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Humans have six members of the ferlin protein family: dysferlin, myoferlin,

otoferlin, fer1L4, fer1L5, and fer1L6. These proteins share common features such

as multiple Ca2+-binding C2 domains, FerA domains, and membrane anchoring

through their single C-terminal transmembrane domain, and are believed to play

a key role in calcium-triggered membrane fusion and vesicle trafficking. Otoferlin

plays a crucial role in hearing and vestibular function. In this review, we will discuss

how we see otoferlin working as a Ca2+-dependent mechanical sensor regulating

synaptic vesicle fusion at the hair cell ribbon synapses. Although otoferlin is also

present in the central nervous system, particularly in the cortex and amygdala, its

role in brain tissues remains unknown. Mutations in the OTOF gene cause one of

the most frequent genetic forms of congenital deafness, DFNB9. These mutations

produce severe to profound hearing loss due to a defect in synaptic excitatory

glutamatergic transmission between the inner hair cells and the nerve fibers of

the auditory nerve. Gene therapy protocols that allow normal rescue expression

of otoferlin in hair cells have just started and are currently in pre-clinical phase.

In parallel, studies have linked ferlins to cancer through their effect on cell

signaling and development, allowing tumors to form and cancer cells to adapt

to a hostile environment. Modulation by mechanical forces and Ca2+ signaling

are key determinants of the metastatic process. Although ferlins importance in

cancer has not been extensively studied, data show that otoferlin expression is

significantly associated with survival in specific cancer types, including clear cell

and papillary cell renal carcinoma, and urothelial bladder cancer. These findings

indicate a role for otoferlin in the carcinogenesis of these tumors, which requires

further investigation to confirm and understand its exact role, particularly as it

varies by tumor site. Targeting this protein may lead to new cancer therapies.

KEYWORDS

ferlins, Ca2+ sensor, membrane fusion, auditory synaptopathy, deafness, brain synapses,
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1. Introduction

Interest in otoferlin began with the discovery of mutations in the OTOF gene that were
identified as responsible for recessive profound deafness in humans (Yasunaga et al., 1999,
2000). This deafness is called DFNB9 (for autosomal recessive deafness 9). It represents about
2% of non-syndromic prelingual deafness, i.e., without any other associated health problem,
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and is the most frequent cause of auditory neuropathy spectrum
disorder (ANSD) (Iwasa et al., 2019). To date, about 220 mutations
leading to DFNB9 deafness have been identified (Azaiez et al.,
2021). Remarkably, some otoferlin mutations, notably in the C2F
domain, can lead to exacerbated deafness when body temperature
rises during a fever (Varga et al., 2006; Marlin et al., 2010;
Matsunaga et al., 2012; Strenzke et al., 2016). This peculiar property
underlines the importance of a precise functional 3D architecture of
the multi-C2 protein, which is known to interact at the presynaptic
active zone of the sensory hair cells with SNARE (soluble
N-ethylmaleimide-sensitive-factor attachment protein receptor)
proteins such as SNAP25 (Roux et al., 2006; Ramakrishnan et al.,
2014; Hams et al., 2017; Calvet et al., 2022) and with Cav1.3 Ca2+

channels (Ramakrishnan et al., 2009; Vincent et al., 2017, 2018;
Table 1 and Figures 1, 2).

DFNB9 is caused by a defect in synaptic neurotransmission
from auditory inner hair cells (IHCs) to their contacting spiral
ganglion afferent fibers (Roux et al., 2006; Beurg et al., 2010;
Michalski et al., 2017). The sound-induced electrical analog signal
of the hair cells, also called cochlear microphonic, is incorrectly
transduced into nerve impulses at the auditory nerve fibers. We
recall that one of the morphological characteristics of the afferent
IHC synapses is the presence of a presynaptic ribbon, an electron-
dense presynaptic structure 300–350 nm wide (Figures 1, 3).
Each of the 15–20 presynaptic ribbons per IHC are facing
a single postsynaptic auditory nerve structure bearing AMPA
(glutamate) ionotropic receptors composed of GluA2, GluA3, and
GluA4 subunits (Rutherford et al., 2023). This presynaptic ribbon,
composed of RIBEYE proteins arranged in staircase pattern, allows
the attachment of numerous synaptic vesicles at the membrane
active zone of release. This ribbon structure is essential for spike
timing precision of the auditory nerve fibers (Wittig and Parsons,
2008; Becker et al., 2018; Jean et al., 2018).

Otoferlin-induced synaptopathy is due to a defective Ca2+-
evoked exocytosis of synaptic vesicles containing glutamate, the
main cochlear excitatory neurotransmitter, at the IHC ribbon
synapses (Figure 3). Like in most neurosecretory cells, vesicle
trafficking and synaptic exocytosis in IHCs are thought to
involve interactions of SNARE complex proteins such as SNAP25
(Calvet et al., 2022). Synaptotagmins (Syts), a large family of
transmembrane proteins containing tandem Ca2+-binding C2-
domains, confer Ca2+ sensitivity to SNARE-dependent vesicle
fusion in the CNS (central nervous system) (Chapman, 2008).
However, the implication of Syts in hair cell synaptic exocytosis
has been shown to be limited to immature cochlear developmental
stages when hair cells fire action potentials (Beurg et al., 2010).
At post-hearing mature stages, when hair cells display gradual
depolarization upon sound stimulation, otoferlin becomes the
major Ca2+ sensor triggering synaptic vesicle exocytosis.

DFNB9 is classified as a neuropathy and, more specifically,
as an auditory cochlear synaptopathy (Moser and Starr, 2016).
In addition to the cochlea, otoferlin expression has also been
shown in the brain with unknown function (Schug et al., 2006)
and, in the peripheral vestibular organs where hair cell Ca2+-
dependent fast synaptic vesicle exocytosis is also impaired (Dulon
et al., 2009). In DFNB9 patients, it is important to note that the
active electromechanical sound amplification function by the outer
hair cells (OHCs) is normal, as indicated by measurements of
the distortion products of otoacoustic emissions (DPOAEs). The

DFNB9 auditory cochlear synaptopathy is currently overlooked
in clinics when the systematic hearing screening performed at
birth relies only on DPOAE measurements. Since delays in the
management of sensory pathology reduce the quality of language
development, it is becoming essential to screen for deafness with
automated auditory brainstem recordings (ABRs). For DFBNB9
hearing loss, hearing aids or cochlear implantation are the
only effective treatments currently available. Future clinical gene
therapies are on the way, as demonstrated by successful rescue
viral gene therapies in otoferlin-deficient mouse models (Al-Moyed
et al., 2019; Akil, 2020; Rankovic et al., 2020). However, in these
studies, for unknown reasons, there was only a partial rescue of
ABR wave I amplitude (the neural response associated with the
electrical activity of the IHC ribbon synapses), suggesting a non-
restored loss of some ribbon synapses. This incomplete rescuing
is likely due to the late developmental stage (postnatal days P1
to P3 in mice) at which AAV treatment was performed in these
studies. Indeed, otoferlin seems essential for normal early prenatal
development and the maintenance of ribbon synapses (Stalmann
et al., 2021).

2. Otoferlin structure and isoforms

Otoferlin is a large 1997 amino acid (aa) protein, that includes
a single C-terminal transmembrane domain (TMD) anchoring the
protein to the vesicular membrane and six C2 domains (A–F)
oriented toward the IHC cytosol (Figures 3, 4). The C2 domains are
structures composed of eight antiparallel β-sheets and negatively
charged top loops due to the presence of five aspartate residues,
constituting the putative binding site for Ca2 + ions (Sutton et al.,
1995; Xue et al., 2008). The C2-A domain is the only C2 domain
predicted to be unable to bind Ca2+ due to a shorter top loop,
thus lacking aspartates coordinating calcium binding (Helfmann
et al., 2011). The main function of C2 domains is to target
membrane surfaces following Ca2+-binding. C2 domains bind to
their target membranes by using a combination of hydrophobic and
electrostatic interactions, preferentially with phosphatidylinositol
4,5-bisphosphate (PIP2) or phosphatidylserine (PS) (Corbalan-
Garcia and Gómez-Fernández, 2014). Otoferlin also has a FerA
domain, a four-helix bundle fold with its own Ca2+-dependent
phospholipid-binding activity, suggesting that the interaction of
this domain with the membrane is enhanced by the presence of
Ca2+ (Harsini et al., 2018).

