) are

down-regulated in clozapine-responsive SCZ neurons (Hribkova

et al., 2022).

Furthermore, synaptic ion channels also play a pivotal role

in shaping synaptic communication and plasticity (Voglis and

Tavernarakis, 2006; Burke and Bender, 2019) and accumulating

data suggest that polymorphisms and mutations in ion channels

link to the susceptibility or pathogenesis of psychiatric diseases

(Imbrici et al., 2013). Our study also reveals that a score of genes

encoding ion channels [e.g., SLC4A4, SLC32A1, SLC13A4, SLC1A4,

SLC17A8, SLC17A6, SCN2A, ATP1B1, SCN3A, ATP1A2, ATP1A3,

SLC6A1, HCN4, KCNK10, KCNB1(Kv2.1), KCNH8 (Kv12.1),

KCTD2, ATP1B1, KCNQ2 (Kv7.2), ATP1A2, ATP1A3, TMEM38A,

KCNG1 (Kv6.1), KCNF1 (Kv5.1), KCNJ4 (Kir2.3), CACNG5,

and CACNG8] are down-regulated in clozapine-responsive SCZ

neurons, in which some are restored by clazopine (Hribkova

et al., 2022). Those studies suggest that the dysregulation of ion

channel genes is associated with SCZ. Understanding the role

of individual channels in SCZ is an insurmountable task due to

the numerous constellations of subtypes. Therefore, computing

and mathematical modeling would be useful tools to explore

the involvement of ion channels in SCZ and for drug testing.

In this Research Topic, Rathour and Kaphzan employ neuronal

modeling to compute how variability of voltage-gated ion channels

(VGICs), including fast Na+, delayed rectifier K+, A-type K+,

T-type Ca++, and HCN channels, affects information transfer

in neurons. They show that the A-type K+ channel is the

major regulator of information transfer. McGahan and Keener

construct a novel mathematical model for heteromeric potassium

channels that captures both α-subunit number and type present in

each channel.

At the cell-type level, a review article by Apicella and

Marchionni elucidate the role of vasoactive intestinal polypeptide

(VIP)-expressing GABAergic neurons in the neocortical areas

via disinhibitory and inhibitory effects on the intricate cortical

circuits, which translates the external stimuli into underlying

behaviors. The authors mentioned the effect of ErbB4 knockout

mice on cortical microcircuits. ErbB4 ablation reduces the

activity of VIP-expressing neurons also witnessed with an

increase excitatory neuronal activity, suggesting a direct

inhibitory effect of the VIP (Batista-Brito et al., 2017). ErbB4,

a receptor of the schizophrenia-linked protein neuregulin-

1, regulates glutamatergic synapse maturation, plasticity,

NMDAR-mediated neurotransmission, and the migration of

GABAergic interneurons (Flames et al., 2004; Li et al., 2007). The

dopaminergic system plays a crucial role in the pathophysiology

of schizophrenia (Collo et al., 2020; Martel and Gatti McArthur,

2020; Sonnenschein et al., 2020). It will be of interest to delineate

the abnormalities in SCZ patient-specific dopaminergic neurons

at the molecular and cellullar levels. Rakovic et al. generate a

TH-mCherry iPSC reporter line by CRISPR/Cas9 technology

to enrich the population of electrophysiologically mature TH+

dopaminergic neurons. This method can be applied to SCZ

patient-specific iPSC lines for underpinning the dysfunction of

dopaminergic neurons.

At the regional level, limbic regions such as the hippocampus

and amygdala are known to play a role in working memory

processes, but the relationship between structural changes in

these regions and cognitive deficits in schizophrenia is complex

and influenced by various factors, including the severity of the

condition. Three articles in this Research Topic provide new

insights into this issue. Cheng et al. suggest that the disrupted

integration of the default mode network (DMN) contributes to

working memory deficits in SCZ patients with severe attention

problems. They use graph theory to examine the network

topology of the brain during a working memory task and at

rest in SCZ patients with different levels of attention deficit

severity. The results show that patients with severe attention

deficits have a higher normalized path length of the DMN

compared to those with mild attention deficits and healthy

controls, which are not sustained during rest. These findings

might provide reliable biomarkers for attention deficits during

working memory tasks for schizophrenia patients. Peterson et al.

show that structural atrophy in the head and tail of the

hippocampus and widespread amygdala positively correlated with

the severity of symptoms and inversely with working memory

performance in SCZ patients. They suggest that patients in

different severity groups might form a spectrum of severity, as
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their working memory deficits and brain structural abnormalities

follow similar patterns, but with varying degrees of severity.

Delgado-Sallent et al. adopted a phencyclidine (PCP) mouse

model to investigate the effects of NMDAR hypofunction on

neural activities in the medial prefrontal cortex (mPFC) and

the dorsal hippocampus (dHPC) during memory acquisition.

They find that mice with subchronic PCP treatments exhibit

impairments in short-term and long-term memory, which is

associated with the disrupted mPFC-dHPC connectivity and the

memory deficits are alleviated with Risperidone treatments by

targeting this circuit. They suggest that this phenomenon might

apply to SCZ patients with NMDAR hypofunction. An extracellular

matrix protein Reelin is associated with SCZ in the human and

mouse (Fatemi et al., 2001; Ishii et al., 2016; Negrón-Oyarzo

et al., 2016). In this Research Topic, Pardo et al. report the effects

of Reelin levels on adult brain’s striatal structure and neuronal

composition. They show that Reelin knockout mice (Cre fR/fR)

from p45-60 onwards do not exhibit aberrant striatal structure

and neuronal composition, whereas Reelin overexpressing (TgRln)

mice display increases in the densities of striatal cholinergic

interneurons and Parvalbumin interneurons in the ventral-medial

striatum, dopaminergic projections in the ventral striatum, the

number of dopaminergic synaptic boutons in the NAcc. They

suggest those effects might play a counteracting role in the

excitatory/inhibitory imbalance.

In closing, each SCZ study provides a piece of the puzzle. When

many pieces of the puzzle fall into place, the pathophysiology of

SCZ will be apparent. We hope that day is coming soon.
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