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Introduction: High-grade glioma (HGG) defines a group of brain gliomas

characterized by contrast enhancement, high tumor heterogeneity, and

poor clinical outcome. Disturbed reduction–oxidation (redox) balance has

been frequently associated with the development of tumor cells and their

microenvironment (TME).

Methods: To study the influence of redox balance on HGGs and their

microenvironment, we collected mRNA-sequencing and clinical data of HGG

patients from TCGA and CGGA databases and our own cohort. Redox-related

genes (ROGs) were defined as genes in the MSigDB pathways with keyword

“redox” that were differentially expressed between HGGs and normal brain

samples. Unsupervised clustering analysis was used to discover ROG expression

clusters. Over-representation analysis (ORA), gene set enrichment analysis (GSEA)

and gene set variation analysis (GSVA) were also employed to understand the

biological implication of differentially expressed genes between HGG clusters.

CIBERSORTx and ESTIMATE were used to profile the immune TME landscapes

of tumors, and TIDE was used to evaluated the potential response to immune

checkpoint inhibitors. Least Absolute Shrinkage and Selection Operator (LASSO)

Cox regression was used to construct HGG-ROG expression risk signature

(GRORS).

Results: Seventy-five ROGs were found and consensus clustering using the

expression profile of ROGs divided the both IDH-mutant (IDHmut) and IDH-

wildtype (IDHwt) HGGs into subclusters with different prognosis. Functional

enrichment analysis revealed that the differential aggressiveness between redox

subclusters in IDHmut HGGs were significantly associated with cell cycle

regulation pathways, while IDHwt HGG redox subclusters showed differentially

activated immune-related pathways. In silico TME analysis on immune landscapes

in the TME showed that the more aggressive redox subclusters in both IDHmut

and IDHwt HGGs may harbor a more diverse composition of tumor-infiltrating

immune cells, expressed a higher level of immune checkpoints and were more

likely to respond to immune checkpoint blockade. Next, we established a GRORS

which showed AUCs of 0.787, 0.884, and 0.917 in predicting 1–3-year survival of

HGG patients in the held-out validation datasets, and the C-index of a nomogram

combining the GRORS and other prognostic information reached 0.835.
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Conclusion: Briefly, our results suggest that the expression pattern of ROGs was

closely associated with the prognosis as well as the TME immune profile of HGGs,

and may serve as a potential indicator for their response to immunotherapies.
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glioma, immune, prognosis, redox, microenvironment

Introduction

Glioma is the most common nervous malignancy in the adult
population (Ostrom et al., 2021). High-grade gliomas (HGGs)
refer to grade 3 and grade 4 gliomas (Louis et al., 2016,
2021). Pathologically, HGGs are characterized by large fraction
of proliferating tumor cells, immune cell infiltration, marked
angiogenesis and necrosis (Ertosun and Rubin, 2015). Compared
to less aggressive grade 1 and grade 2 gliomas, HGGs exhibit
remarkable inter- and intra-tumoral heterogeneity, and poorer
clinical outcomes (OS) (Nakamura and Takada, 2021; Sun and
Kim, 2022). Despite phase III trials revealing that non-specific
eradicating proliferating malignant cells, including radiation,
chemotherapy, and tumor-treating fields, confers survival benefits
for gliomas, their curative effect on HGGs remains modest (Chen
et al., 2017). Therefore, the in-depth mechanisms underlying the
malignant progression of tumors should be explored to help seek
novel therapeutic targets for HGGs more precisely.

Redox balance is defined as the dynamic balance between
reactive oxygen species (ROS), reactive nitrogen species (RNS), and
anti-oxidants (Chaiswing and Oberley, 2010). Redox stress involves
in varied pathophysiological processes; for example, ferroptosis, a
recently identified form of programmed cell death, is triggered by
lipid peroxidation (Hassannia et al., 2019). Excessive ROS can be
observed in a variety of diseases, including inflammatory diseases,
cardiovascular diseases and malignant cancers (Gorrini et al., 2013;
Madreiter-Sokolowski et al., 2020; Mullen et al., 2020). Redox stress
could regulate proliferation, invasion, metastasis, drug resistance
and tumor microenvironment (TME), and redox system has been
exploited as a potential target for cancer treatment (Pitt et al., 2016;
Lee et al., 2017; Serrano et al., 2020; Nakamura and Takada, 2021).