Otoferlin is produced mainly in the brain and inner ear
(cochlea and vestibule), and in smaller amounts in other organs:
the heart, liver, pancreas, kidney, and skeletal muscle (Yasunaga
et al., 2000). Otoferlin appears as a globular protein when using
the AlphaFold protein structure prediction software (Jumper et al.,
2021; Figure 4). In humans, a long and short isoform of otoferlin
have been identified (Yasunaga et al., 1999, 2000), with the long one
comprising all six C2 domains and a C-terminal trans-membrane
domain (TMD) (1997 aa), while the short one expresses only the
last three C-terminal C2 domains (C2-DEF) with the TMD (1230
aa). The role of these two isoforms remains unknown. Of note, the
short otoferlin isoform is not present in mice, whereas the human
long isoform has 98% sequence similarity with murine otoferlin.

The long isoform of otoferlin is encoded by 48 exons, of
which exons 6 and 31 can have alternative splicing. Exon 47
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TABLE 1 The otoferlin interactome.

Identified interacting domains of otoferlin

Interacting factors Putative function Otoferlin C2A C2B C2C C2D C2E C2F TMD References

Ca2+ Bind to Asp residues in C2 domains X X X X X X Johnson and Chapman, 2010; Michalski et al., 2017

Syntaxin 1A SNARE complex X X X X X X Ramakrishnan et al., 2009, 2014

SNAP-25 SNARE complex X X Ramakrishnan et al., 2014

CaV1.3 L-type Ca2+ channel X X X X X Ramakrishnan et al., 2014; Hams et al., 2017

CaMKIIδ CaM kinase X X Meese et al., 2017

Endophilin-A1 Endocytic adaptors X Kroll et al., 2019

PIP2 Phospholipid binding X X X Roux et al., 2006; Ramakrishnan et al., 2009; Padmanarayana et al., 2014

Myosin VI Motor for vesicular membrane traffic X X Heidrych et al., 2009

Golgi marker GM130 Endosome- network dynamics X Heidrych et al., 2008

Rab8b GTPase Protein transport regulator X Heidrych et al., 2008

NSF SNARE chaperone membrane fusion X X X X X Selvakumar et al., 2017

Ergic2 (ER/Golgi) Brain specific partner X X Zak et al., 2012

Dynamin Fast endocytosis GTPase X X X X Tertrais et al., 2019

AP2 Clathrin adaptor protein, slow
endocytosis

X X X X X Duncker et al., 2013; Jung et al., 2015; Selvakumar et al., 2017

Calpain Ca2+ activated protease cleaving
otoferlin

X Redpath et al., 2014

Tryptophan-rich basic
protein (WRB)

TRC40 complex, transmembrane
recognition complex

X X Vogl et al., 2016

Otoferlin is a multi-C2-domain transmembrane vesicular protein with mutations associated with congenital deafness. Based on the published literature, this table recapitulates the putative factors (left column) interacting with otoferlin, its specific C2 domains, or its
transmembrane domain (TMD). Most of these factors interacting with otoferlin share functions with SNARE proteins or have other neurotransmission-related functions.
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FIGURE 1

Otoferlin expression in auditory inner hair cells. The cochlea (here
an open bulla from a guinea pig) is a small spiraled bone structure
looking like a snail shell (A) that contains the hearing organ, the
organ of Corti. This spiral-shaped sensory epithelium, lying on the
basilar membrane between the scala vestibuli and the scala
tympani, is composed of two types of hair cells: the outer hair cells
(OHCs) which amplify the sound waves within the cochlea, and the
inner hair cells (IHCs) which transduce the mechanical sound waves
into nerve impulses. IHCs specifically express otoferlin as viewed in
green under fluorescence immuno-confocal microscopy of a
surface preparation of the organ of Corti (B). Otoferlin is essentially
expressed at the basal synaptic pole of the IHCs (at right), where the
afferent auditory nerve fibers make synaptic contacts with the
presynaptic IHCs ribbons [red, enlarged view in (C)]. An antibody
against CtBP2, a constituent of the RIBEYE-B domain, is used to
label the synaptic ribbons. Note that CtBP2 is also a nuclear
transcription factor, explaining the additional labeling of the cell
nuclei. (D) The presynaptic IHC ribbons are closely colocalized with
otoferlin, as indicated by the line-scan fluorescence intensity
profiles of the ribbon indicated in (C). This is an original figure built
from unpublished confocal immunostaining as previously described
(Peineau et al., 2021).

also carries an alternative splice site, and upon splicing, exon
48 is expressed and encodes a transmembrane domain called
TMD1. If exon 47 is not spliced, it bears a stop codon at its
end, so the translation of exon 48 is excluded, and otoferlin has
a different TMD domain, TMD2 (Figure 4). In humans and
mice, the TMD2 otoferlin isoform (exon 47) is preferentially
expressed in the brain, while the TMD1 isoform (exon 48) is
specifically found in the cochlea (Yasunaga et al., 2000; Schug et al.,
2006). Specific mutations in exon 48 cause hearing loss (Choi
et al., 2009), underscoring the importance of TMD. According
to Alphafold3D structure predictions, the differences between
the two TMD isoforms are partly based on the angulation of
the transmembrane domain relative to the rest of the protein
(Figure 4E). These two TMDs only share less than 57% amino acid
sequence similarity (Figure 4D). Notably, the brain TMD2 isoform
contains a large peptidic sequence with numerous contiguous
Leu residues (Leu-block of more than 9 Leu) in comparison

to the cochlear TMD isoform, which contains discontinuous
stretches of Leu residues (Figure 4D). Large hydrophobic Leu-
blocks in TMD peptides confer greater helicity and circumferential
hydrophobicity that facilitate biological membrane insertion (Stone
et al., 2015). The use of specific TMD should be important for
targeting the protein to specific subcellular locations, such as
particular glutamatergic excitatory presynaptic active zones, and
specifying the interaction with specific organelles and ligands
(Sharpe et al., 2010). Mutations in exon 48, such as the in-frame
deletion of a conserved isoleucine in the cochlear TMD1 at position
1967 (p.Ile1967del), lead to hearing impairment and underline
the importance of this domain in targeting the protein to the
endoplasmic reticulum (ER) membrane in hair cells (Vogl et al.,
2016).

Another isoform, with an alternative splice in exon 31 might
explain deafness caused by heat sensitivity, but its presence in the
human cochlea remains uncertain (Strenzke et al., 2016). A recent
study, by Liu et al. (2023) provides new insights into the role
of alternative otoferlin isoforms in auditory function and their
modulation by environmental factors such as noise and aging. This
study discovered a new short transcript of otoferlin derived from
an unannotated exon 6b whose expression is increased in IHCs
encoding high frequency sounds and varies under noise and aging
conditions.

3. Genetic mutations and DFNB9

Approximately 220 mutations causing DFNB9-type deafness
have been identified, some of which cause deafness during a febrile
episode (Vona et al., 2020; Azaiez et al., 2021). Interestingly, there is
no described pathological mutation of the C2A domain (Figure 5;
Stenson et al., 2003). All other areas of the protein can be affected.
According to the Human Gene Mutation Database, 41% of the
variants are missense, 22% nonsense, 15% deletions, 14% splicing,
6% insertions, and 2% copy number variants. The missense variants
alter the folding, stability, or function of the protein. Truncating
variants (nonsense, deletion, splicing, insertion, and copy number
variation) result in a missing or truncated non-functional protein.
Both types of variants result in severe to profound hearing loss.
One of the most common OTOF mutations (p.R1939Q) is located
at the junction between the calcium binding C2F domains and
the C-terminal TMD (Matsunaga et al., 2012; Kim et al., 2018).
As mentioned above, some of the mutations lead to a disorder of
the temperature-sensitive auditory neuropathy spectrum. Elevated
body temperature causes severe to profound hearing loss, whereas
normal body temperature results in normal to moderate hearing.
Interestingly, all identified thermosensitive mutations are located
between the C2C and C2F domains, underscoring the functional
importance of these regions (Zhu et al., 2021).

