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Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have

proven themselves as one of the key in vivo techniques of modern neuroscience,

allowing for unprecedented access to cellular manipulations in living animals.

With respect to astrocyte research, DREADDs have become a popular method

to examine the functional aspects of astrocyte activity, particularly G-protein

coupled receptor (GPCR)-mediated intracellular calcium (Ca2+) and cyclic

adenosine monophosphate (cAMP) dynamics. With this method it has become

possible to directly link the physiological aspects of astrocytic function to

cognitive processes such as memory. As a result, a multitude of studies have

explored the impact of DREADD activation in astrocytes on synaptic activity and

memory. However, the emergence of varying results prompts us to reconsider the

degree to which DREADDs expressed in astrocytes accurately mimic endogenous

GPCR activity. Here we compare the major downstream signaling mechanisms,

synaptic, and behavioral effects of stimulating Gq-, Gs-, and Gi-DREADDs in

hippocampal astrocytes of adult mice to those of endogenously expressed

GPCRs.
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1. Introduction

While astrocytes were traditionally seen as simple, supportive cells within the brain,
the advent of Ca2+ imaging technologies in the 1990s led to the understanding that
astrocytes exhibit a non-electrical form of excitability mediated by intracellular Ca2+

signaling (Cornell-Bell et al., 1990; Dani et al., 1992). Following this discovery, it was
shown that astrocytes are intricately associated with neurons at the synapse, forming what is
often termed the “tripartite synapse”: a functional unit consisting of pre- and post-synaptic
neurons and peri-synaptic astrocyte processes (PAPs) (Araque et al., 1999; Papouin et al.,
2017). Although the extent of gliotransmission remains debated (Bazargani and Attwell,
2016; Fiacco and McCarthy, 2018; Savtchouk and Volterra, 2018; Durkee et al., 2019),
astrocytes are known to express a plethora of receptors which are also present on neurons,
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and a multitude of research now illustrates the contribution of
astrocytes to synaptic activity and behavior, through dynamic
interactions with neurons (Durkee and Araque, 2019; Lawal et al.,
2022; Lyon and Allen, 2022).

G-protein coupled receptors (GPCRs) are a major family of
metabotropic receptors abundantly expressed on both neurons and
astrocytes. The presence of GPCRs on astrocytes is thought to
allow these cells to receive and respond to local synaptic activity
and environmental cues such as hormones and extracellular matrix
molecules (Roux and Cottrell, 2014; Durkee and Araque, 2019;
Kofuji and Araque, 2021). Astrocytic GPCRs can be activated by
neurotransmitters such as glutamate, gamma-aminobutyric acid
(GABA), adenosine triphosphate (ATP) and endocannabinoids,
triggering a variety of downstream signaling pathways by elevation
of intracellular Ca2+ (Durkee and Araque, 2019) or cyclic
adenosine monophosphate (cAMP) (Zhou et al., 2019). There is
a growing body of evidence suggesting that astrocytic GPCRs are
instrumental in mediating memory processes (Santello et al., 2019;
Kol and Goshen, 2021; Lyon and Allen, 2022), although much of
this research utilizes artificial rather than endogenously expressed
GPCRs. Indeed, methodological challenges in studying endogenous
GPCR activity in astrocytes in vivo has limited our understanding
of how they impact cognition. For instance, while a wide variety
of techniques are available to study the function of endogenous
GPCRs in astrocytes, assessing behavioral outcomes of astrocytic
GPCR modulation often requires sacrificing the physiological
plausibility of the intervention (Xie et al., 2015).

Chemogenetics has become a popular remedy to the difficulties
in assessing the behavioral consequences of astrocytic GPCR
activity. This methodology allows for the activity of genetically
engineered proteins to be altered by a biologically inert chemical
ligand (Roth, 2016). Designer Receptors Exclusively Activated
by Designer Drugs (DREADDs) (Armbruster et al., 2007) are
the most commonly used chemogenetic tool for this purpose.
DREADDs aim to mimic endogenous GPCR activity (Atasoy
and Sternson, 2018), and confer a number of advantages to
other techniques, including increased physiological plausibility and
access to behavioral effects (Xie et al., 2015). However, studies using
this method to uncover the role of astrocytic GPCRs in synaptic
activity and behavior have produced a number of varying results,
provoking controversy both as to the roles of astrocytic GPCRs
and the utility of DREADDs for investigating their activity. In
this review we question how accurately DREADDs can replicate
endogenous GPCR stimulation in adult mouse hippocampal
astrocytes, and, by extension, how the use of DREADDs in
hippocampal astrocytes may inform us on the roles astrocytic
GPCRs in cognitive processes such as learning and memory.

2. Astrocyte participation at the
synapse

2.1. Astrocyte morphological and
functional responses to synaptic activity

Astrocytes, originally named for their “star”-like appearance,
extend thousands of highly ramified processes across the neuropil,
with a single mouse astrocyte capable of contacting 300–600

dendrites and over 100,000 synapses (Halassa et al., 2007). The
abundance of ultrathin PAPs across the entire cell give astrocytes
a sponge-like morphology (Arizono et al., 2020) that mediates
interactions with neurons across largely non-overlapping spatial
domains of interconnected astrocytes (Bushong et al., 2002). The
nanoscopic scale of PAPs and their close physical proximity
to the synaptic cleft makes them perfectly situated to mediate
bidirectional communication with neurons (Ghézali et al., 2016),
and by extension, survey and influence the activity of a well-
defined volume of the neuropil (Papouin et al., 2017). Astrocytes
express a wide range of cell surface receptors, including GPCRs
(Verkhratsky, 2009), some of which allow for the transduction
of neuronal signals into intracellular Ca2+ and cAMP elevations
when stimulated by neurotransmitters (such as glutamate and
ATP) released by neurons (Zhou et al., 2019; Park and Lee,
2020; Kofuji and Araque, 2021). Astrocytic cAMP levels are
regulated primarily by activation of different astrocytic GPCRs
that can stimulate or inhibit the generation of cAMP from ATP
by action of adenylyl cyclase activity (Figure 1; Zhou et al.,
2019). Astrocytic cAMP levels can modulate morphological and
functional characteristics of these cells. For example, elevated
intracellular cAMP by activation of beta-adrenoceptors (βARs) is
known to influence morphology of cultured astrocytes (Vardjan
et al., 2014). Functionally, astrocytic cAMP is known to trigger a
number of signal transduction pathways leading to glycogenolysis,
glucose uptake and lactate release, all of which have proposed
functional roles in mediating gliotransmission and plasticity
mechanisms (Zhou et al., 2019, 2021). Indeed, cAMP elevations
during memory formation are known to induce synaptic plasticity
mechanisms in the adult mouse hippocampus, resulting in
improved memory acquisition (Zhou et al., 2021). The cAMP
pathway is also known to regulate the neuroinflammatory profile
of astrocytes, whereby increased intracellular cAMP levels protects
against proinflammatory insults by impairing upregulation of pro-
inflammatory cytokines (Christiansen et al., 2011; Zhou et al., 2019;
Kim et al., 2021).

While cAMP levels seem to impact astrocytic GPCR-related
synaptic and behavioral effects, much more is known about the
effects of GPCRs on astrocytic Ca2+ signaling. Activation of GPCRs
allow astrocytes to produce activity-dependent Ca2+ signaling
in response to synaptic activity, which is thought to be a key
mediator of astrocyte-neuron interactions, including mechanisms
that influence synaptic transmission (Perea and Araque, 2005; Di
Castro et al., 2011) and plasticity (Guerra-Gomes et al., 2018; Liu
J.-H. et al., 2022). A major source of astrocytic Ca2+ is that released
from the endoplasmic reticulum, which is mediated primarily by
activation of intracellular inositol trisphosphate (IP3) receptors via
the phospholipase C (PLC) signaling pathway (Figure 1; Volterra
and Meldolesi, 2005; Agulhon et al., 2008). It has recently been
shown that endoplasmic reticulum can be found locally in PAPs
of the mouse cortex (Aboufares El Alaoui et al., 2021), suggesting
that PLC-IP3-dependent Ca2+ elevations can occur locally within
PAPs, without necessarily involving the cell soma. Changes to
intracellular Ca2+ levels are therefore dependent upon diverse
inputs received at receptors and the intracellular signaling pathways
that mediate Ca2+ elevations – both of which are subject to intrinsic
properties of the receptor, astrocyte and the neural circuit to which
they belong (Durkee and Araque, 2019).
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FIGURE 1

Schematic of astrocytic G-protein coupled receptor (GPCR) signaling. Activation of membrane-bound astrocytic GPCRs triggers the exchange of
GDP for GTP at the α subunit and dissociation of α and βγ subunits from the receptor (dotted arrows). Once released, αs stimulates adenylyl cyclase
activity leading to the production of cAMP from ATP (1). αq binds PLC, catalyzing diacylglycerol (DAG) and IP3 synthesis (2). IP3 binds its receptor on
the endoplasmic reticulum (ER) to release Ca2+ from internal stores (3). αi inhibits adenylyl cyclase activity (4). The Gi βγ subunit can potentiate
cAMP elevations mediated by Gs-GPCRs (5), and is speculated to enhance Gq-GPCR-mediated Ca2+ release from stores via the PLC-IP3 pathway
(6), although this has yet to be proven in astrocytes (*). Figure created with Biorender.com.

Accordingly, compartmentalized Ca2+ events at PAP
microdomains appear to be much more prevalent than global
Ca2+ signaling involving the soma and proximal processes
(Shigetomi et al., 2013; Haustein et al., 2014; Srinivasan et al.,
2015; Rungta et al., 2016; Bindocci et al., 2017; Lia et al., 2021;
Sherwood et al., 2021). Indeed, Ca2+ events within astrocytic
somata likely originate from the fine processes (Oe et al., 2020).
The basal distribution patterns of intracellular Ca2+ are therefore
heterogenous both within and between cells (Zheng et al., 2015)
whereby these basal concentrations appear to be functionally
relevant to evoked Ca2+ signaling (King et al., 2020). That is,
resting state Ca2+ concentrations in PAPs are correlated with the
amplitudes of evoked Ca2+ elevations in the same PAPs, inviting
the possibility that PAPs can encode information regarding the
physiological demands of the surrounding neuropil. Astrocyte
morphology is also shown to be highly heterogenous across
different brain regions, according to the functional demands of
nearby circuits (Chai et al., 2017; Matias et al., 2019). For example,
while hippocampal and striatal astrocytes in the adult mouse
both show equivalent somatic volumes and number of primary
branches, striatal astrocytes occupy larger spatial territories, while
hippocampal astrocytes contact more excitatory synapses and have
PAPs positioned much closer to the post-synaptic densities than
their striatal counterparts (Chai et al., 2017).