Almost all cells in the TME produce ROS which could activate
or inhibit the infiltrating immune cells and regulate tumor cell
progression (Hegedus et al., 2018). A study has reported that
different redox gene status is associated with biological features
in prostate cancers, for example, the immune condition (Wu Y.
et al., 2021). In gliomas, overexpression of Nrf2 and knockdown
of Keap1 could promote proliferation by promoting xCT function,
which could switch redox status (Fan et al., 2017). Although Redox
can regulate multiple malignant characteristics of tumors, genetic
evidence dissecting the molecular mechanisms by which redox-
related genes (ROGs) regulate the malignant progression of HGGs
and the prognostic value of ROGs are still required.

In this study by analyzing data based on HGG cohorts from
public databases, we found 75 glioma-specific ROGs and divided
the HGG patients into distinct groups based on their expression
patterns. We also established a scoring system based on ROGs
and a nomogram to estimate the relative risk levels of HGG

patients and subsequently predict their clinical outcomes. Our
established expression pattern of ROGs were closely associated
with the prognosis as well as the TME immune profile of HGGs,
and may serve as a potential indicator for their response to
immunotherapies.

Materials and methods

Data sources

Transcription data and the corresponding clinical data were
downloaded from The Cancer Genome Atlas (TCGA)1 database
and dataset mRNAseq_325 in Chinese Glioma Genome Atlas
(CGGA)2 database (Zhao et al., 2021). HGG patients were defined
as those graded as WHO grade 3 or 4 histologically. Although
IDH-wildtype diffuse gliomas with WHO grade 2 morphology
features were now classified as grade 4 glioblastomas thus HGG
in the most recent version of WHO classification system, we
proceeded the study by only taking those already classified as HGG
in their original clinical information curated in the repositories,
so that that the definition of HGG were consistent regardless
of different classification guideline version (Louis et al., 2016,
2021). This study only included adult primary HGG patients
with complete survival data. 391 patients from TCGA database
and 132 patients from CGGA database (dataset mRNAseq_325)
were included. 48 HGG patients from West China Hospital
(WCH) were also included with the same criteria. The RNA-
seq data were from the samples of these patients’ tumor tissue
obtained during craniotomy, and then quantified with STAR.
The follow-up period was set as 3–6 months after the patient
received surgical intervention. These patients formed three cohorts
according to the data sources: TCGA cohort, CGGA cohort, and
WCH cohort. The data of gene expression was presented as
fragments per kilobase million (FPKM) if not otherwise stated. And
detailed information of the patients is presented in Supplementary
Table 1.

Screening of redox-related genes

To figure out differentially expressed genes (DEGs) between
glioma samples and normal brain samples, we filter genes with

1 https://www.cancer.gov/tcga

2 http://www.cgga.org.cn
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criteria of a significant difference (adjusted P-value < 0.05) and
an expression level that was not excessively low (maximum
FPKM > 0.1) with the R package “limma.” The ROGs were
retrieved from the Molecular Signature Database (MsigDB, v7.5.1)3

(Subramanian et al., 2005; Liberzon et al., 2011) with the
keyword “redox” (Supplementary Table 2). And the overlapped
genes between DEGs and ROGs, which were supposed to be
“differentially expressed ROGs,” would be included for further
analyses.