The mechanisms underlying the temperature sensitive hearing
loss remain essentially unknown, and they may vary with their site
of location. These mutations probably alter the folding or unfolding
properties of the long multi-C2-domain protein, impairing specific
Ca2+-dependent C2-domain interactions and synaptic vesicle
fusion, as temperature rises. Another hypothesis is that there is
increased degradation and loss of the protein. This is caused by the
heat sensitivity of otoferlin, especially in the presence of variants
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FIGURE 2

Otoferlin interaction with CaV1.3 Ca2+ channels. (A) Protein-protein interaction studies have shown otoferlin interaction with the II-III loop of the
Ca2+ channel α subunit (Ramakrishnan et al., 2009, 2014; Hams et al., 2017). (B) Hair cells (in particular IHCs) of the auditory organ express several
C-terminal splicing isoforms of CaV1.3: CaV1.342L, a long isoform with no or poor current inactivation, CaV1.343S, and CaV1.342A short truncated
C-terminal isoforms with fast inactivation, presumably carrying about 10% of the total inner hair cell (IHC) calcium current (Vincent et al., 2017). The
absence of inactivation of the CaV1.342L subunit is due to the presence at its extreme C terminus of two α helix proximal (PCRD) and distal
C-terminal regulatory domains (DCRD) that interact with each other to form the C-terminal regulatory domain (CTM). This CTM domain interaction
slows down the inactivation of Cav1.3 channels by competing with the binding of Ca2+–CaM on IQ domains, (for review see Striessnig et al., 2014)
(figure modified from Vincent et al., 2017). Note that CTM is absent in CaV1.343S, and CaV1.342A explaining the fast calcium-dependent inactivation
of these channels. (C) As a signature of this interaction between otoferlin and CaV1.3 channels, and most likely CaV1.343S, and CaV1.342A, IHCs from
mice lacking otoferlin display Ca2+ currents with no fast inactivating component (figure modified from Figure 4B of Tertrais et al., 2019).

such as Ile515Thr (Strenzke et al., 2016). The protein is then
degraded more quickly.

4. Otoferlin tissue expression

The tissue distribution of otoferlin is primarily observed in the
brain and inner ear (Schug et al., 2006). In the brain it is mainly
found in the amygdala and cerebral cortex (Figure 6). We recall that
the two TMD otoferlin isoforms have different distributions: one
is almost exclusively found in the cochlea (TMD1, exon 48), and
the other is mainly found in the brain (TMD2, exon 47) (Yasunaga
et al., 2000). However, this TMD variant distribution in the brain
and inner ear, only demonstrated by RT-PCR and Northern blot
analysis at the tissue level, needs to be confirmed at the protein and
cellular levels.

Otoferlin expression increases in hair cells as they mature,
remaining permanently expressed in IHCs and only transiently
expressed in immature OHCs (largely decreasing after P4-P6
in mice) (Roux et al., 2006; Schug et al., 2006). This transient
expression in OHCs is essential for spontaneous synaptic exocytosis

by immature OHCs, a process likely involved in the establishment
of frequency tonotopy of the central auditory nuclei during
development (Beurg et al., 2008). In IHCs and vestibular cells,
otoferlin was localized in synaptic vesicles by immunogold labeling
(Roux et al., 2006; Dulon et al., 2009) or in the Golgi apparatus
and presynaptic zone by immunohistochemistry (Schug et al., 2006;
Heidrych et al., 2008). In HEK cell expression, otoferlin is found
at the plasma membrane and colocalizes with some of the trans-
Golgi markers (GM130 or TGLON2) (Redpath et al., 2016). In
IHCs, otoferlin is distributed throughout the cytoplasm and plasma
membrane, except for the apical portion that forms the cuticular
plate and tight junctions with neighboring cells. It is also interesting
to note that the expression of the protein differs according to its
two isoforms, TMD1 and TMD2, when expressed in heterologous
cell lines. In HEK293 cell cultures, TMD1 showed a dispersed
pattern within the cell, while TMD2 was predominantly found
at the plasma membrane (Redpath et al., 2016). Otoferlin is also
expressed by type I and type II vestibular utricular hair cells (Dulon
et al., 2009). Note that truncation of the TMD of otoferlin alters
the development of hair cells and reduces membrane docking
(Manchanda et al., 2021). This tail-anchored protein can be inserted
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FIGURE 3

Otoferlin as a Ca2+-sensor controlling the hair cell synaptic vesicle cycle. (A) The postsynaptic structures, issued from the afferent nerve fibers of
the bipolar spiral ganglion neurons (SGNs), are here schematically represented contacting the basal part of an IHC viewed under electron
microscopy (EM). Each IHC is contacted by 10–20 nerve fibers, depending on their cochlear position (sound frequency encoding). Presynaptically,
facing the afferent nerve boutons, is found an electron-dense 300–350 nm wide structure called ribbon to which several dozens of synaptic
vesicles (SV) are attached (inset EM). Viewed under immuno-confocal fluorescence microscopy, each presynaptic ribbon (red) at the basal synaptic
pole of the IHC, is attached to an F-actin cage like- structure (purple) and is closely colocalized with a single cluster of CaV1.3 Ca2+ channels (green)
(image modified from Vincent et al., 2015). (B) Otoferlin, is a six-C2 domain protein with a single transmembrane domain (TMD) at its C-terminal that
allows its anchoring into the phospholipid membrane of synaptic vesicles and active zones of transmitter release. Otoferlin, bearing several
C2-Ca2+ bind domains, is essential for reloading, fusion, and endocytosis of synaptic vesicles at the ribbon synapses (C).

into the endoplasmic reticulum (ER) of hair cells via the TRC40
receptor tryptophan-rich basic protein (Wrb) (Vogl et al., 2016).

5. Otoferlin functions and
mechanisms of action

5.1. Otoferlin multirole at the IHC
synaptic vesicle cycle

Remarkably, mature inner hair cells (IHCs) lack the Ca2+-
sensors synaptotagmin (I and II) and Munc13, which are known
to play a crucial role in vesicle exocytosis at conventional central
neuronal synapses (Beurg et al., 2010; Reisinger et al., 2011;
Vogl et al., 2015). It is worth recalling that mature IHCs,
contrary to central neurons, do not fire action potentials but are

capable responding to a large dynamic range of sound intensity
(>100 dB) by graded depolarization that is encoded into an
increasing discharge rate at the postsynaptic nerve fibers. It is now
established that otoferlin plays a role at several essential stages of
the vesicle cycle in IHCs, including functional docking, priming,
fusion, endocytosis, and possibly transport and maturation of
vesicles (Figure 3; Michalski et al., 2017; Tertrais et al., 2019).
In otoferlin knockout mice, the average tether length between
vesicles and the active zone is increased, suggesting a possible
defect in vesicle attachment and priming (Vogl et al., 2015).
The downstream calcium-triggered exocytosis of vesicles is almost
completely blocked in otoferlin knockout mice. Otoferlin is also
involved in active zone clearance, including the transport of
exocytic material, through interactions with adaptor protein 2 µ,
a motor protein, and a GTPase (Jung et al., 2015). Vesicle size may
indicate a role for otoferlin in vesicle reformation and maturation,
and the functions of otoferlin may be regulated by phosphorylation.
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FIGURE 4