Not only do PAPs exhibit the ability to sense and adapt
to the functional demands of their surroundings, morphological
plasticity of PAPs is also associated with synaptic remodeling, with
functional consequences to memory (Badia-Soteras et al., 2022;
Lawal et al., 2022). β-adrenoceptors have been shown to affect
the morphology of astrocyte in vitro (Vardjan et al., 2014), while
metabotropic glutamate receptor 3 (mGluR3) and 5 (mGluR5)
and IP3R2-mediated calcium release are involved in PAP plasticity

(Lavialle et al., 2011; Perez-Alvarez et al., 2014). Accordingly,
stimulation of PLC-IP3-dependent Ca2+ signaling, a key effect of
astrocytic GPCR activation, has been shown to mediate structural
remodeling of PAP-neuronal contacts in vivo (Tanaka et al., 2013;
Bernardinelli et al., 2014; Perez-Alvarez et al., 2014). Indeed, PAP
motility is also shown to be functionally relevant to long-term
potentiation (LTP) whereby PAPs transiently alter their coverage
of postsynaptic spines during LTP induction (Bernardinelli et al.,
2014; Santello et al., 2019; Henneberger et al., 2020). This suggests
that PAP-spine contacts are selectively restructured in an activity-
dependent manner as a function of LTP. Given synaptic remodeling
is associated with learning and memory (Caroni et al., 2012; Badia-
Soteras et al., 2022), and morphological plasticity of PAPs was
found to be impaired in a mouse model of Alzheimer Disease (Kater
et al., 2023), astrocytic GPCR-mediated PAP motility is likely a key
mechanism mediating learning and memory processes.

2.2. GPCRs and associated signaling
pathways

The functional responses of astrocytes to synaptic activity
described above are evoked primarily through activation of
cell surface GPCRs. GPCRs are a large group of membrane-
bound, metabotropic receptors, whose activation stimulates several
cellular signaling pathways (Rosenbaum et al., 2009). They are
characterized by seven transmembrane α-helix domains, the
intracellular portions of which interact with heterotrimeric G
proteins, composed of α, β, and γ subunits (Wettschureck and
Offermanns, 2005). In the resting, inactive state, the α-subunit is
bound to guanosine diphosphate (GDP) and remains associated
with the βγ complex. Activation of the GPCR triggers exchange
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of GDP for guanosine triphosphate (GTP) on the α-subunit,
resulting in its dissociation from the βγ-dimer and the receptor
(Figure 1). This dissociation allows for the Gα subunit and βγ

dimer to separately interact with other membrane proteins, such
as adenylyl cyclase and PLC, and stimulate downstream signaling
pathways (Weis and Kobilka, 2018). The structural nature of this
system allows for substantial functional versatility. That is, all three
components; receptor, G-protein and downstream effectors, are
subject to regulation by additional mechanisms, while interactions
between each component may also introduce variation, allowing
GPCRs to evoke a wide variety of functions through stimulation
of signaling pathways in multiple cell types – including astrocytes
(Wettschureck and Offermanns, 2005).

G-protein coupled receptors are often categorized as Gq, Gs,
or Gi, according to structural and functional similarities of the
heterotrimeric G-protein α-subunit with which they preferentially
interact (Syrovatkina et al., 2016). However, the effects of GPCR
activity are made significantly more complex given that the same
GPCR can couple to multiple Gα isoforms with different affinities,
according to their specific receptor conformations (Rosenbaum
et al., 2009; Okashah et al., 2019; Sandhu et al., 2019). This
binding promiscuity allows for the same receptor to stimulate
multiple signaling pathways to different extents. Nevertheless, the
downstream effects of each GPCR subtype vary according to the
major signaling pathways they preferentially activate (Figure 1). Gi-
GPCR stimulation typically inhibits cAMP production by adenylyl
cyclase inhibition. This has an inhibitory effect on neurons,
whereby downregulation of cAMP and PKA mediate membrane
hyperpolarization by increasing the open probability of G-protein
inward rectifier K+ channels (Armbruster et al., 2007; Witkowski
et al., 2012; Durkee et al., 2019). However, Gi-GPCR stimulation in
astrocytes can elicit Ca2+ elevations, a marker of cellular activation,
alongside reduced (Sobolczyk and Boczek, 2022) or elevated cAMP
levels (Tang and Gilman, 1991; Walker et al., 2017). Conversely, Gs-
GPCRs upregulate cAMP production and are therefore regarded
as stimulatory in neurons – however are generally reported to
not mediate Ca2+ elevations in astrocytes (Shigetomi et al., 2019;
Oe et al., 2020). Finally, astrocytic Gq-GPCRs stimulate the PLC
signaling pathway, mediating IP3 production and subsequent Ca2+

release from the endoplasmic reticulum (Rhee and Bae, 1997;
Volterra and Meldolesi, 2005; Agulhon et al., 2008).

2.3. Investigating the effects of astrocytic
GPCRs on synapse and behavior

A variety of GPCRs are endogenously expressed on
hippocampal astrocytes (Verkhratsky et al., 2019), and studying
their activation effects provides insight into key functional
characteristics of astrocytes, including their effects on neuronal
activity. Astrocytes exhibit substantial morphological and
functional heterogeneity across different brain regions (Matias
et al., 2019; Batiuk et al., 2020), species (Falcone, 2022) and
developmental time (Sun et al., 2013; Farhy-Tselnicker and
Allen, 2018; Matias et al., 2019). As a result, understanding the
functional roles of astrocytic GPCRs requires careful consideration
of the species, brain region and developmental timepoints under
investigation. To limit confounds due to astrocyte functional

heterogeneity and GPCR expression, here we compare literature
on DREADDs and endogenous GPCRs primarily in adult mouse
hippocampal astrocytes.

A major limitation to our understanding of the role of
astrocytic GPCRs in synaptic activity and memory has been the
methodological challenge of targeting these receptors to specific
cell types within the intact brain. Classical pharmacological
studies modulating astrocytic GPCR activity by agonist application
(Angulo et al., 2004; Fiacco and McCarthy, 2004; Rae and
Irving, 2004) are criticized for being unable to specify these
interventions to astrocytes without impacting activity of the same
receptors present on nearby neurons and other glia. Hence,
although these studies indicate a role for astrocytic GPCRs
in synaptic activity, their limitations hamper the drawing of
proper conclusions. Selective elevation of Ca2+ by photochemical
uncaging in astrocytes circumvented these issues, and was shown
by multiple groups to have impacts on neuronal function in
hippocampal slice preparations (Fellin et al., 2004; Liu et al.,
2004). However, this technique lacks physiological plausibility,
given that Ca2+ elevations are evoked in somata, failing to
replicate endogenous spatiotemporal dynamics of Ca2+ signaling
in PAPs (Shigetomi et al., 2013; Bindocci et al., 2017; Lia et al.,
2021). Furthermore, because the uncaging of Ca2+ bypasses GPCR
activation and subsequent signaling cascades, the complexity of
this mechanism is lost and resulting Ca2+ dynamics are likely
incomparable to those elicited through receptor activation.

3. DREADDs

3.1. Next generation methodology

The advent of transgenic mouse models and chemogenetic tools
has enabled the selective activation of GPCRs in astrocytes. The
first of these systems utilized the Mas-related genes A1 receptor
(MrgA1R), a GPCR endogenously expressed in nociceptive sensory
neurons in the dorsal root and trigeminal ganglia, but not
in the brain (Dong et al., 2001). Chemogenetic expression of
MrgA1R in hippocampal astrocytes thereby allowed for selective
activation of Gq-GPCR-mediated Ca2+ signaling by exogenous
ligand application (Fiacco et al., 2007; Agulhon et al., 2010).
However, since agonists for MrgA1R cross the blood brain barrier
with very poor efficacy, in vivo applications of this technique
remained somewhat out of reach (Xie et al., 2015). Very soon after,
a new family of engineered GPCRs – DREADDs – were developed,
making in vivo modulation of GPCR signaling specifically in
astrocytes a reality (Armbruster et al., 2007). DREADDs were
engineered through molecular evolution of human muscarinic
cholinergic receptors. The Gq-DREADD hM3Dq, and the Gi-
DREADD hM4Di, were derived from the human M3 and M4
receptors respectively, while the Gs-DREADD rM3Ds was derived
from the rat M3 receptor, mutated to contain the 2nd and
3rd intracellular loop of the turkey beta adrenoceptor (βAR) to
allow for interaction with Gs proteins (Armbruster et al., 2007;
Guettier et al., 2009; Farrell et al., 2013; Shen et al., 2021).
Endogenous GPCRs show binding promiscuity between subtypes
whereby receptor binding to each G protein subtype is reflected by
conformational changes to the third intracellular loop of the GPCR
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structure (Sandhu et al., 2019). DREADDs on the other hand,
are often assumed to activate generalized downstream signaling
mechanisms specific to Gq-, Gs-, and Gi-GPCRs. However, since
DREADD-mediated effects on Gq-, Gs-, and Gi-signaling are based
upon the structure of their parent receptor (M3, M3/β1AR or
M4), it is likely that the specificity of their G-protein coupling
mechanisms reflect those of M3, M4 and β1A receptors, which
have been shown to also couple multiple G-protein subtypes,
albeit with lower affinities to their preferentially bound Gα subunit
(Rubenstein et al., 1991; Dittman et al., 1994; Ilyaskina et al., 2018).
As a result, researchers should consider that DREADDs do not
interact specifically with Gq-, Gs-, and Gi-protein subtypes, but
rather can couple multiple subtypes with varied affinities, much like
their endogenous parent receptors.