Unsupervised clustering analysis

For exploration of different mode of redox gene expression, R
package “ConsensusClusterPlus” was employed for unsupervised
consensus clustering analysis to classify redox patterns in terms
of the expression levels of ROGs (Wilkerson and Hayes, 2010).
Considering the impact of IDH mutation status on the prognosis
of HGG patients (Yan et al., 2009), this clustering was also applied
to different IDH subgroups after stratification. The clustering was
supposed to follow those criteria: a sufficient sample size and
a gradually increased smooth cumulative distribution function
(CDF) curve, and thus the number and components of clusters
were determined. Subsequently, principal component analysis
(PCA) of these included ROGs was applied to visualize the
differences of patterns of redox gene expression patterns between
clusters.

Functional gene enrichment analyses

Gene enrichment analyses were conducted to explore
potential mechanisms based on DEGs from different subgroups
(including consensus clusters and risk groups identified in
following analyses, respectively). With Kyoto Encyclopedia of
Genes and Genomes (KEGG), reactome gene sets (REACTOME)
from MSigDB and gene ontology (GO) enrichment, over-
representation analysis (ORA) and gene set enrichment
analysis (GSEA) were performed to explore in which biological
processes these DEGs were enriched using the R package
“clusterProfiler” (Yu et al., 2012; Wu T. et al., 2021). Gene
set variation analysis (GSVA) was also employed to generate
the pathway expression matrix of genes from the logFPKM
matrix using “GSVA” package in R, so as to figure out the
differences in signaling pathways between groups (Hanzelmann
et al., 2013). The processes and pathways identified above
would be seen as associated with the ROG patterns (or risk
groups).

The clinical characteristics of each subgroup were analyzed
with student t-test or chi-square test according to the statistical
type of data (chi-square test for discrete variables and student
t-test for continuous variables) to explore the relation between
ROG patterns (or risk groups) and clinical features. The
characteristics included age, gender, WHO grade, IDH status,
1p19q codeletion, ATRX status, MGMT promoter status, and TERT
promoter status.

3 https://www.gsea-msigdb.org

Analyses on tumor microenvironment
immune characteristics

To study the TME and immune state of each HGG sample,
A set of analyses on TME immune features were performed.
CIBERSORTx algorithm,4 whose assessment is based on a validated
reference gene signature matrix, was used for calculation of the
proportion of each infiltrating immune cells (Newman et al.,
2015), while Estimation of Stromal and Immune cells in Malignant
Tumor tissues using Expression data (ESTIMATE) score were
utilized to examine the differences of tumor stromal and immune
microenvironment (Yoshihara et al., 2013). And ESTIMATE tumor
purity and consensus purity estimation (CPE) data were applied
to assess tumor purity of those glioma samples by calculating
the stromal, immune and ESTIMATE scores (ESTIMATE tumor
purity) or obtaining the median purity from different purity-
estimating methods including ESTIMATE after normalization
(CPE), respectively, (Yoshihara et al., 2013; Aran et al., 2015).
The analyses above could unveil the estimated cellular and
microenvironmental characteristics of HGGs. We also employed
the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm
for the data of T-cell dysfunction and exclusion, hence to predict
the therapeutic response of immune checkpoint blockades (ICBs)
in treating HGGs (Jiang et al., 2018).

Calculation of glioma-redox risk score
and nomogram establishment

To establish a prognostic model for HGG patients, patients in
TCGA cohort were first randomly divided into two cohorts, the
TCGA training cohort and the TCGA validation cohort, with a
ratio of 6:4. Next, the DEGs were first filtered by the Least Absolute
Shrinkage and Selection Operator (LASSO) Cox regression with the
criteria of adjusted P-value < 0.05 based on TCGA training cohort.
LASSO Cox regression was performed with the package “glmnet”
in R and repeated 100 times (Friedman et al., 2010). The genes with
coefficient that was not 0 at the lambda minimum concordance
index (C-index) would be regarded as prognostically relevant. And
then based on expression levels of these selected genes, a score for
prognosis prediction called HGG-ROG expression risk signature
(GRORS) would be calculated as the following formula displays:

GRORS =
∑

coef i × FPKMi

The optimal cutoff of GRORS was calculated by “survminer”
R package, which divided the HGG patients into two groups,
high-risk group (GRORS ≥ optimal cutoff) and low-risk group
(GRORS < optimal cutoff). And univariate Cox regression
and multivariate Cox regression were conducted to screening
independent prognostic factors, which could also test whether
GRORS was one of them. Next, with the help of the package
“timeROC” in R, the AUC (area under the curve) of ROC (receiver
operating characteristic) curve was evaluated at the timepoint
of 1–3 year (s) after diagnosis, so as to assess the prognostic-
predicting potential of GRORS (Blanche et al., 2013). Subsequently

4 https://cibersortx.stanford.edu/
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a nomogram was established with the selected independent
prognostic factors with the R package “rms,” and its accuracy
was assessed by the calibration curve and corrected C-index. The
validation of the nomogram would be conducted with TCGA
validation cohort, CGGA cohort, and WCH cohort.

Statistical analyses

R interpreter (version 3.6.1) and the above-mentioned R
package were used to handle the RNA-sequencing relevant data.
Kaplan–Meier (K-M) analysis was conducted to evaluate prognosis
of specific glioma groups using log-rank test. A two-sided p < 0.05
was regarded as statistically significant and ∗ indicated p < 0.05,
whereas ∗∗p < 0.01, ∗∗∗p < 0.001 and ∗∗∗∗p < 0.0001 in this study.

Results

Identification of DEGs and ROGs in
gliomas and clustering of patients

We firstly figured out 8,606 DEGs by analyzing the differences
in transcriptomic expression between samples of HGG patients
(n = 391) and normal brain (n = 5) from TGCA databases
(Figures 1A, B). And we identified 129 ROGs by retrieving the
MSigDB database with the keyword “redox.” Then 75 genes were
extracted as the intersection of the DEG and ROG sets as portrayed
in the Venn Diagram (Figure 1B). Subsequently, patients from
the TCGA database were divided into two consensus clusters with
a method of consensus clustering according to the transcription
profiles of these ROGs. As shown in the PCA plots (Figures 1C, D),
there are significant differences between the two clusters, affirming
the validity of this clustering. We next assessed the OS for the two
clusters, and observed significantly worse survival of patients of
cluster 1 was found as compared to their counterpart (Figure 1E).

Considering the significant difference in the survival outcome
between gliomas of different clinicopathological profiles, we next
explored the associations between ROG expression patterns in
HGGs and their clinical characteristics. Results showed that
comparing to cluster 1, the HGG patients of cluster 2 had
a younger age, lower WHO grades, higher proportion of
IDH mutation, 1p19q codeletion, ATRX mutation and MGMT
promoter methylation, and less likelihood of TERT promoter
mutation (Figures 2A–H).

Redox subclusters in IDH mutant and
wildtype HGGs

The WHO grade and IDH mutational status are known to
significantly influence the prognosis of HGGs (Yan et al., 2009;
Chen et al., 2017). Particularly, IDH-wildtype gliomas (IDHwt)
generally had worse survival outcome compared to IDH-mutants
despite their WHO grades (Eckel-Passow et al., 2015). Therefore,
we further explored the heterogeneity of ROG expression after
stratifying the HGGs into IDH-mutants (IDHmut) and IDHwt.
Consensus clustering divided both IDHmut and IDHwt HGGs

into three subclusters (Figure 3A and Supplementary Figures 1A–
F). In IDHmut HGGs, cluster 3 had significantly worse survival
outcome than the other two clusters (Figure 3B). In IDHwt
HGGs, cluster 1 showed significantly better prognosis than
cluster 2 and near-significantly better prognosis than cluster 3
(Figure 3C). To understand potential mechanism behind the
aggressiveness differences between the subclusters, we analyzed
the functional enrichment of differentially expressed genes (DEGs)
between IDHmut cluster3 and cluster 1/2, as well as those
between IDHwt cluster 1 and cluster 2/3. In IDHmut HGGs,
the DEGs were significantly enriched in cell cycle regulation and
neuronal functions (Figure 3D and Supplementary Figures 2A–
C), while in IDHwt HGGs, the DEGs were significantly enriched
in respiratory burst and immune-related pathways (Figure 3E and
Supplementary Figures 3A–C). These findings suggest that the
ROG expression patterns drove aggressiveness in IDHmut and
IDHwt HGGs through different mechanisms.