Otoferlin structure. (A) C2-domain structures of the two transmembrane domain (TMD) isoforms of otoferlin, TMD1 (cochlea) and TMD2 (brain).
(B) AlphaFold prediction of otoferlin 3D-structure as a globular protein with six C2 domains (C2A-F), a Fer domain, and a C-ter TMD (structure built
from AlphaFold Protein Structure Database). (C) Brain and inner ear tissues have been reported to express two different specific alternatively spliced
forms of the otoferlin TMD, encoded by either exon-47 or exon-48, respectively (Fig adapted from Yasunaga et al., 2000). Exon-47 is skipped in the
cochlea, leading to a different carboxy-terminal peptide sequence from that of the brain isoform, which expresses exon-47. In mRNA with exon-47
(neuronal otoferlin), translation terminates in that exon, leaving exon-48 untranslated. (D) Exon-47 of the brain isoform and exon-48 of the cochlear
isoform specify the C-terminal TMD 60 amino acids of otoferlin. The amino acid sequences of the two isoforms differ essentially in the predicted
transmembrane sequence (underlined). (E) Analysis of protein structure with AlphaFold software online (developed by DeepMind and EMBL-EBI)
predicts a different angle of insertion of cochlear TMD1 and neuronal TMD2 otoferlin isoforms within phospholipid membranes. The use of a specific
TMD is likely important for targeting the protein to specific subcellular locations, such as particular glutamatergic excitatory presynaptic active
zones, and/or for specifying the interaction with ligands. (F) TMD structure analysis and representation using Protter software (Omasits et al., 2014)
predicts a 21 aa TMD1 for the cochlear isoform (gi| 154240702| ref| NP_001093865.1| otoferlin [Mus musculus]) and a 23 aa for the brain isoform (gi|
154240679| ref| NP_114081.2| otoferlin [Mus musculus]).

5.2. Otoferlin and membrane fusion

Structural analysis and prediction using Protter (Omasits et al.,
2014) and Alphafold (Jumper et al., 2021) display otoferlin as a
globular protein anchored to the vesicle and/or plasma membrane
through its C-terminal domain, while its N-ter Ca2+-sensing C2-
domains are in the cytosol (Figure 4). The structural features of
its C2-domains, through their Ca2+-binding and phospholipid-
binding activities, allow otoferlin to play a role in membrane fusion
and trafficking, in endocytic, secretory, and lysosomal pathways. By
deleting exons 14 and 15 of the OTOF gene, an OTOF KO mouse
model was created (Roux et al., 2006). These otoferlin-deficient
mice (Otof −/−) are profoundly deaf. Patch-clamp recordings for

time-resolved change of membrane capacitance in IHCs from Otof
−/− mice show a significant impairment of fast and sustained
exocytotic activity (Beurg et al., 2010; Michalski et al., 2017).
Another mouse model, Pachanga, carrying a missense mutation
in the C2-F domain of otoferlin, was obtained by ENU (N-ethyl-
N-nitrosourea) mutagenesis (Schwander et al., 2007). Pachanga
mice have profound hearing loss, but unlike Otof −/− mice,
IHCs still weakly express otoferlin and maintain rapid fusion
of the pool of fusogenic vesicles, forming the RRP (for “readily
releasable pool of vesicles”) (Pangrsic et al., 2010). However,
IHC exocytosis cannot be sustained upon repeated stimulations
in these Pachanga mutant mice, indicating impaired recruitment
of vesicles to IHC fusion sites. These results suggested that
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FIGURE 5

Frequency of OTOF pathogenic mutations according to their location in the different domains of Otoferlin, showing the particular importance of the
C, D region and the F domain (map established from the Human Gene Mutation Database).

FIGURE 6

Tissue and brain expression of otoferlin. (A) Tissue specificity of otoferlin RNA expression (data from the Human Protein Atlas). (B) Otoferlin
expression (mRNA in situ hybridization) in the mouse brain thalamus and cortex (cortical subplate) from the Allen Brain Atlas portal. This analysis
appears to well corroborate previous findings showing otoferlin expression in brain tissues (Schug et al., 2006).

otoferlin is also an essential calcium sensor for synaptic vesicle
replenishment at IHC active zones. It should be noted that
vesicle recruitment is a calcium-dependent process in hair cells
(Spassova et al., 2004; Levic et al., 2011). Gradual intracellular
Ca2+-uncaging experiments in IHCs revealed that otoferlin-
induced exocytosis has an intrinsically high Ca2+ sensitivity
(affinity) with a mean Kd of 4.0 ± 0.7 µM and responses
spanning from 1 to 20 µM Ca2+ (Vincent et al., 2014). As a
comparison, the neuronal Ca2+ sensors, synaptotagmins, have
nearly a one-order of magnitude lower Ca2+ affinity (higher Kd),
a property in good correlation with their specific functions of being
activated only by high Ca2+ concentrations typical for AP-evoked
Ca2+-elevations near Ca2+ channels (Bornschein and Schmidt,
2018).

On the other hand, the importance of otoferlin in the
maintenance or development of ribbons and the presence of
corresponding synapses has been demonstrated in mice (Stalmann
et al., 2021). Otoferlin depletion in zebrafish hair cells also results in
abnormal synaptic ribbons and altered intracellular calcium levels
(Manchanda et al., 2019), suggesting Ca2+ as an important factor
for the maintenance and survival of the ribbons as in aging auditory
synapses (Peineau et al., 2021).

Although some of the interacting proteins start to be identified
(Table 1), the precise mode of action of otoferlin in membrane
fusion is not fully elucidated, particularly in comparison with
the neuronal calcium sensor (synaptotagmin1) which regulates
exocytosis function as a multimer with oligomerization via a cluster
of juxtamembrane linker (Courtney et al., 2021). Note that, in
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contrast to ferlin proteins, the TMD of synaptotagmins is located
at the N-terminal region of the protein for unknown reasons. The
homolog of otoferlin, dysferlin, has also been shown to dimerize
in living cells, at its transmembrane domain and at its multiple C2
domains (except C2A), as probed by fluorescence resonance energy
transfer (FRET) (Xu et al., 2011).

The C2-A domain is the only one of the six otoferlin domains
that cannot bind Ca2+, which probably explains the absence of
pathogenic mutations in this domain (Johnson and Chapman,
2010; Helfmann et al., 2011; Padmanarayana et al., 2014). The idea
of a simple repeat between each C2 domain is rejected. An Otof
KI mouse model carrying two mutations in C2C (substitution of 2
aspartic acid by alanine, affecting Ca2+ binding), demonstrated that
otoferlin is essential in both rapid fusion and vesicle recruitment
(Michalski et al., 2017). Interestingly, the viral expression of
truncated forms of otoferlin (C2-EF, C2-DEF, and C2-ACEF) can
only partially rescue the fast and transient release component of
exocytosis in mouse hair cells lacking otoferlin (Otof −/−), yet
cannot sustain exocytosis after long, repeated stimulations (Tertrais
et al., 2019). To note, a C2-EF otoferlin truncated form can also be
produced by intracellular calpain-1 digestion in cell lines (Redpath
et al., 2014) but it is unknown whether such truncation occurs in
auditory IHCs.

Note that otoferlin is also essential for the fast exocytosis
of type I vestibular cells. Otof−/− mice show altered vestibular
compound action potentials, suggesting impaired vestibular hair
cell function (Dulon et al., 2009). In intact utricles ex vivo, otoferlin
was found to be critical for a highly sensitive and linear calcium-
dependent exocytosis, facilitating the linear encoding of low-
intensity stimuli at the vestibular hair cell synapse. Surprisingly,
mice and humans lacking otoferlin do not have apparent vestibular
symptoms. The lack of vestibular phenotype may be explained by
some compensatory mechanisms, in particular by stimulus-evoked
acidification of the synaptic cleft of vestibular hair cells (protons
acting as neurotransmitters) (Highstein et al., 2014) or by the use of
another type of neurotransmission via potassium accumulation in
the calyx, which depolarizes it (Holt et al., 2007). Although these
compensatory modes of transmission are rather slow and non-
linear, they may explain the absence of a vestibular phenotype in
OTOF patients and animal models.