Designer Receptors Exclusively Activated by Designer Drugs
can be incorporated into cells of interest in living animals by
viral expression using a cell-specific promotor [e.g., for astrocytic
expression, using GFAP promotors (Chai et al., 2017; Adamsky
et al., 2018; Durkee et al., 2019; Nagai et al., 2019; Lei et al., 2022)],
and activated by systemic ligand injection (Adamsky et al., 2018;
Atasoy and Sternson, 2018). The DREADD technique was first
applied to study astrocytic GPCR signaling in vivo by Agulhon
et al. (2013), with a number of major advantages. First, it allows
for the modulation of activity in specific cell populations, whilst
also retaining the complexity of GPCR-mediated signaling cascades
(Xie et al., 2015; Atasoy and Sternson, 2018). This method is also
relatively non-invasive compared to other in vivo experimental
systems such as optogenetics. This is because activation of the
transfected DREADD can be achieved by intraperitoneal ligand
injection, while optogenetics requires the application of light
directly to brain tissue (Xie et al., 2015). Second, the development
of DREADDs mimicking different GPCR subtypes increased the
number of experimental applications of this method compared to
Gq-coupled MrgA1R (Fiacco et al., 2007; Atasoy and Sternson,
2018). Finally, unlike MrgA1R ligands, CNO ligands can cross the
blood brain barrier very efficiently (Bender et al., 1994), allowing
for in vivo DREADD activation and the assessment of subsequent
behavioral effects (Xie et al., 2015).

3.2. Experimental findings from DREADD
studies in astrocytes

Despite boasting increased physiological plausibility compared
to other methods, recent reports highlight variable effects upon
DREADD activation in astrocytes, including effects on Ca2+

dynamics, synaptic activity (e.g., Chai et al., 2017; Durkee et al.,
2019) and behavior (e.g., Nam et al., 2019; Kol et al., 2020),
even when the same DREADD is used in the same brain region,
species and during the same developmental period. This evokes
important questions yet to be assessed: Why do results from
studies using DREADDs vary? Is this variability relevant to our
understanding of endogenous GPCRs, or must we consider in
greater depth the limitations of DREADDs? Here we question
the assumption that astrocytic DREADD stimulation accurately
mimics endogenous GPCR activity in astrocytes and subsequent
synaptic and behavioral effects. To do this, we will first discuss the
known intracellular, synaptic and behavioral effects of experimental

activation of astrocytic Gq, Gs-, and Gi-DREADDs in the adult
mouse hippocampus.

3.2.1. Gq-DREADDs
Gq-DREADDs such as hM3Dq have been experimentally

expressed in astrocytes to replicate Gq-GPCR activation and
investigate the subsequent intracellular, synaptic and behavioral
effects in vivo (Roth, 2016). Stimulation of Gq-DREADDs has been
shown to elicit Ca2+ signaling in astrocytic somata and processes in
the mouse hippocampus, via IP3-dependent mechanisms (Agulhon
et al., 2013; Chai et al., 2017; Adamsky et al., 2018; Durkee et al.,
2019; Van Den Herrewegen et al., 2021; Liu J.-H. et al., 2022).
Interestingly, Liu J.-H. et al. (2022) showed that while the majority
of evoked somatic Ca2+ elevations are IP3 receptor 2 (IP3R2)-
dependent, those in processes may be largely IP3R2-independent.
Gq-DREADD-induced Ca2+ events are relatively long lasting
compared to Ca2+ events evoked by Gi-DREADD stimulation
(Kim et al., 2021). However, evoked and spontaneous Ca2+ events
are shown to be completely abolished after initial elevations upon
CNO injection (Vaidyanathan et al., 2021) despite CNO remaining
available for binding for much longer (about 2 h). Together, these
studies indicate that while Gq-DREADD ligand binding increases
Ca2+ signaling in vivo by IP3R2-dependent and -independent
mechanisms, Ca2+ activity is silenced upon prolonged stimulation.

While it is clear that astrocytic Gq-DREADD activations evoke
intracellular Ca2+ elevations, the impact of these Ca2+ events to
synaptic activity has become a point of controversy (Bazargani
and Attwell, 2016). A number of studies using the MrgA1R
chemogenetic tool in adult mouse hippocampal astrocytes have
shown that although Gq pathway stimulation evokes robust Ca2+

elevations, it has no effect on neuronal activity in situ (Fiacco et al.,
2007; Agulhon et al., 2010). However, since then, other studies have
shown that Gq-DREADD activation in adult mouse hippocampal
astrocytes can impact synaptic activity through interactions with
nearby neurons. It was shown by Adamsky et al. (2018) that
astrocytic Gq-DREADD stimulation increases evoked miniature
excitatory post-synaptic currents (mEPSCs) by approximately 50%.
Furthermore, Durkee et al. (2019) showed that Gq-DREADD
activation in astrocytes robustly increases the frequency of slow
inward currents (SICs) in neighboring neurons. This finding
opposes that from Chai et al. (2017) who did not detect changes
to SICs upon Gq-DREADD activation in astrocytes. However,
Gq-DREADD-induced astrocytic activity in CA1 has been shown
to be necessary and sufficient to induce NMDA-dependent LTP
in CA3-CA1 synapses and enhance memory processes including
acquisition and early consolidation (Adamsky et al., 2018). SICs
are known to mediate NMDAR activity and plasticity mechanisms
(Papouin and Oliet, 2014), substantiating claims that Gq-DREADD
activation on hippocampal astrocytes alters synaptic activity.
Indeed, more recent studies have also shown that Gq-DREADD
stimulation on CA1 astrocytes mediates long-lasting potentiation
at synapses (Van Den Herrewegen et al., 2021; Liu J.-H. et al., 2022).

These Gq-DREADD-mediated synaptic effects are also shown
to influence memory. Adamsky et al. (2018) show that astrocytic
Gq-DREADD activation in mouse CA1 selectively increased
neuronal activity during fear memory acquisition, leading to
memory enhancement. Furthermore, blocking astrocytic Gq-
DREADD-induced Ca2+ elevations in the hippocampus using
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IP3R2 knockout mice evoked significant impairments to LTP and
remote fear memory compared to wild type (Liu J.-H. et al., 2022).

Together, it seems that various in situ and in vivo studies
corroborate the view that Gq-DREADD activation in astrocytes
and subsequent Ca2+ signaling can (i) impact synaptic activity
by generation of mEPSCs, SICs and LTP, and (ii) plays a role in
memory formation. Indeed, as research in this area progresses,
astrocytic Gq-DREADD activation and the synaptic and behavioral
consequences are becoming increasingly established. However,
the specific mechanisms by which astrocytes exert these effects,
downstream of Ca2+ elevations, remains a debated topic for
future research.

3.2.2. Gs-DREADDs
A limited number of studies have examined the activity of

Gs-DREADD activation in astrocytes. Oe et al. (2020) showed
that astrocytic Gs-DREADD activation in the adult mouse
hippocampus mediates sustained elevation of cAMP levels and
subsequently stimulates glycogenolysis. In addition, Gs-DREADD
activation in hippocampal astrocytes elicits Ca2+ elevations (Chai
et al., 2017; Nagai et al., 2021). Other studies have used alternative
chemogenetic means to probe Gs-GPCR activity, including use
of receptors activated solely by synthetic ligands (RASSL) such
as RASSL serotonin 1 (Rs1), a Gs-coupled receptor based on
the human 5-HT4b receptor. In one such study, stimulation
of Rs1 in hippocampal astrocytes of adult mice was seen to
increase cAMP levels, with no effect on Ca2+ signaling, and was
shown to impair memory consolidation, but not learning (Orr
et al., 2015). Together, these studies confirm that Gs-DREADDs
expressed in the hippocampus of adult mice evoke increased cAMP
levels and subsequent memory impairment. However, while Gs-
DREADDs can indeed elicit Ca2+ elevations, this is not always
the case. The cause of this inconsistent Ca2+ response to Gs-
DREADD stimulation is unknown, and further research is required
to elucidate the mechanisms responsible.

3.2.3. Gi-DREADDs
Several studies have shown that Gi-DREADD activation in

mouse hippocampal astrocytes elicits Ca2+ elevations (Durkee
et al., 2019; Kol et al., 2020; Kim et al., 2021), while others show
limited to no effects on astrocytic Ca2+ levels (Chai et al., 2017;
Van Den Herrewegen et al., 2021), despite all studies utilizing the
same Gi-DREADD construct (hM4Di). It was shown by two studies
that Gi-DREADD-evoked Ca2+ elevations are IP3R2-dependent
(Kol et al., 2020; Vaidyanathan et al., 2021), indicating that Gi-
DREADD activation evokes Ca2+ release from intracellular stores.
Furthermore, when present, Gi-DREADD-evoked Ca2+ activity
in hippocampal astrocytes is distinct to that of Gq-DREADDs,
whereby Gi-mediated Ca2+ fluctuations are more transient in
nature (Kim et al., 2021). Indeed, Kol et al. (2020) showed that Gi-
DREADD activation in CA1 astrocytes evokes a moderate decrease
in astrocytic Ca2+ levels with respect to baseline, after an initial
transient peak in activity. These Ca2+ fluctuations also seem to
regulate the reactive, proinflammatory astrocyte phenotype, such
that prolonged Gi-DREADD activation results in inhibition of
Ca2+ transients triggered by proinflammatory environments, and
is associated with ameliorating neuroinflammation and associated
cognitive impairment (Kim et al., 2021).