Immune phenotypes of IDH mutant and
wildtype HGG subclusters

Since immune-related pathways were implicated in the
aggressiveness difference between redox subclusters in both
IDHmut and IDHwt HGGs, we then investigated their immune
profiles with a series of algorithms that dissect the immune TME
of HGGs in silico based on their transcriptome. CIBERSORTx
analysis found significantly lower infiltration of plasma cells and
higher infiltration of M2 macrophages in the more aggressive redox
subclusters for both IDHmut and IDHwt HGGs (Figure 4A).
Consistently, in the ESTIMATE analysis, cluster 1 in both IDHmut
and IDHwt had significantly lower stromal and immune cell
infiltration and higher tumor purity compared to the other two
redox subclusters (Figures 4B, C). Meanwhile, expression of
immune checkpoints, including CD274 (PD-L1), PDCD1 (PD1),
CTLA4, and CD276 (B7-H3), were generally higher in cluster 2/3 of
both IDHmut and IDHwt HGGs (Figure 4D and Supplementary
Figure 4). TIDE analysis found lower fraction of potential ICB
responders in the cluster 1 of IDHmut HGGs than the other two
redox subclusters (Figure 4E). In IDHwt HGGs, cluster 3 had
higher proportion of potential ICB responders compared to the
other two redox subclusters (Figure 4F). These results suggest
that the expression pattern of ROGs had significant impact on the
immune TME of both IDHmut and IDHwt HGGs.

HGG-ROG expression risk signature
(GRORS) and its prognostic value

The influences of ROG expression pattern on both IDHmut
and IDHwt HGGs suggest that a unified prognosis prediction
score could be established using ROG expression. To set up the
scoring system for assessing the prognosis of HGG patients, 13
ROGs were found to be independent prognostic factors calculated
by LASSO regression on the TCGA training set (Figure 5A). In
addition, multivariate Cox regression analyses confirmed that
each selected ROG was an independent risk predictor for HGGs
(Figure 5B). According to the regression coefficients of the 13
genes, we defined glioma-redox risk score (GRORS) as following:
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FIGURE 1

Selection of redox-related genes (ROGs). (A) Volcano plot of gene fold change between glioma samples and normal brain samples from TCGA sets.
(B) Venn diagram showing intersection of DEGs and ROGs. (C,D) 2- and 3-dimensional PCA for two consensus clusters based on ROGs. (E) K-M
curves of the consensus clusters.
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FIGURE 2

Clinic-pathological characteristics of the ROG clusters from the TCGA cohort. Compared characteristics of clusters included age at diagnosis (A),
gender (B), WHO grade (C), IDH status (D), 1p19q codeletion (E), ATRX status (F), MGMT promoter status (G), and TERT promoter status (H). ns, not
significant; ***p < 0.001, ****p < 0.0001.

0.192 ×MTHFS + 0.151 × ALDH3B1 + 0.076 × GGT5 + 0.070 ×
DHFR + 0.035× FKBP1B + 0.034×ADH5 + 0.029×NCF2 + 0.016
×GSTK1 + 0.009×CASP3 + 0.008×GPI + 0.006× PDIA4− 0.010
×MTHFD2 − 0.014 × TXN2. With the median of GRORS as the
cutoff, we put the patients into the high-risk group and the low-risk
group. Intriguingly, the OS of the high-risk group was much worse
than the other group in both the training set and validation set of
TCGA (Figures 5C, D). We also found that the survival outcomes
based on CGGA and WCH sets were in line with the TCGA cohort
(Figures 5E, F). Both univariate and multivariate Cox regression
indicated that GRORS was an independent risk predictor for HGGs
(Figures 5G, H).