5.3. A specific mechanical tuning
between Ca2+, otoferlin, F-actin, and the
ribbon could determine the specific firing
frequency of each auditory nerve fiber

Mammalian auditory inner hair cell (IHC) ribbon synapses
have to deal with the great challenge of encoding an extremely
wide range of sound intensities, with a dynamic range of more than
100 dB. To perform this challenging task, IHCs have partitioned
their synaptic output sensitivity and dynamic range. Indeed, each
IHC forms synapses with a pool of 10 to 30 afferent nerve
fibers, among which spontaneous activity, acoustic threshold, and
dynamic range vary widely. One of the most important questions
in auditory neuroscience is to elucidate the functional mechanisms
that dictate the synaptic diversity of each type of sensory synapses
within a single IHC. Variation in the voltage-gating and spatial

FIGURE 7

Positive linear correlation between hair cell size and ribbon number
per hair cell. The two upper confocal images illustrate the
comparative distribution and number of synaptic ribbons within a
row of 6 IHCs from P21 Wild-Type (WT) and Otof-KO mice (red;
immunolabeling against CtBP2, a transcriptional repressor identical
to the B domain of RIBEYE, a main constituent of ribbon structure,
labeling both the nucleus and the synaptic ribbons). The stereocilia
of the IHCs are labeled with fluorescent FITC-phalloidin (purple).
The graph was built by using data obtained from turtle auditory hair
cells (low frequency coding; Schnee et al., 2011), mouse IHC WT
and KO from Vincent et al. (2014), mouse IHC from old P360 mice
from Peineau et al. (2021), chick hair cells from Levic et al. (2011),
mouse type I vestibular hair cells from Vincent et al. (2014),
zebrafish hair cells from Ricci et al. (2013) and Graydon et al. (2017).
The resting size of the hair cells was measured using whole-cell
patch clamp recordings of electrical capacitance in absence of
stimulation. Data were well fitted with a linear correlation
(R2 = 0.91). Note that hair cells of Otof-KO mice have a decreased
number of synaptic ribbons and proportionally smaller cell sizes as
compared to WT mice (Vincent et al., 2014, 2017; Tertrais et al.,
2019), suggesting otoferlin as essential for the maintenance of both
ribbons and cell sizes, possibly by regulating intracellular hydrostatic
pressure and the F-actin membrane network (Vincent et al., 2015).

organization of CaV 1.3 calcium channels at each presynaptic active
zone has been proposed to determine the firing specificity of the
auditory nerve fibers (Özçete and Moser, 2021). Other factors, such
as a mechanical tuning of each ribbon, could also participate in the
firing frequency characteristic of each auditory fiber (Figures 7–9).

Otoferlin has been proposed to control IHC intracellular
hydrostatic pressure and in turn exocytosis, presumably via
interactions with a synaptic F-actin network (Vincent et al., 2015)
and the Ca2+ channels CaV 1.3 at the ribbon (Vincent et al., 2017).
Otoferlin is essential for synchronous multivesicular release at IHC
active zones; this process underlying fast transient H+-inhibition of
CaV 1.3 Ca2+ channels (Vincent et al., 2018).

Remarkably, there is a good linear correlation between the
size of the hair cells and their number of synaptic ribbons per
cell when comparing the ears of various vertebrates (Figure 7). In
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FIGURE 8

Modeling IHC as a hyper-elastic structure whose changes in membrane capacitance upon intracellular Ca2+ uncaging and otoferlin action behave
like the pressure change in an inflating rubber balloon. (A) Typical example of membrane capacitance change upon intracellular Ca2+ uncaging in
an IHC of a WT P20 mouse. (B) Similar experimental conditions in an IHC of a P20 Otof-KO mouse. In (A,B), IHCs were whole-cell voltage-clamped
at –70 mV and loaded with the caged-Ca2+ molecule DM-nitrophen [figures (A,B) are unpublished traces obtained as described in Vincent et al.
(2014, 2015) and Tertrais et al. (2019)]. An increase in membrane capacitance reflects the fast fusion of synaptic vesicles at the plasma membrane.
Note that the large N-shaped curve of the change in membrane capacitance in WT IHC is absent in IHC Otof-KO. (C) Pressure variation inside an
inflating rubber balloon displays a similar N-shaped curve over time, or radius change, with the following relationship:

P = K
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R0
R

)7
] [

1+ 0.1
(

R
R0

)2
]

where R is the radius, R0 is the initial radius, K is a constant dependent on material properties, and P is the

internal pressure of the balloon (Müller and Struchtrup, 2002; Wang et al., 2018; Ajmal et al., 2023). (D) In whole-cell configuration, IHCs were
loaded with the fluorescent Ca2+ indicator molecule OGB-2 and the edge of ruptured plasma membrane inside the patch pipette could be
visualized under confocal fluorescence microscopy. As evidence of intracellular pressure changes in IHCs, upon repeated depolarizing pulses, fast
intrapipette membrane displacements could be visualized and measured in WT IHCs. These membrane movements are largely reduced in IHCs
lacking otoferlin (figure modified from Vincent, 2015). # indicates statistical difference, unpaired t-test with p < 0.01. Overall, these elements suggest
otoferlin as a mechanical protein whose interaction with Ca2+ leads to the development of mechanical forces that change intracellular pressure in
IHCs. The changes in intracellular pressure could result from Ca2+-induced fast conformational changes of otoferlin and/or the fast, massive,
addition of vesicular membrane to the plasma membrane.

IHCs from mice lacking otoferlin, the number of synaptic ribbons
is proportionally reduced with the cell size (Tertrais et al., 2019).
Also in old P360 C57BL/6J mice, the reduced size of the IHCs is
proportionally associated with a lower number of synaptic ribbons
(Peineau et al., 2021). This correlation suggests that the number
of ribbons may influence membrane exocytosis, and in turn, cell
size, possibly by modifying the intracellular hydrostatic pressure.
Numerous studies in various cell type have shown a reciprocal link
between cell biomechanics, the submembrane actomyosin network,
and exocytosis (Wang and Galli, 2018). Auditory IHCs seem to be
able to sense the biomechanical properties of the environment since
their exocytotic properties are sensitive to changes in intracellular
hydrostatic pressure (Vincent et al., 2014). Membrane addition
during hair cell synaptic exocytosis can be visualized by confocal-
fluorescent microscopy (Hudspeth and Issa, 1996), indicating
membrane deformation and a possible local change in hydrostatic
pressure.

We propose that otoferlin, by controlling membrane fusion,
regulates plasma membrane rigidity and tension of its underlying
actomyosin meshwork, whose mechanical properties are likely
essential to maintaining active membranous synaptic ribbons. Note
that upon UV-flash-photolysis allowing ultrafast intracellular Ca2+

uncaging from DM-nitrophen, the change in IHC membrane
capacitance (produced by massive vesicle fusion to the plasma
membrane) behaves like an inflating rubber balloon (Figures 8A–
C), suggesting a non-monotonic relation (non-linear stress-strain
response) between the elasticity of the IHC plasma membrane and
the intracellular pressure. Changes in IHC intracellular pressure
can directly be visualized during exocytosis when monitoring
membrane displacement during repetitive depolarizing steps
(Figure 8D; Vincent, 2015). It is tempting to propose the synaptic
ribbons as pulsating microspheres that are activated by Ca2+-
otoferlin interactions with the membranous F-actin network; these
mechanical interactions being the source generator (hydrostatic
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force) triggering vesicle membrane fusion. In this model, the
mechanical oscillatory frequency of the ribbons would essentially
depend on their mass, similarly to a spring-block oscillator, a factor
that would then determine the firing frequency of the postsynaptic
afferent nerve fibers (Figure 9). In this context, it is interesting
to note that amphibian hair cells have been shown to display
frequency selectivity in synaptic exocytosis, presumably due to a
tonotopic variation of Ca2+ buffers (parvalbumin 3 and calbindin-
28K) that tunes a regime of spontaneously oscillatory vesicle release
(Patel et al., 2012).