Gi-DREADD-evoked increases in intracellular Ca2+ levels in
adult mouse hippocampal astrocytes is accompanied by profound

effects on nearby neurons, including increased neuronal firing rates
and SIC frequency (Durkee et al., 2019). Activation of astrocytic
Gi-DREADDs in the adult mouse during learning has also been
shown to potentiate NMDAR-dependent synaptic plasticity in
Schaffer collaterals by lowering the stimulation threshold for LTP,
ultimately resulting in enhanced recent contextual memory (Nam
et al., 2019). Astrocytic Gi-DREADD-mediated effects on synaptic
activity in Schaffer collaterals has also been shown in the absence of
evoked Ca2+ signaling, whereby Gi-DREADD activation increased
field excitatory post-synaptic potential (fEPSP) amplitude and LTP
at CA1 synapses in adult mice (Van Den Herrewegen et al.,
2021). However, in contrast, behavioral results from Kol et al.
(2020) indicate that Gi-DREADD activation in CA1 astrocytes
of adult mice during learning has no effect on recent memory
retrieval, but does disrupt remote memory retrieval. It is noted
that no effects on local CA1 neuronal activity were observed, but
rather impaired remote memory retrieval resulted from impaired
recruitment of CA1 projections during acquisition and disrupted
synaptic transmission from the hippocampus to the cortex (Kol
et al., 2020). This stark contrast between the results of Nam et al.
(2019) and Kol et al. (2020) could be due to differences in (i)
cellular pathways evoked by Gi-DREADD stimulation (Gα or Gβγ

subunit affecting Ca2+ or cAMP), (ii) type of hippocampal synapse
targeted (CA3-CA1 vs. CA1-cortex) or (iii) experimental design,
whereby the potentiation shown by Nam et al. (2019) and Van Den
Herrewegen et al. (2021) was dependent upon electrical stimulation
of nearby neurons, while Kol et al. (2020) did not provide this
stimulation.

Relatively little is known about Gi-DREADD effects on cAMP
activity. However, what has been shown is that Gi-DREADD
activation in rat hippocampal astrocytes inhibits cAMP production
and attenuates stress-enhanced fear learning (Jones et al., 2018).
Further studies are required to confirm that this also occurs in the
adult mouse hippocampus.

Together, these studies show that Gi-DREADD activation can
evoke at least two effector pathways – one that is Ca2+-dependent
and another, Ca2+-independent pathway, likely relying on cAMP
inhibition to evoke downstream effects. In addition, these studies
show, similarly to Gs-DREADDs, that astrocytic Gi-DREADD
stimulation can evoke Ca2+ signaling in many, but not all cases,
sparking controversy on the mechanism of action of Gi-DREADD
activation in astrocytes. However, the finding that Gi-DREADD
activation in adult mouse hippocampal astrocytes evokes synaptic
changes by both Ca2+-dependent and -independent mechanisms,
illustrates the complexity of astrocytic GPCR functionality with
respect to intracellular Ca2+ dynamics and resulting synaptic
effects. Despite reduced cAMP production being a hallmark of
this GPCR subtype, very little is known about the effects of Gi-
DREADD stimulation on cAMP levels in hippocampal astrocytes.
However, we speculate that reduced cAMP levels in the mouse
hippocampus mediate Ca2+-independent synaptic and behavioral
effects of astrocytic Gi-DREADD stimulation, whereby the type and
frequency of stimulation determines downstream effects.

Taken together, the current understanding of the intracellular,
synaptic and behavioral effects of DREADD expression in adult
mouse hippocampal astrocytes is reaching a loose consensus. What
many of these DREADD studies in astrocytes have made clear,
is that much more research is needed to unravel the exceptional
complexity of astrocytic GPCR systems and fully characterize their
downstream effects on synapses and behavior. To understand these
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mechanisms, it is therefore important to evaluate what is known
about endogenous GPCR signaling in astrocytes, and determine
to what extent the effects of DREADD and endogenous GPCR
stimulation are comparable in astrocytes.

4. Endogenous astrocytic GPCRs

4.1. Endogenous GPCR expression in
astrocytes

Endogenously expressed GPCRs can be categorized as Gq,
Gs, and Gi, thereby corresponding to the DREADD subtypes
previously described. Here we provide evidence for the presence
of some of the most frequently studied GPCRs in the adult mouse
hippocampus (summarized in Tables 1–3) and describe the known
intracellular, synaptic and behavioral effects of their activation, such
that we may later compare these effects to those of DREADD
stimulation in section “5. Comparative assessment of endogenous
GPCRs and DREADDs.”

4.1.1. Endogenous Gq-GPCRs
Metabotropic glutamate receptors (mGuRs) are a core group

of GPCRs present in hippocampal astrocytes of the adult mouse.
Multiple mGluR subtypes exist, two of which are Gq-coupled;
mGluR1 and mGluR5, whose activation elicits IP3-dependent
Ca2+ signaling as previously described (Table 1). mGluR1 and
mGluR5 are both group I mGluRs (mGluR1/5) and are therefore
studied within this grouping, as well as individually. Substantial
evidence shows the presence of mGluR1 (Fellin et al., 2004;
Xie et al., 2012; Devaraju et al., 2013; Chai et al., 2017; Batiuk
et al., 2020) and mGluR5 (Fellin et al., 2004; Chai et al., 2017;
Batiuk et al., 2020; Liu C. et al., 2022) in rodent hippocampal
astrocytes in vitro and in situ. However, relatively few studies
have illustrated mGluR1/5 expression specifically in hippocampal
astrocytes in the adult mouse (Chai et al., 2017; Batiuk et al.,
2020; Liu C. et al., 2022). Immunoelectron microscopy by Sun
et al. (2013) provided strong evidence that mGluR5 expression is
downregulated over developmental time to near absence in the
adult mouse brain. Indeed, although many studies have detected
mGluR1/5 expression in rodent hippocampal astrocytes, single
cell RNA sequencing (scRNA-seq) data also shows that expression
tends to be very limited in the adult mouse hippocampus (Chai
et al., 2017; Batiuk et al., 2020), indicating that mGluR5 is more
relevant to developmental processes than those in the mature
mouse. However, expression of astrocytic mGluR5 has since been
shown by immunohistochemistry in the adult mouse hippocampus
(Liu C. et al., 2022). Expression of astrocytic mGluR5 is also shown
in the adult rat hippocampus, whereby expression is localized
predominantly in PAPs (Lavialle et al., 2011). Here, Lavialle et al.
(2011) also implicate PAP mGluR5 expression in PAP motility
indicating that (i) expression levels may be higher in PAPs
compared to somata, and (ii) astrocytic mGluR5 is functionally
significant to synaptic activity through effects on PAP motility. It
is possible that high degrees of heterogeneity in astrocytic gene
expression impacts detection of GPCRs in whole cell analysis and
minimizes potential contributions of mGluR5 to astrocyte-synapse
interactions. Functionally, mGluR1/5s are also shown to exhibit
dose-dependent response heterogeneity to agonist application,

whereby low concentrations of agonists elicit single peak signals,
and progressively higher concentrations produce multi-peak and
plateaued responses in hippocampal astrocytes of young mice
(Xie et al., 2012); differences which are illustrative of how Ca2+

dynamics vary according to GPCR receptor stimulation frequency
and duration (Tang et al., 2015). However, the downstream
implications of these differences in evoked Ca2+ responses are not
fully understood and require further investigation, particularly in
the adult mouse. Astrocytic mGluR1/5 activation and subsequent
Ca2+ activity is also required for the generation of NMDAR-
dependent SICs in neurons, thereby facilitating LTP in the rodent
hippocampus (Fellin et al., 2004; Perea and Araque, 2005).
Downregulated expression of astrocytic mGluR5 in the adult
mouse CA1 has been shown to reduce the frequency of miniature
excitatory post-synaptic currents (mEPSCs), thereby impairing
excitatory synaptic function in this region (Liu C. et al., 2022).
Furthermore, mGluR5 overexpression rescued these impairments.
Although the mechanism by which this occurs is debated, it
may involve increased astrocytic Ca2+ elevations and probability
of gliotransmitter release. Accordingly, mGluR1/5 are frequently
cited as likely mediators of astrocytic glutamate exocytosis and
gliotransmission (Volterra and Meldolesi, 2005; Hamilton and
Attwell, 2010; Mahmoud et al., 2019).

The P2Y purinoceptor 1 (P2YR1) is another Gq-coupled
GPCR shown to be present in PAPs located at excitatory
synapses in mouse hippocampal slices (Domercq et al., 2006;
Santello et al., 2011; Shigetomi et al., 2018). It has been
shown that P2YR1-PLC-IP3-mediated Ca2+ elevations induce
gliotransmission and NMDAR-dependent synaptic potentiation.
However, these synaptic effects of astrocytic P2YR1-mediated
Ca2+ elevations are not sufficient on their own but require the
presence of permissive, homeostatic factors like TNFα (Domercq
et al., 2006; Santello et al., 2011). Furthermore, while mGluR1
antagonist application reduced Ca2+ signaling in PAPs, combined
application of both mGluR1 and P2YR1 antagonists reduced Ca2+

signaling even further (Tang et al., 2015). Hence, it is likely
that both receptors contribute to Gq-mediated synaptic effects
at mouse CA3-CA1 synapses in accordance with surrounding
neuronal activity (Tang et al., 2015) and the presence of supporting
proteins such as TNFα, controlling stimulus-secretion coupling in
astrocytes (Santello et al., 2011). However, while the above evidence
indicates that endogenous Gq-GPCR activation in astrocytes
promotes intracellular and synaptic processes that are expected to
enhance memory, Reichenbach et al. (2018) show that inhibition of
astrocytic P2YR1 is protective against spatial learning and memory
impairment in the APP/PS1 mouse model of Alzheimer’s Disease
(AD). In this case, the maladaptive impact of astrocytic P2YR1 on
memory is likely due to the pathology of this AD model (including
P2YR1 hyperactivity and gliosis), as opposed to being a reflection
of the role of astrocytic P2YR1 in memory under physiological
conditions – which remains to be determined.

Cannabinoid receptor 1 (CB1R) is a GPCR that depending
upon agonist availability, can couple to either Gi or Gq proteins
(Lauckner et al., 2005), but preferentially to Gi proteins, and
will therefore be discussed in more detail below (section “4.1.3.
Endogenous Gi-GPCRs”).

The presence of the Gq-coupled α1-adrenoceptor (α1AR) on
adult mouse hippocampal astrocytes has been illustrated in vivo
(Srinivasan et al., 2015), in situ (Chai et al., 2017) and through
scRNA-seq (Batiuk et al., 2020). This receptor seems to be necessary
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TABLE 1 Endogenous Gq-GPCRs in adult mouse hippocampus: Synaptic and behavioral effects.

GPCR Agonists Astrocyte
response

Synaptic
response

Hippocampus-related
behavior

References

mGluR1 Glutamate
DHPG
t-ACPD

↑ Ca2+ by PLC-IP3

signaling
Generation of SICs, LTP
induction

* Fellin et al., 2004; * Perea and
Araque, 2005; Chai et al., 2017

mGluR5 Glutamate
DHPG
t-ACPD
CHPG

↑ Ca2+ by PLC-IP3

signaling
Generation of SICs, LTP
induction, PAP plasticity,
mEPSCs

* Fellin et al., 2004; * Perea and
Araque, 2005; * Lavialle et al.,
2011; Liu C. et al., 2022

P2YR1 ATP
2MeSADP
MRS2365

↑ Ca2+ by PLC-IP3

signaling
NMDAR-dependent
synaptic potentiation

AD-related memory impairment Domercq et al., 2006; Tang et al.,
2015; Reichenbach et al., 2018;
Shigetomi et al., 2018

α1AR Phenylephrine ↑ Ca2+ by PLC-IP3

signaling
Regulation of inhibitory
neurotransmission

Srinivasan et al., 2015; Chai et al.,
2017; Batiuk et al., 2020

CB1R 2-AG
Anandamide
19-THC
WIN55,212-2

↑ Ca2+ by PLC-IP3

signaling
Gi-mediated ↓ cAMP
levels

NMDAR-dependent
SICs, LTP and LTD
induction

Memory extinction Marsicano et al., 2002; Navarrete
and Araque, 2010; Han et al.,
2012; Navarrete et al., 2014;
Gómez-Gonzalo et al., 2015;
Gutiérrez-Rodríguez et al., 2018

* = rat; pharmacological agonists = italics.

TABLE 2 Endogenous Gs-GPCRs in adult mouse hippocampus: Synaptic and behavioral effects.

GPCR Agonists Astrocyte
response

Synaptic
response

Hippocampus-related
behavior

References

A2AR Adenosine
CGS 21690

↑ cAMP Neuroinflammation
Inhibits NO production

↓Memory consolidation Brodie et al., 1998; Boison et al.,
2010; Orr et al., 2015; Shigetomi
et al., 2019; Zhou et al., 2019;
Batiuk et al., 2020

βARs Noradrenaline
Zinterol
Isoprenaline

↑ cAMP
Lactate release (β2AR
only)

LTP induction ↑Memory consolidation * Gao et al., 2016; Oe et al., 2020

* = rat; pharmacological agonists = italics.

for the initial peak in startle-evoked intracellular Ca2+ activity, but
not for slow rising elevations thereafter (Srinivasan et al., 2015).
This finding is substantiated by those of Oe et al. (2020) who show
α1AR stimulation in cortical astrocytes mediates sharp elevations
in intracellular Ca2+ upon short stimulus durations, and surges of
Ca2+ activity upon neuronal burst firing. While this was observed
in cortical regions, we speculate that this mechanism also holds
true in the hippocampus given the findings from Srinivasan et al.
(2015), who showed that α1AR-mediated Ca2+ elevations display
peaks of activity as opposed to prolonged elevations. Astrocytic
α1AR are also associated with regulating inhibitory dynamics in
neural circuits (Wahis and Holt, 2021). Indeed, astrocytic α1ARs
are implicated (alongside those expressed in interneurons) in
increasing GABAergic neurotransmission.

Together, these studies suggest that Ca2+ elevations are
a hallmark of astrocytic Gq-GPCR activation in the adult
mouse hippocampus, whereby these dynamics directly impact
synaptic activity. Indeed, astrocytic mGluR1/5 activation stimulates
generation of mEPSCs and SICs in nearby neurons, thereby
facilitating synaptic potentiation. Activation of astrocytic P2YR1s
also seem to contribute to potentiating excitatory synapses,
while astrocytic α1AR stimulation appears to regulate inhibitory
neurotransmission. Overall, very little is known about the
behavioral consequences of endogenous Gq-GPCR activity under

physiological conditions (Table 1), prompting the requirement of
in vivo techniques to fill this gap in the literature.

4.1.2. Endogenous Gs-GPCRs
A number of different Gs-GPCRs are expressed in adult mouse

hippocampal astrocytes, including the adenosine 2A receptor
(A2AR) and βARs (Table 2). A2AR to be present at low
levels in hippocampal astrocytes of adult mice (Batiuk et al.,
2020). Furthermore, A2AR expression is known to increase
upon neuroinflammatory brain insults whereby astrocytic A2AR
activation increases cell proliferation and activation, indicating
roles for A2AR in mediating astrogliosis, a known hallmark of
AD (Boison et al., 2010; Lopes et al., 2021). Astrocytic A2ARs
have indeed been linked to AD such that mRNA expression
of A2AR in human hippocampal astrocytes is upregulated with
disease progression (while expression is downregulated during
normal aging) and strongly correlated with pathological amyloid
beta and microtubule-associated protein tau accumulation (Orr
et al., 2015). Furthermore, Orr et al. (2015) show that increased
activity of astrocytic A2ARs across the whole brain impairs memory
retention in a mouse model of AD. Functionally, activation of
A2AR in cultured rat astrocytes is shown to increase cAMP levels
(Murphy et al., 1991; Cristóvão-Ferreira et al., 2013). This typical
Gs-coupled effect of cAMP elevations has also been associated
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TABLE 3 Endogenous Gi-GPCRs in adult mouse hippocampus: Synaptic and behavioral effects.

GPCR Agonist Astrocyte
response

Synaptic
response

Hippocampus-related
behavior

References

CB1R 2-AG
Anandamide
19-THC

↑ Ca2+ by PLC-IP3

signaling
Gi-mediated ↓ cAMP
levels

NMDAR-dependent
SICs, LTP and LTD
induction

Memory extinction? Marsicano et al., 2002; Navarrete
and Araque, 2008, 2010; Han
et al., 2012; Gómez-Gonzalo
et al., 2015; Gutiérrez-Rodríguez
et al., 2018

mGluR3 Glutamate
NAAG
LY379268
LY354740

↓ cAMP,
βγ-mediated ↑ cAMP -
βAR potentiation
↑ Ca2+ by PLC-IP3

signaling

Release of neurotrophic
factors, LTP induction

Memory extinction? Sun et al., 2013; Haustein et al.,
2014; Chai et al., 2017; Walker
et al., 2017

GABAbR GABA
R-baclofen

* ↓ cAMP levels
↑ Ca2+ by PLC-IP3

signaling

LTP, LTD, reduced
fEPSPs

* Patte et al., 1999; Haustein et al.,
2014; Chai et al., 2017; Covelo
and Araque, 2018; Durkee et al.,
2019; Batiuk et al., 2020

* = cultured rat astrocytes; pharmacological agonists = Italics; ? = unconfirmed.

with inhibiting nitric oxide production in astrocytes via A2AR
activation (Brodie et al., 1998; Boison et al., 2010). Nitric oxide is
an important retrograde messenger for LTP and LTD induction
whereby extracellular nitric oxide plays a role in NMDAR-
dependent LTP by action on postsynaptic Ca2+ channels (Paul and
Ekambaram, 2011; Pigott and Garthwaite, 2016). We speculate that
memory impairment upon activation of astrocytic A2ARs may be
due to nitric oxide inhibition and subsequent impairment in LTP
induction. However, the role of astrocytic A2AR activation under
physiological conditions remains to be determined.

The presence of another group of Gs-GPCRs, βARs, has also
been illustrated pharmacologically in hippocampal astrocytes of
adult rodents (Salm and McCarthy, 1992; Gao et al., 2016; Oe
et al., 2020). βAR activation is also known to mediate cAMP
accumulation (Catus et al., 2011; Vardjan et al., 2014) leading
to increased process branching in primary rat cultures (Vardjan
et al., 2014), indicating a role for βARs in morphological plasticity.
Astrocytic βAR activity in the mouse hippocampus is also shown
to enhance LTP (Walker et al., 2017). In the rat hippocampus,
astrocytic βAR antagonism prior to learning had no effect on short-
term memory but significantly impaired recent and remote long-
term memory, indicating activation of astrocytic βARs promotes
memory consolidation (Gao et al., 2016). Furthermore, the role
of βAR in long term memory appears to be mediated specifically
by a β2AR-dependent increase in lactate release during learning.
However, most studies do not discriminate between different βARs,
limiting our understanding of subtype-specific effects.

Together, these studies suggest that endogenous A2AR and
βAR activation in hippocampal astrocytes of the adult mouse
mediate increased cAMP production with no effect on Ca2+

levels. However, Gs-GPCR effects on learning and memory appear
to be receptor specific, whereby A2AR stimulation results in
memory impairment in an AD mouse model (with so far unknown
effects under physiological conditions), but βAR stimulation
enhances memory.

4.1.3. Endogenous Gi-GPCRs
Various Gi-GPCRs are also endogenously expressed in

hippocampal astrocytes of adult mice (Table 3), including mGluR3,
a group II mGluR (mGluR2/3). Strong expression profiles have
been shown for mGluR3 in hippocampal astrocytes of adult

mice by immunostaining (Sun et al., 2013) and scRNA-seq data
(Batiuk et al., 2020). mGluR3 expression has also been observed
in hippocampal astrocytes of the rhesus monkey, and was shown
by immunoelectron microscopy to be located primarily at PAPs
(Jin et al., 2018). This observation is congruent with findings by
Lavialle et al. (2011) in adult rats, who showed that in vivo mGluR3
expression is largely confined to PAPs. Together, findings from
Lavialle et al. (2011) and Jin et al. (2018) indicate that mGluR3
expression on hippocampal PAPs is conserved across species,
although this is yet to be proven in adult mice. Another key Gi-
coupled GPCR, the GABAb receptor (GABAbR), was also shown
to be present in mouse hippocampal astrocytes by RNA sequencing
and by pharmacological induction of Ca2+ signaling (Chai et al.,
2017; Durkee et al., 2019; Batiuk et al., 2020). GABAbR expression
has also been observed in PAPs of hippocampal astrocytes in the
adult rat by immunostaining (Charles et al., 2003), but is yet to be
observed in the adult mouse hippocampus.