5.4. The ribbon synapse: an
unconventional synapse

Intriguingly, some proteins usually present in glutamatergic
synapses of the central nervous system, such as synaptophysin,
synaptotagmin, and complexins, are absent from IHC synapses,
suggesting that an unconventional mechanism of neurotransmitter
release may be involved (Safieddine and Wenthold, 1999;
Uthaiah and Hudspeth, 2010; Nouvian et al., 2011). However,
some classical neuronal SNARE proteins, such as SNAP-25, are
essential for normal exocytotic function of the IHC ribbon
synapses (Calvet et al., 2022). Also, molecular interactions
of otoferlin with Soluble NSF Attachment Protein Receptor
(SNARE) proteins, such as syntaxin-1 and SNAP-25, but not
synaptobrevin-1 (VAMP-1) have been shown in protein-protein
interaction studies in vitro (Ramakrishnan et al., 2014; Hams
et al., 2017; Table 1). At the IHC synapse level, mutations in
genes encoding proteins other than otoferlin are also implicated
in auditory synaptopathies leading to congenital deafness vesicular
glutamate transporter (VGLUT3) (Ruel et al., 2008), L-type voltage-
dependent Ca2+ channel CaV 1.3 (CACNA1D) (Platzer et al., 2000;
Baig et al., 2011), and Usher proteins such as harmonin (Gregory
et al., 2011) and the tetraspan protein clarin-1 (Dulon et al.,
2018).

6. Ferlin family

Otoferlin belongs to the ferlin protein family, which in humans
has five members in addition to otoferlin (fer1L2): dysferlin
(fer1L1), myoferlin (fer1L3), fer1L4, fer1L5, and fer1L6 (Lek et al.,
2010; Redpath et al., 2016). The first ferlin identified was Fer-1, in
Caenorhabditis elegans. Fer-1 is a fertilization factor required for
the fusion of specialized vesicles with the plasma membrane during
spermatogenesis (Achanzar and Ward, 1997). The main common
features of ferlins are:

• The presence of multiple C2 domains that share a high
sequence similarity of about 100 amino acids, and most often
allow binding to Ca2+, phosphatidylinositol 4,5-bisphosphate
(PIP2) or phosphatidylserine (PS).
• The presence of "FerA" domains also allows binding to

phospholipid membrane.
• Their anchoring to the membrane by a single C-terminal

domain (tail-anchored proteins).

FIGURE 9

Modeling the IHC synaptic ribbon as a pulsating microsphere at the
origin of signal overshoot. (A) Tone-on-tone forward masking:
typical recovery timing from cochlear synaptic depression (ABR
Wave I amplitude) in a WT mouse when using a forward masking
paradigm with increasing time intervals. Note that the
overshoot-like responses in the amplitude of the probe-evoked
ABR amplitude (also described in gerbils and guinea-pigs,
Chatterjee and Smith, 1993; Haddadzade et al., 2021) mimick the
overshoot responses described in psychoacoustic studies (Zwicker,
1965; Bacon and Moore, 1987; Bacon, 1990). Although it could
reflect in part the compressive input-output characteristic of the
basilar membrane, we propose that the damped oscillatory
behavior of the Wave I amplitude can be explained by a persistent
long-lasting pulsating synaptic activity between hair cells and
auditory nerve fibers at the end of the masker stimulation. The red
dashed line fits with a single exponential the overall masking
recovery of the auditory nerve responses with a time constant of
20 ms, a similar time scale reported for the
Ca2+-otoferlin-dependent process to refill the hair cell ribbons with
synaptic vesicles (Spassova et al., 2004; Levic et al., 2011).
(B) Schematic drawing of an IHC depicting the two main types of
postsynaptic afferent fibers regarding their spontaneous activity and
threshold response. For clarity only two fibers were depicted. Note
that high threshold fibers with low spontaneous activity, contacting
large ribbons, are mainly located at the neural (modiolar side) of the
IHCs, while low threshold fibers are at the pillar side (Liberman,
1982 ; Liberman et al., 2011). (C) Hypothetical representation of two
pulsating ribbons whose mechanical oscillatory frequency will
essentially depend on their mass factor as a spring-block oscillator
model. The oscillatory mechanical waves likely originate from the
interaction of Ca2+-otoferlin and the membranous F-actin network
(not represented). Small ribbons are predicted to generate a higher
oscillating frequency as compared to large ones.

Their common role would therefore concern Ca2+-triggered
membrane fusion and trafficking, in endocytic, secretory, and
lysosomal pathways (McNeil and Kirchhausen, 2005; Jiménez
and Bashir, 2007; Lek et al., 2012). Dysferlin and myoferlin
mutations cause muscle diseases: limb-girdle muscular dystrophy
type 2B (LGMD2B), Miyoshi myopathy (Dysferlin), and muscular
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dystrophy with cardiomyopathy (Myoferlin) (Bashir et al., 1998;
Liu et al., 1998).

Dysferlin (Fer1L1) is ubiquitously expressed, with high
expression in the brain, heart and skeletal muscle (Anderson
et al., 1999). Dysferlin is composed of seven C2 domains, the
DysF domain and the FerA domain preceding the FerB domain
(Figure 10). Dysferlin acts as a primary emergency regulator
of membrane repair in a calcium-dependent manner following
membrane damage to myofibres (Bansal et al., 2003; Barthélémy
et al., 2018). Dysferlin is also involved in Ca2+ metabolism
regulation in injured muscle fibers (Hofhuis et al., 2017). Dysferlin
can be cleaved by calpain (1 and 2; calcium-dependent protease) in
response to calcium influx following a membrane micro-lesion (Lek
et al., 2013). Cleavage releases a “mini-dysferlin-C72” (with C2E,
C2F, and TMD). Mini-dysferlin-C72 is selectively recruited and is
thought to be a minimal configuration required for physiological
membrane repair function (Krahn et al., 2010; Lek et al., 2013;
Redpath et al., 2014). Otoferlin and myoferlin can also release a
module with the last two C-terminal domains and the TMD after
enzymatic cleavage of calpain in vitro (Redpath et al., 2014; Piper
et al., 2017). This structure carries a high structural similarity to
the synaptotagmin family. Moreover, a phylogenetic study reveals
that these two C-terminal C2 domains are the most evolutionarily
conserved domains of the ferlin family: there is 90% sequence
similarity of C2-EF domains between mammals and mollusks,
suggesting a key function (Lek et al., 2010).

Like otoferlin, the C2 domains of dysferlin bind to
phosphatidylserine (PS), and phosphatidylinositol 4,5-
bisphosphate in a Ca2+-dependent fashion (Therrien et al.,
2009). Dysferlin interacts with caveolin 3 and MG53, which play
an important role in maintaining dysferlin within the plasma
membrane and enabling effective muscle membrane repair
(Matsuda et al., 2001; Hernández-Deviez et al., 2008; Cai et al.,
2009). Dysferlin also interacts with annexin A1 and A2, involved
in membrane trafficking and actin organization (Lek et al., 2012),
Cav1.1 L-type calcium channels (Ampong et al., 2005), vinculin,
which acts as a link between actin filament and plama membrane
(de Morrée et al., 2010), and syntaxin 4, a protein that facilitates the
docking and fusion of glucose transporter type 4 (GLUT4) vesicles
with the plasma membrane (Evesson et al., 2010; Codding et al.,
2016; Drescher et al., 2023).

In the central nervous system, dysferlin has been observed to
accumulate in endothelial cells near sclerosis lesions (Hochmeister
et al., 2006), as well as within amyloid-beta plaques in people with
Alzheimer’s disease (Galvin et al., 2006). In addition, in humans,
certain genetic variations of the Dysf gene have been associated
with an increased risk of developing Alzheimer’s disease, and Dysf
mRNA expression has been shown to be increased in the brains of
people with Alzheimer’s disease (Chen et al., 2015). Interestingly,
OTOF was identified as a downregulated gene in a human-
mouse chimeric model of Alzheimer’s disease using genome-wide
expression analysis, suggesting an essential function of otoferlin in
the central nervous system (Espuny-Camacho et al., 2017).