Generally, activation of astrocytic Gi-GPCRs stimulates
signaling pathways that elevate Ca2+ levels and inhibit cAMP
production (Figure 1 and Table 3). Indeed, activation of astrocytic
mGluR2/3, by a non-specific agonist in hippocampal mossy fiber
circuits (DG-CA3) in vivo, elevates Ca2+ (Haustein et al., 2014).
However, using the same agonist Chai et al. (2017) were unable
to detect Ca2+ elevations in CA1 astrocytes. This could reflect
regional differences for astrocytes in the hippocampus, concerning
(i) differences in mGluR2/3 expression levels, (ii) interactions of
mGluR2/with different G proteins or (iii) functional heterogeneity
of the astrocytes themselves. For example, it was recently shown
in HEK cells that Gi-GPCR-induced Ca2+ elevations are mediated
by the Gi-βγ subunit, and that mobilization of the Gi-βγ subunit
requires Gq co-activation (Pfeil et al., 2020). Thus, Gi-GPCR
activation amplifies Gq-mediated Ca2+ responses via the PLC-IP3
signaling pathway – although the degree to which Gq co-activation
is required for Gi-GPCR-induced Ca2+ signaling specifically
in astrocytes, remains to be determined (Figure 1). Astrocytic
GABAbR activation in mossy fiber circuits is also evokes Ca2+

events in parallel with mGluR2/3 (Haustein et al., 2014), with
substantial impacts on neural circuit activity. For example, Covelo
and Araque (2018) found that astrocyte GABAbR-dependent Ca2+

elevations are triggered in situ by interneuron stimulation in the
mouse stratum radiatum and mediate IP3-dependent synaptic
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potentiation and depression. Furthermore, astrocyte GABAbR
activity in mouse hippocampal slices mediated interneuron-
induced potentiation of excitatory neurotransmission (Perea et al.,
2016).

The effects of Gi-GPCR stimulation on cAMP levels is
less studied than effects on Ca2+ levels. However, GABAbR
activation is known to be negatively coupled to cAMP in rat
primary astrocyte cultures (Patte et al., 1999). It has also been
shown for hippocampal astrocytes that, quite counterintuitively,
mGluR3 activity can potentiate cAMP elevations elicited by Gs-
coupled βARs via Gi-βγ subunits as illustrated in Figure 1
(Tang and Gilman, 1991; Walker et al., 2017). Interestingly,
mGluR3 potentiation of βAR-induced cAMP elevations disrupts
βAR-mediated LTP induction and contextual fear learning, to a
similar degree as direct βAR antagonism. It is suggested that
accumulation of astrocytic cAMP has this antagonistic effect
through subsequent activation of presynaptic adenosine receptors,
ultimately attenuating LTP induction. Indeed, βARs and mGluR3
are co-localized on hippocampal astrocytes and are therefore
optimally located to cooperate in regulating cAMP signaling,
synaptic potentiation, and memory (Walker et al., 2017).

Cannabinoid receptor 1 (CB1R) is a GPCR thought to
preferentially couple to Gi proteins. However, depending upon
agonist availability, CB1R ligand binding stabilizes distinct receptor
conformations thereby favoring coupling to either Gi or Gq
proteins (Lauckner et al., 2005; Tables 2, 3). Particular agonists
(for example WIN55, 212-2) stabilize CB1R confirmations in favor
of Gq-coupling (Lauckner et al., 2005). However, disentangling
the contributions of Gi- and Gq-coupled CB1R pathways requires
further detailed investigation. CB1R expression has been observed
in astrocytes of the adult mouse hippocampus by immunostaining,
electron microscopy, and by functional responses to application
of endogenous and synthetic agonists (Navarrete and Araque,
2008; Han et al., 2012; Gutiérrez-Rodríguez et al., 2018). CB1R
activation is known to stimulate the PLC-IP3 signaling pathway
and mediate Ca2+ release from intracellular stores (Navarrete and
Araque, 2008), which could be due to Gi- and/or Gq-coupling,
as both are shown to mediate IP3-dependent Ca2+ signaling by
action of the Gi-βγ and Gq-α subunits respectively (Zeng et al.,
2003; Figure 1). These CB1R-evoked Ca2+ elevations have been
shown to increase extracellular D-serine levels (Robin et al., 2018)
and induce NMDAR-dependent SICs in nearby excitatory neurons
in the mouse CA1 (Navarrete and Araque, 2008), indicating an
important role for astrocytic CB1Rs in synaptic potentiation in
the mouse hippocampus. Indeed, temporal coincidence of CB1R-
evoked Ca2+ signaling in astrocytes with postsynaptic activity
is shown to induce LTD at synapses close to the source of
endocannabinoid, but LTP at relatively more distant synapses
in mouse hippocampal slices (Navarrete and Araque, 2010; Min
and Nevian, 2012; Gómez-Gonzalo et al., 2015). It has also been
shown exogenous cannabinoid stimulation of astrocytic CB1Rs
in vivo evokes LTD and spatial working memory impairments
in mice by activation of NMDAR and internalization of AMPAR
in CA1 post-synaptic neurons (Han et al., 2012). Together with
the observation that total CB1R deletion in hippocampus impairs
memory extinction (Marsicano et al., 2002), the above studies show
that CB1Rs in hippocampal astrocytes have a physiological role in
regulating memory retention/extinction processes.

In summary, endogenously expressed astrocytic CB1R,
GABAbR and mGluR2/3 evoke Ca2+ elevations by Gi-βγ subunit
stimulation of the PLC-IP3 signaling pathway, but it remains
unclear whether Gi-βγ-mediated Ca2+ elevations can occur
independently of Gq-GPCR activity. Endogenous Gi-GPCRs also
downregulate cAMP production in astrocytes via Gi-α subunit
activity. However, co-activation of mGluR3 with βAR seems to
potentiate βAR-Gs-mediated elevation of cAMP levels. A number
of studies also show astrocytic Gi-GPCR activity impacts synaptic
potentiation and memory processes.

5. Comparative assessment of
endogenous GPCRs and DREADDs

5.1. Endogenous Gq-GPCRs vs.
Gq-DREADDs

A number of studies have directly compared endogenous
Gq-GPCR activation to that of Gq-DREADDs in astrocytes.
Here, we integrate these studies with those investigating either
endogenous Gq-GPCRs or Gq-DREADDs individually, to obtain
more insight into the astrocytic response characteristics, and the
synaptic and behavioral effects of endogenous Gq-GPCR versus
Gq-DREADD stimulation.

It has been shown that the amplitude and temporal
characteristics of evoked Ca2+ responses in hippocampal astrocytes
are comparable for Gq-DREADD and endogenous Gq-GPCR
activation (Agulhon et al., 2013; Durkee et al., 2019; Vaidyanathan
et al., 2021). Indeed, endogenous mGluR1/5 stimulation evokes
Ca2+ elevations in the mouse hippocampus with stimulus-strength
response heterogeneity (Xie et al., 2012), and similarly, astrocytic
Gq-DREADD stimulation in the cortex produces multi-peak Ca2+

signals at low CNO concentrations (0.2 mg/kg) and plateaued
responses at higher doses (1 mg/kg) (Bonder and McCarthy, 2014).
Furthermore, chronic stimulation of endogenous Gq-GPCRs is
associated with receptor desensitization (Rajagopal and Shenoy,
2018; Dyer-Reaves et al., 2019). This aligns with observations
that Gq-DREADD activation (due to chronic ligand availability)
silences evoked Ca2+ responses after just a few minutes of
repeated stimulation (Vaidyanathan et al., 2021). Stimulation of
astrocytic Gq-DREADDs has yet to illustrate the transient, single
peak Ca2+ elevations which can be observed upon endogenous
α1AR stimulation (Srinivasan et al., 2015; Oe et al., 2020). It is
unclear at present why these α1AR effects cannot be replicated
by Gq-DREADDs (hM3Dq), however it could be a reflection of
the systemic ligand delivery system resulting in chronic ligand
availability, as opposed to acute spikes in endogenous, locally
released, ligand concentrations (Claes et al., 2022), or due to
underlying functional differences between endogenous α1ARs and
the muscarinic-derived DREADDs.

Direct comparisons by Durkee et al. (2019) show that
stimulation of Gq-DREADDs or endogenous Gq-GPCRs both
evoke Ca2+ elevations by PLC-IP3 signaling cascades in the
somata and processes of hippocampal astrocytes (Figure 2). This
observation is verified by other investigations of Gq-DREADDs
(Chai et al., 2017; Vaidyanathan et al., 2021) and endogenous Gq-
GPCRs (Xie et al., 2012; Srinivasan et al., 2015; Oe et al., 2020;
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Lia et al., 2021; Lawal et al., 2022). Interestingly, the specific IP3R
subtype mediating astrocytic Ca2+ fluctuations may indicate the
subcellular origin of these fluctuations (Sherwood et al., 2021),
thereby influencing the impact of astrocytic Ca2+ elevations on
synaptic function and behavior. The predominant narrative is
that IP3R2 is responsible for Gq-GPCR Ca2+ elevations, with
early reports showing that genetic knock-out of IP3R2 abolished
Ca2+ transients in astrocytes, without impacting SIC generation,
neuronal ionotropic glutamate receptor activation (Fiacco et al.,
2007), neuronal Ca2+ activity (Fiacco et al., 2007; Petravicz et al.,
2008), spontaneous or evoked EPSCs (Petravicz et al., 2008;
Agulhon et al., 2010) or long-term synaptic plasticity mechanisms
(Petravicz et al., 2014). However, these studies do not account for
Ca2+ signaling in PAPs, which likely has a more significant impact
on neuronal function than somatic Ca2+ fluctuations (Haustein
et al., 2014; Srinivasan et al., 2015; Sherwood et al., 2021). Indeed,
more recent studies indicate that PAP Ca2+ activity relies primarily
upon IP3R2-independent mechanisms (Srinivasan et al., 2015; Liu
J.-H. et al., 2022). For example, IP3R1 and IP3R3 are shown to
contribute to Ca2+ signaling in PAPs, alongside IP3R2 (Sherwood
et al., 2017). As a result, it could be that IP3R2 knockout does not
significantly impact neuronal function due to the compensating
ability of IP3R1 and IP3R3 in PAPs (Bazargani and Attwell, 2016).
Accordingly, Sherwood et al. (2021) speculate that astrocytic IP3
receptors have subtype-specific cellular distributions according to
their functional properties, however this has yet to be empirically
assessed. The predominance and relative importance of each IP3R
subtype within PAPs remains an interesting open question – one
which could contribute to our understanding of how endogenous
Gq-GPCR and Gq-DREADD subcellular localization and evoked
Ca2+ signaling impacts downstream synaptic and behavioral
effects.

A major, unresolved issue on Gq-DREADD activation effects
in astrocytes, is their Ca2+-dependent effects on neurons.
Endogenous Gq-GPCR-mediated Ca2+ activity is consistently
shown to impact synaptic activity in the adult mouse hippocampus
(Figure 2). However, early MrgA1 (Fiacco et al., 2007; Agulhon
et al., 2010) and IP3R2 knockout studies (Fiacco et al., 2007;
Petravicz et al., 2008, 2014; Agulhon et al., 2010; Bonder and
McCarthy, 2014) contradict the hypothesis that astrocytic Gq-
GPCR activation and subsequent Ca2+ elevations impact synaptic
activity and plasticity mechanisms. To our knowledge, the source
of this discrepancy is unknown, but likely represents (i) the
uncharacterized complexity in the spatiotemporal dynamics of
evoked Ca2+ signaling (e.g., subcellular localization of GPCRs in
PAP domains), (ii) interactions between receptors [e.g., synergistic
effects of mGluR3 (Gi) with βAR (Gs)] and (iii) the presence (or
absence) of functionally relevant neuromodulators (e.g., TNFα). It
is also worth noting that the inability of some studies to detect
synaptic changes upon astrocytic Gq-DREADD stimulation is not
strong evidence of absence for this hypothesis – rather, it simply
shows that synaptic effects were not observed in this case. Indeed,
there is substantial evidence in favor of the hypothesis that Ca2+

elevations evoked both by endogenously expressed astrocytic Gq-
GPCRs, and Gq-DREADDs, alter synaptic activity in the adult
mouse hippocampus (Figure 2).

At a behavioral level, Gq-DREADDs and endogenous Gq-
GPCRs in hippocampal astrocytes are shown to impact memory
(Adamsky et al., 2018; Reichenbach et al., 2018). However,

while astrocytic Gq-DREADD activation enhances memory
(Adamsky et al., 2018), endogenous astrocytic Gq-GPCR activation
contributes to memory impairment in an AD mouse model
(Reichenbach et al., 2018). While these results appear contradictory
(Figure 2), the severity of pathology in this model impedes
direct comparisons between endogenous and synthetic receptors.
However, it could be that these maladaptive effects on memory
are induced upon chronic, pathological Gq-GPCR activation in
astrocytes, whereas the physiological activations have memory
enhancing effects, similar to those observed by Adamsky et al.
(2018). The impact of endogenous Gq-GPCR activation in
astrocytes in the healthy brain is yet to be observed, and therefore
the degree to which the behavioral consequences of endogenous
and synthetic receptor stimulation are comparable in the healthy
brain remains an open question.

Overall, these results suggest that improved methodologies and
theoretical understanding has generated a loose consensus that
astrocytic Gq-coupled receptor stimulation in the adult mouse
hippocampus elevates Ca2+ levels and potentiates synaptic activity
(Figure 2). However, it remains unclear whether subsequent
behavioral effects are equally comparable (Figure 2).

5.2. Endogenous Gs-GPCRs vs.
Gs-DREADDs

To our knowledge, Orr et al. (2015) is the only study to
directly compare Gs-GPCR and Gs-DREADD activation effects in
astrocytes. Activation of endogenous, and synthetic Gs-GPCRs in
adult mouse hippocampal astrocytes, mediates increased cAMP
levels without impacting intracellular Ca2+ concentrations (Orr
et al., 2015). This comparison is substantiated by other studies,
on hippocampal astrocytes, showing cAMP elevation upon Gs-
DREADD activation (Oe et al., 2020) and upon Gs-coupled
βAR activation in vitro (Catus et al., 2011) and in situ (Walker
et al., 2017). Activation of endogenous βARs stimulates astrocyte
protrusions in vitro (Vardjan et al., 2014), lactate release (Zhou
et al., 2019) and LTP induction (Walker et al., 2017) at synapses.
Furthermore, astrocytic A2AR activity is thought to impair LTP
induction via inhibition of nitric oxide production (Boison et al.,
2010). However, while the intracellular effects of stimulating
endogenous Gs-GPCRs and Gs-DREADDs in astrocytes are
comparable, synaptic effects of endogenous Gs-GPCR activity have
not yet been replicated by Gs-DREADD experiments (Figure 2),
representing a major gap in the literature yet to be addressed.

Astrocytic Gs-DREADD activation has also been shown to
elicit Ca2+ elevations (Chai et al., 2017; Nagai et al., 2021),
however an effect of endogenous Gs-GPCRs on calcium elevation
has not been reported so far. Accordingly, we speculate that Gs-
DREADD-evoked Ca2+ elevations are DREADD-specific, and due
to promiscuous binding to Gq proteins, given the relative structural
homogeneity between rM3Ds and hM3Dq.

At the behavioral level, astrocytic Gs-DREADD stimulation is
associated with impaired memory consolidation (Orr et al., 2015),
in line with our understanding of astrocytic A2AR activation effects
on memory (Boison et al., 2010; Paul and Ekambaram, 2011; Orr
et al., 2015). However, activation of βAR is shown to promote
long term memory consolidation in rats (Gao et al., 2016). Hence,
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FIGURE 2

Schematic representation of intracellular (top), synaptic (middle), and behavioral (bottom) effects of endogenous Gq-, Gs-, and Gi-GPCR
stimulation in astrocytes, and that of corresponding Gq-, Gs-, and Gi-DREADDs (hM3Dq, rM3Ds, and hM4Di). Astrocytic Gq-GPCRs/hM3Dq
activation (left) evokes Ca2+ elevations via the PLC-IP3 signaling pathway. This increases mEPSCs, SICs (conflicting evidence for hM3Dq), LTP and
PAP plasticity at synapses. Only one study illustrates memory-related behavioral effects of Gq-GPCR activation in astrocytes – in pathological
condition (AD) Gq-GPCR activation mediated memory impairment, while hM3Dq activations mediate memory enhancement under physiological
conditions. Astrocytic Gs-GPCR and rM3Ds activation (centre) evokes cAMP elevations through stimulation of adenylyl cyclase (AC), and rM3Ds
activations evoke Ca2+ elevations through unknown mechanisms. We speculate that astrocytic A2AR activation impairs LTP. Astrocytic βAR
activation is shown to mediate morphological plasticity, possibly including the PAPs, and lactate release, thereby stimulating LTP at synapses. These
synaptic effects have not been shown for the Gs-DREADD hM3Ds, illustrating a major gap in the literature. Behavioral effects of astrocytic A2AR and
rM3Ds activation is on memory extinction, however βAR stimulation evokes memory enhancement. Astrocytic Gi-GPCR and hM4D activation (right)
evokes reductions in cAMP levels by inhibition of AC. However, the endogenous Gi-GPCR mGluR3 can also elevate cAMP levels by action of the βγ

subunit, through potentiation of Gs-coupled elevations. Stimulation of Gi-GPCRs evokes Ca2+ elevations via the PLC signaling pathway.
Corresponding synaptic effects of cAMP- and Ca2+-elevations include synaptic potentiation and depression, whereby cAMP accumulation leads to
activation of presynaptic adenosine 1 receptors (A1R) and LTP disruption. Downregulated cAMP by astrocytic Gi-GPCRs mediate post-synaptic
NMDAR activation and AMPAR internalization, thereby evoking LTD. Together these intracellular and synaptic effects, evoked by lowering astrocytic
cAMP-levels, have a negative effect on memory retention. Astrocytic Gi-DREADD (hM4Di) activation is also shown to evoke cAMP reductions and
thereby inhibition of fear learning. In addition, other studies reported that astrocytic hM4Di activation can also evoke transient Ca2+ elevations that
return to levels below baseline thereafter. These Ca2+ effects are shown to increase frequency of SICs, firing rates (FR) and LTP in nearby neurons,
potentially having a positive effect on memory. The final effect of Gi-DREADD signaling on memory therefore seems to depend on the net outcome
of cAMP and Ca2+ effects. Figure created with www.biorender.com.

while both βAR and A2AR evoke cAMP elevations (Catus et al.,
2011; Orr et al., 2015), the effects of βAR activation on memory
oppose that of A2AR. This discrepancy could be explained by
manipulating A2AR expression in whole brain (Orr et al., 2015)
compared to just in hippocampus (Gao et al., 2016), or the presence
of divergent downstream mechanisms eliciting distinct synaptic
effects (Figure 2). Given this, further receptor-specific research
is required to uncover the precise nature of signaling pathways
downstream of cAMP elevations, including the potential influence
of different receptor expression levels, subcellular localization and
interactions with Gi and Gq proteins.

5.3. Endogenous Gi-GPCRs vs.
Gi-DREADDs

Finally, we compare the intracellular signaling mechanisms,
synaptic and behavioral consequences of endogenous Gi-GPCR
and Gi-DREADD activation in astrocytes. We will first discuss
these effects in relation to cAMP, followed by those mediated by
Ca2+ signaling.