Myoferlin (Fer1L3) is also ubiquitously expressed in skeletal
and cardiac muscle and in the placenta (Davis et al., 2000).
Myoferlin is involved in the fusion of myoblasts, in repair and
regeneration, and in muscle cell membrane growth (Doherty et al.,
2005). Myoferlin may be involved in the maintenance of transverse
tubule function (Demonbreun et al., 2014). Between the C2-C and

C2D, a domain consisting of two long β-sheets is called the dysferlin
(DysF) domain, and a FerA domain, consisting of α-helices, is
located before the FerB domain (Figure 10). The exact role of the
DysF domain is unknown but must be significant, as mutations in
this domain cause myopathies (Sula et al., 2014). Full information
about the ferlin family is available in a recent review by Peulen et al.
(2019).

7. Otoferlin-disease management
and prospects

Auditory Neuropathy Spectrum Disorder (ANSD) is most
often suspected after hearing loss is detected at birth, especially
if otoacoustic emissions, temporal bone MRI, and CT scans are
normal. This deafness may be detected later if the otoacoustic
emissions at birth are falsely reassuring. The diagnosis is confirmed
by molecular genetic testing, which shows biallelic pathogenic
variants in OTOF. Two phenotypes are possible: OTOF-related
ANSD, with severe to profound bilateral hearing loss (>70 dB), and
temperature-sensitive ANSD (TS ANSD), with normal to moderate
hearing loss (0–69 dB) at normal body temperature and worsening
to profound hearing loss during hyperthermia. In these patients,
prevention of hyperthermia by early use of antipyretics for infection
and avoidance of exposure to high temperatures is important
(Azaiez et al., 2021).

As we have seen above, in OTOF-related ANSD, the defects
are presynaptic at the level of the hair cells. In these situations,
the cochlear nerve is intact and functional. This is a prerequisite
for cochlear implantation. It is currently the only option for
restoring hearing in patients with severe to profound hearing loss.
Early implantation is recommended after the diagnosis of OTOF-
related auditory neuropathy with severe to profound hearing loss.
It involves surgery. A foreign body is implanted under the skin,
and an electrode array is placed in the cochlea for life (De Seta
et al., 2022). It requires the wearing of an external magnetic
processor. The risk of infection or failure requiring re-intervention
and the limited autonomy of the device are significant limitations
of this therapy. We can also point out the potential limitations of
speech recognition in noise. In OTOF-related ANSD, audiometric
results are known since 2005 (Loundon et al., 2005). They can
be considered of high quality since the thresholds for sound
perception in silence from 500 to 2000 Hz vary on average from
25 to 45 dB SPL, depending on the series (Loundon et al., 2005;
Rouillon et al., 2006; Zhang et al., 2016; Chen et al., 2018; Zheng and
Liu, 2020). Regarding speech recognition, which is the main goal
of cochlear implantation, discrimination scores are mostly >90%.
There is no evidence that cochlear implantation outcomes are
correlated with distinct OTOF genotypes (Zheng and Liu, 2020).

Gene therapy for congenital deafness has been expanding in
recent years, with the aim of achieving a therapy with better hearing
outcomes without the limitations of cochlear implant. A truncated
form of the OTOF gene was shown to rescue hearing and balance
in zebrafish (Chatterjee et al., 2015). Since then, several studies have
been interested in genetic therapy using recombinant dual AAV
vectors (adeno-associated viruses) to encode full-length otoferlin
(Akil et al., 2019; Al-Moyed et al., 2019; Rankovic et al., 2020).
These studies gave very encouraging results by showing significant
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FIGURE 10

Schematic representation of the structures of otoferlin, myoferlin and dysferlin. These proteins of the ferlin family contain 6 to 7 C2 domains, a FerA
domain, and a single C-terminal transmembrane domain (TMD). A domain called dysferlin (DysF) is located between the C2-C and C2-D domains in
myoferlin and dysferlin (pink arrows).

restoration of hearing in mice. Recently, recombinant dual AAV
vectors encoding for the whole human cochlear otoferlin were used
to restore hearing in mice to near wild-type levels for 6 months
(Tang et al., 2022). This raises the prospect of treatment by gene
therapy in humans for DFNB9. The main limitations are the early
age of AAV treatment used in most of these studies, which would
correspond to an in utero AAV injection in humans, and the
weak restoration of the ABR wave-1 amplitude, which could limit
speech intelligibility and discrimination, particularly in noise, as
the main current defect known for cochlear implants. The weak
restoration of wave-1 amplitude during AAV gene therapy is likely
due to an uncomplete rescue of the loss of ribbon synapses in the
absence of functional otoferlin (Stalmann et al., 2021). Note that
a reduction in spiral ganglion neurons with apoptosis is also a
secondary defect caused by a lack of otoferlin in IHCs (Tsuzuki
et al., 2023). Currently, several biotech companies (SENSORION,
NCT05402813 and AKOUOS–NCT05572073) are in the pre-
clinical phase for the development of gene therapy for otoferlin
mutations in humans.

8. Otoferlin and cancer

8.1. Ferlins

As we have seen, ferlins are a group of proteins that play
an important role in several membrane-related processes that are
crucial for cell survival and signaling. These processes include
endocytosis, exocytosis, recycling, and membrane repair (Bansal
et al., 2003; Roux et al., 2006; Bernatchez et al., 2009; Redpath et al.,
2016). The link between these processes and cancer is through their
effect on cell Ca2+ signaling and development, which allows tumors
to form and cancer cells to adapt to a hostile environment. Despite
their importance, ferlins have not been extensively studied in the
context of cancer. However, recent research has shown that all ferlin
genes are modulated in different types of cancer (Peulen et al.,
2019). Myoferlin and fer1l4 genes are more commonly upregulated
(Barnhouse et al., 2018; You et al., 2020). Myoferlin has been
found to be highly expressed in several types of cancer, including
kidney, liver, pancreatic, breast, and head and neck squamous cell
carcinomas (Wang et al., 2013; Kumar et al., 2016; Blomme et al.,
2017; Hermanns et al., 2017; Song et al., 2017).

8.2. Myoferlin

The literature on ferlins in cancer only started about 10 years
ago, although the proteins have been described for over 20 years.
Most of the work has focused on myoferlin, which appears to be
the ferlin with the most important role in cancer. The fact that ferlin
expression can be either a good prognostic factor (breast cancer) or
a poor prognostic factor (kidney, head and neck cancer) is one of
the most surprising elements.

In the study of Yadav et al. (2017) which shows that when
cells are treated with IL-6, myoferlin dissociates from EHD2 and
binds to activated STAT3, a protein involved in cell signaling.
The study found that depletion of myoferlin did not affect STAT3
phosphorylation, but blocked its translocation to the nucleus. The
study also found that myoferlin knockdown significantly reduced
IL-6-mediated tumor cell migration, tumor sphere formation, and
the population of cancer stem cells in vitro. In addition, myoferlin
knockdown significantly reduced IL-6-mediated tumor growth
and metastasis. In 211 patients with head and neck squamous
cell carcinoma (HNSCC), Kumar et al. (2016) investigated the
association of myoferlin with disease progression and patient
outcome. The results showed that nuclear myoferlin expression is
associated with poor overall survival and an increased risk of death,
as well as tumor recurrence, perineural invasion, extracapsular
spread, a higher T stage, and distant metastasis. The study also
found a direct association between nuclear myoferlin expression
and IL-6 and an inverse association with HPV status. Patients
with both nuclear myoferlin expression and high levels of IL-6 and
those with HPV-negative/myoferlin-positive tumors had the worst
survival. These results suggest that nuclear myoferlin expression
independently predicts poor clinical outcomes in these patients.