Endogenously expressed Gi-GPCRs in astrocytes are
characterized by their inhibitory effects on adenylyl cyclase
activity and subsequent reductions to cAMP levels (Patte et al.,
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1999; Han et al., 2012; Walker et al., 2017), an effect that has
been replicated by Gi-DREADDs in the rodent hippocampus
(Jones et al., 2018). This Gi-DREADD-mediated attenuation
of intracellular cAMP signaling is also shown to impair stress-
enhanced fear learning (Jones et al., 2018). Impaired remote
memory retrieval has also been observed upon astrocytic Gi-
DREADD activation (Kol et al., 2020), although the contribution
of cAMP was not measured in this study. Similar behavioral effects
were observed upon stimulation of endogenous mGluR3 in the
mouse hippocampus by Walker et al. (2017), which, in contrast
to the effects of Gi-DREADD activation, were associated with
cAMP upregulation due to interactions between the mGluR3
βγ subunit and coactivated, Gs-coupled βARs (Walker et al.,
2017). Testing whether this effect is conserved in DREADDs
signaling would further strengthen the notion that DREADDs
can accurately mimic their endogenous counterparts. However,
receptor expression levels and sub-cellular localization may impact
the ability of Gi-DREADDs to interact with other receptors,
limited their ability to replicate this particular effect. Overall,
there seems to be a shared effect of endogenous and synthetic
astrocytic Gi-coupled receptors in that both impair contextual and
stress-enhanced fear memory and remote retrieval, however the
precise role of cAMP in this remains unclear (Figure 2).

Gi-DREADD activation in astrocytes has also been shown to
elicit Ca2+-independent potentiation of excitatory CA1 synapses
(Van Den Herrewegen et al., 2021; Figure 2). These potentiating
effects on excitatory synapes, while Ca2+-independent and
thus possibly cAMP-related, are expected to cause memory
enhancement – however Ca2+-independent memory enhancement
has not been empirically proven for endogenous Gi-GPCRs or
Gi-DREADDs in astrocytes. As a result, it is unclear if Ca2+-
independent, Gi-DREADD-evoked synaptic potentiation is (i) due
to cAMP downregulation or other mechanisms, (ii) can evoke
memory enhancement, and (iii) whether these effects mimic
endogenous processes or are Gi-DREADD-specific. The disparity
between synaptic and behavioral effects of Gi-DREADD and
endogenous Gi-GPCR activation in astrocytes indicate that future
studies are needed to further establish the downstream effects of
cAMP modulation by astrocytic Gi-GPCRs and the precise manner
in which these effects diverge from those elicited by Gi-DREADDs.
Increased understanding of brain region- and receptor-specific
differences, expression levels and interactions with other G proteins
will likely aid in determining how Gi-coupled receptor activation
modulates cAMP and memory processes.

In accordance with the literature outlining the effects of
endogenous Gi-GPCR stimulation, some studies show that Gi-
DREADDs evoke Ca2+ elevations (Haustein et al., 2014; Durkee
et al., 2019; Kol et al., 2020; Vaidyanathan et al., 2021), while others
indicate that they do not (Chai et al., 2017; Nam et al., 2019; Van
Den Herrewegen et al., 2021). However, as shown in Figure 2,
both Gi-GPCRs and Gi-DREADDs have been shown to elicit
Ca2+ elevations via the PLC-IP3 signaling pathway (Navarrete and
Araque, 2008; Haustein et al., 2014; Covelo and Araque, 2018; Kol
et al., 2020; Vaidyanathan et al., 2021). However, while astrocytic
Gi-DREADD activation in mouse hippocampus evokes moderate
reductions in astrocytic Ca2+ levels after initial transient peaks
(Kol et al., 2020), this has not been observed upon endogenous
Gi-GPCR stimulation in astrocytes (Figure 2). The finding that
at least some Gi-GPCRs require co-activation of Gq-GPCRs to

evoke Ca2+ elevations by action of the βγ subunit on the PLC-
IP3 signaling pathway (Pfeil et al., 2020) could explain why some
studies show robust Gi-evoked Ca2+ signaling, while others show
little to no effect – if constitutive Gq activity is low, this could
theoretically impact the capacity of Gi-GPCRs to stimulate Ca2+

signaling. Whether or not Gq-dependence is also a feature of Gi-
GPCR and Gi-DREADD-mediated Ca2+ activity specifically in
mouse hippocampal astrocytes has yet to be determined. However,
further investigation of this mechanism in endogenous Gi-GPCRs
and Gi-DREADDs could clarify the degree to which Ca2+ signaling
mechanisms in Gi-DREADDs mimic the endogenous process even
further.

Taken together, these studies show that astrocytic Gi-
DREADDs mimic astrocytic Gi-GPCR activity in many aspects.
This includes cAMP downregulation, PLC-IP3-induced Ca2+

elevations (in some but not all instances), synaptic potentiation
and memory impairment (Figure 2). However, there remain
some distinguishing factors. It has not yet been shown whether
endogenous Gi-GPCRs in astrocytes evoke Ca2+ elevations
which share the same temporal profile as observed upon
Gi-DREADD stimulation. Unlike endogenous Gi-GPCRs in
astrocytes, astrocytic Gi-DREADDs can evoke increases to cAMP
levels, as is shown to occur upon co-activation of mGluR3
and Gs-coupled βAR. Furthermore, while activation of astrocytic
Gi-DREADDs elicits synaptic effects indicative of memory
enhancement, this has not yet been shown for endogenous Gi-
GPCRs (Figure 2).

6. Concluding remarks

The most frequently studied GPCR subtype, Gq, seems to
show a high level of congruence between DREADD-induced
and endogenous GPCR effects. This is particularly true in
relation to downstream mechanisms elicited by their activation.
Indeed, PLC-IP3 signaling mechanisms evoke Ca2+ elevations with
similar physical and temporal properties upon activation of both
endogenous Gq-GPCRs and Gq-DREADDs. Subsequent effects
on neuronal activity are also comparable, indicating DREADDs
accurately mimic astrocytic GPCR-mediated intracellular and
synaptic effects in the adult mouse hippocampus. Limited available
data show memory-related behaviors were not comparable;
however, this likely relates to difficulties directly comparing
behaviors between physiological and pathological conditions. With
respect to Gs-coupled receptors, activation of Gs-DREADDs
appears to replicate intracellular cAMP elevations associated with
endogenous A2AR and βAR stimulation in astrocytes. However, the
behavioral consequences of Gs-DREADD stimulation in astrocytes
mimic only those observed upon βAR activation, opposing that
of A2AR. This is likely the result of diverging downstream
signaling pathways and synaptic effects which require further
region-specific characterization. Similarly, while activation of Gi-
DREADDs mimics that of endogenous Gi-GPCRs in some ways,
there are a number of exceptions. Both appear to inhibit cAMP
production, inconsistently evoke Ca2+ elevations, and induce
memory impairment. However, the ability of mGluR3 to potentiate
cAMP has not yet been reported in Gi-DREADD studies, while
the Gi-DREADD-mediated enhancement of synaptic potentiation
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and memory acquisition has not yet been shown for endogenously
expressed GPCRs.

Mounting evidence suggests that the relationship between
intracellular Ca2+ elevations, synaptic changes and behavior is not
a black and white binary, but rather depends upon activation of
specific receptor subtypes, likely at specific sub-cellular locations
and timepoints – the complexity of which is yet to be fully
understood (Shigetomi et al., 2008; Bazargani and Attwell, 2016).
With this in mind, disparities between the effects of astrocytic
DREADDs and their endogenous counterparts could be due
to a variety of factors. First, we must consider that although
DREADDs are often assumed to bind specifically to Gq-, Gs- or
Gi-proteins, it is likely that they mimic downstream mechanisms
specific to their respective parent muscarinic receptors, which
are not necessarily Gq-, Gs-, or Gi-specific. While this question
of DREADD specificity may complicate the interpretation of
experiments aiming to elucidate the mechanisms of specific
G-protein activation, it does increase the degree to which
DREADDs accurately mimic endogenous GPCR activity. Indeed,
these considerations may explain observed functional differences
between DREADDs and some endogenous receptors. That is,
although DREADDs aim to simulate generalized downstream
mechanisms of Gq-, Gs-, and Gi-GPCR activation, imperfect
reflections of other receptor types such as the α1AR, may
simply reflect their muscarinic lineage. Thus, a certain degree
of functional distinction between DREADDs and endogenous
GPCRs is likely inherent to experimental technique itself, without
nullifying its utility. Furthermore, it is known that current methods
cannot accurately mimic endogenous spatiotemporal expression
(McNeill et al., 2021; Shen et al., 2021) or excitation patterns
(Nimmerjahn and Bergles, 2015; Sherwood et al., 2021). Indeed,
the stochastic spatial distribution of DREADD expression likely
does not reflect endogenous distributions of GPCRs. By extension,
this could impact synaptic and behavioral effects of astrocytic
DREADD stimulation, limiting their equivalence to the effects
of endogenous GPCR activity. Incorporation of morphological
examinations in future DREADD experiments in astrocytes could
shed light on this issue. Furthermore, the chronic availability of
DREADD ligands could be contributing factor to inconsistent
results between DREADD-mediated effects and those evoked by
acute and local stimulation of endogenous GPCRs, given differing
temporal dynamics of receptor stimulation (Claes et al., 2022).

This comparative assessment suggests that controversies arising
from astrocytic DREADD experiments are largely due to the sheer
complexity of the system at hand. Increased research in recent

years has, to a certain extent, clarified the physiological plausibility
of DREADDs in the study of astrocytic GPCRs and their roles
at the synapse and in memory. All GPCR subtypes assessed here
show some degree of similarity between effects of DREADDs and
endogenous GPCRs. Furthermore, it seems that a higher degree
of consistency between DREADDS and endogenous receptors
is achieved with increased research. We therefore expect the
current understanding of GPCR activity in astrocytes to improve
accordingly. Manipulating astrocyte activity using DREADDs can
and has illustrated important roles for these cells at synapses, within
larger networks and in behavior. This method, in combination with
the study of endogenous GPCRs, can therefore provide indications
as to the molecular and cellular mechanisms mediating synaptic
and behavioral effects. Overall, the use of DREADDs in astrocytes
is at least, hypothesis generating. But, at best, can provide us
unprecedented access to the intersection between astrocytic GPCR
physiology and synaptic function and behavior.
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