By modeling the effect of myoferlin on tumor cell invasion
through altered regulation of metalloproteinase production,
Eisenberg et al. (2011) identified a role for myoferlin in promoting
invasive behavior in breast cancer cells. The identification of
myoferlin as a key regulator of EGFR (Epidermal Growth Factor
Receptor) activity through inhibition of non-clathrin endocytosis
in breast cancer cells was important in understanding the molecular
mechanisms involved in cancer growth (Turtoi et al., 2013). The
production of myoferlin-silenced tumor cells has provided another
element that may help explain the role of ferlin: these tumors lacked
functional blood vessels, an effect that may be due to a reduction in
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FIGURE 11

Survival data linked to otoferlin and oncomodulin expression levels (graphs were built after bioinformatics analysis using OncoLnc, 2023). Year
overall survival was better for patients with lower otoferlin gene expression in (A) kidney renal clear cell carcinoma (KIRC) and (B) kidney renal
papillary cell carcinoma (KIRP), whereas survival was better for patients with higher otoferlin gene expression in (C) bladder urothelial carcinoma
(BLCA). High levels of oncomoduline (OCM), a parvalbumin-family calcium-binding protein highly expressed in hair cells, in KIRP (D) is associated
with better 5-year overall survival.

VEGFA exocytosis (Fahmy et al., 2016). This may explain its strong
association with cancer prognosis, as an independent prognosis
factor in kidney (Song et al., 2017).

8.3. Otoferlin

Currently, there is limited information available on otoferlin.
Involvement of IL-6 in inner ear damage during noise trauma or
cisplatin treatment has been reported (So et al., 2007; Wakabayashi
et al., 2010), but a possible link with otoferlin function during
disease progression has not yet been explored. Using OncoLnc, a
tool for exploring correlations between the expression of mRNAs,
mRNAs, and IncRNAs, we analyzed 5-year overall survival in
21 cancer types (Anaya, 2016). In three cancers, we found a
significant impact of otoferlin expression on survival: in renal
clear cell, papillary cell carcinoma, and in bladder urothelial
carcinoma (Figure 11). Interestingly, otoferlin expression was
either a protective or a risk factor depending on the histology
of the cancer. Given the differences in 5-year survival, it seems
appropriate to consider using otoferlin expression as a prognostic
biomarker to guide therapeutic decisions.

In clear cell renal cell carcinoma, Cox et al. (2021) showed in
a study of 79 patients that otoferlin was an indicator of tumor

staging and a prognostic biomarker for cancer-specific survival.
In 25 patients with oral squamous cell carcinoma, Kraus showed
complete suppression of otoferlin expression in malignant tissue
(Kraus et al., 2022). Taken together, these results suggest a role
for otoferlin in the carcinogenesis of these tumors, which deserves
investigation to confirm and understand its exact role, especially as
it appears to vary according to tumor site. Studies are needed to
ensure that otoferlin is an independent prognostic factor for overall
survival. This could lead to new cancer therapies targeting this
protein, which are already underway for myoferlin (Zhang et al.,
2018; Li et al., 2019; He et al., 2021).

8.4. Oncomodulin

Hair cells, notably OHCs, highly express another protein, which
has also been used as a prognostic marker in cancer: oncomodulin
(OCM). OCM is a small EF-hand Ca2+-binding protein (CaBP)
of approximately 12 kDa. It belongs to the parvalbumin family. It
is the β-isoform of parvalbumin. It shares at least 53% sequence
identity with alpha-parvalbumin (PVALB) (Climer et al., 2019).
OCM has an unusually restrictive post-embryonic expression
pattern in mammals, mostly restricted to subsets of sensory hair
cells in the inner ear and more recently found in certain subtypes

Frontiers in Cellular Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fncel.2023.1197611
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1197611 July 13, 2023 Time: 16:27 # 15

Leclère and Dulon 10.3389/fncel.2023.1197611

of immune cells. Oncomodulin is essential for normal hearing
function since its deletion in mice leads to progressive deafness due
to alterations in the mechanical amplification function of OHCs
(Tong et al., 2016). We recall that OHC lateral mechanical stiffness
and motility have long been recognized as regulated by calcium
acting on the actin-based cortical cytoskeleton (Dulon et al., 1990).
Oncomodulin, acting as a CaBP, may be essential in sculpting
calcium signals important for F-actin remodeling and membrane
mechanics in OHCs, a role somewhat similar to that of otoferlin in
IHCs, as proposed in our review.

The initial discovery of OCM as an oncoprotein in cancer
tissue and its similarity to calmodulin as a CaBP led to the
term "oncomodulin" (Durkin et al., 1983). OCM was considered
oncogenic because no expression was detected in normal post-
embryonic tissue. However, after its initial discovery, OCM was
identified as a major protein in sensory cells of the cochlea. Studies
have suggested that OCM may play a role in cell proliferation,
and recently, Yin et al. (2006) identified oncomodulin as a
potent macrophage-derived growth factor for retinal ganglion
cells (RGCs) and other neurons. Oncomodulin also stimulates the
outgrowth of peripheral sensory neurons.

9. Discussion-conclusion

Otoferlin, a protein mainly produced in the brain and inner
ear, plays a key role in hearing. More than 220 mutations causing
DFNB9-type deafness have been identified so far. Many of these
mutations alter the folding, stability, or function of the protein,
resulting in severe to profound hearing loss associated with a defect
in synaptic transmission between the IHC and the nerve fibers of
the auditory nerve.

An intriguing question is: why have auditory and vestibular hair
cells selected otoferlin as a key Ca2+-sensor to control exocytosis
of synaptic vesicles instead of the classical synaptotagmins found
in central synapses? The need to encode tiny graded microphonic
potentials spanning over a large range of amplitude (several dozens
of dB) by graded multivesicular release at each ribbon synapses
and the requirement to sustain an extremely high rate of vesicle
release by an efficient vesicular replenishment are probably the
two main factors explaining the use of a large multi-C2 Ca2+

sensing protein such as otoferlin. Another important property
of otoferlin is its capability to function as a high affinity large-
range Ca2+ sensor as compared to synaptotagmins. In our review,
we propose otoferlin as a Ca2+-dependent mechanical interactor
between the membranous F-actin network and the synaptic vesicles
at the hair cell ribbon. This protein would confer Ca2+-dependent
oscillatory movement of the ribbon, whose resonant frequency
would depend on their size (mass), tuning the firing frequency of
the postsynaptic fibers.

In this context, it is important to note that otoferlin belongs to
the ferlin protein family in humans: dysferlin, myoferlin, fer1L4,
fer1L5, and fer1L6, all of which being expressed in mechanically
active or contracting cells. These proteins share common features
such as the presence of multiple C2 domains, FerA domains,
and membrane anchoring through their C-terminal domain, and
are thought to play a role in calcium-triggered membrane fusion
and trafficking. Although otoferlin is expressed in the central

nervous system, in particular in the cortex and amygdala, its
role in brain tissues remains unknown. Interestingly, a genome-
wide expression analysis of a human-mouse chimeric model of
Alzheimer’s disease identified OTOF as a downregulated gene,
suggesting a critical function of otoferlin in the central nervous
system. Dysferlin has been observed to accumulate in endothelial
cells adjacent to sclerotic lesions and within amyloid-beta plaques
in individuals with Alzheimer’s disease. These findings highlight
the need for further research into the role of ferlin proteins in the
central nervous system, particularly their potential involvement in
neurodegenerative diseases such as Alzheimer’s disease.

Also, otoferlin, like many of the other ferlins, plays a crucial
role in membrane-related processes that are important for cell
survival and signaling. Studies have suggested a link between
ferlins and cancer through their effect on cell signaling and
development, allowing tumors to form and cancer cells to
adapt to a hostile environment. Despite their importance, ferlins
have not been extensively studied in the context of cancer.
Data show that otoferlin expression is significantly associated
with survival in specific cancer types, including clear cell and
papillary cell renal carcinoma, and urothelial bladder cancer.
These results suggest a role for otoferlin in the carcinogenesis
of these tumors, which needs further investigation to confirm
and understand its exact role, especially as it appears to vary
according to tumor site. This could lead to new cancer therapies
targeting this protein.
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