The risk model for prognostic prediction
of HGGs

The ROC curve analysis was used to further examine the
prognostic accuracy of GRORS. Our results showed that GRORS
could effectively predict the OS for TCGA cohort, and the 3-year
AUC was 0.917 (Figure 6A). For CGGA cohort and WCH cohort,
the 3-year AUC was 0.821, and 0.671, respectively, (Figures 6B,
C). This meant that GRORS had a satisfactory performance in
the prediction of HGG patients’ clinical outcomes. Nomogram

is usually used to quantitatively estimate clinically individual
risk by integrating a series of factors. Herein, we established a
nomogram based on the variables with adjusted P-values < 0.05
in the multivariate Cox regression, assessing the prognosis of HGG
patients in the 1–3 years. The calculated C-index was 0.835 of the
TCGA cohort, compared to 0.796 for nomogram of GRORS only
(Figure 6D). For the CGGA and the WCH cohort, C-indexes for
all variables and GRORS only was 0.717, 0.687 (Supplementary
Figure 5A), and 0.616, 0.626, respectively, (Supplementary
Figure 5B). Furthermore, we compared prognostic accuracy of 3-
year survival of several predictors with GRORS, results showing
that GRORS was the leading predictor among all factors in the
three cohorts, respectively, (Supplementary Figures 5C–E). The
calibration plots of these cohorts indicated that the predictive
survival rate of nomograms was consistently in accordance with the
actual survival rate (Figures 6E–G).

Biological, clinical, and immune
characteristics between two risk groups

The KEGG analysis revealed that the genes of the two
risk groups were associated with immune-related events, such
as allograft rejection, complement and coagulation cascades
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FIGURE 3

Transcriptome and clinicopathological profiles of redox subclusters in IDH-mutant (IDHmut) and IDH-wildtype (IDHwt) HGGs, respectively.
(A) Heatmap of ROG expression in the subclusters. (B) K-M curves of IDHmut subclusters. (C) K-M curves of IDHwt subclusters. (D) Gene ontology:
biological pathways (GOBP) functional enrichment of differentially expressed genes between subcluster 1/2 and subcluster 3 in the IDHmut HGGs;
only pathways with gene counts over 10 were plotted; right panel enriched pathways with top 10 odds ratio. (E) Gene ontology: biological pathways
(GOBP) functional enrichment of differentially expressed genes between subcluster 1 and subcluster 2/3 in the IDHwt HGGs. Right panel enriched
pathways with top 10 odds ratio.
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FIGURE 4

Immune phenotypes of redox subclusters in IDH-mutant (IDHmut)
and IDH-wildtype (IDHwt) HGGs. (A) Fraction of 22 tumor
infiltrating immune cells computed with the CIBERSORTx algorithm.
(B) Stromal, immune and ESTIMATE score with the method of
ESTIMATE. (C) Tumor purity estimation with the ESTIMATE and
consensus purity estimation (CPE). (D) mRNA expression of CD274
(PD-L1), PDCD1 (PD1), CTLA4, and CD276 (B7-H3). (E,F) Percentage
of estimated responders to ICBs in IDHmut and IDHwt subclusters
with TIDE. ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.

(Figure 7A and Supplementary Figure 6A). The analysis based
on REACTOME indicated that these genes were mainly enriched
in neurotransmission and PD-1 signaling (Figure 7B and
Supplementary Figure 6B). We also conducted GSEA analysis
to study the distinctions of biological functions between the two
risk groups. Results revealed that the DEGs of high-risk group
were mainly associated with cytokine-cytokine receptor interaction
(NES = 2.197), ECM receptor interaction (NES = 2.833), focal
adhesion (NES = 2.463), and SLE (NES = 2.818) in terms of KEGG,
respectively, (Figure 7C). Meanwhile, it was the adaptive immune
system (NES = 2.149), cell cycle (NES = 2.212), cytokine signaling
in the immune system (NES = 2.785), and innate immune system
(NES = 2.871) that were enriched in DEGs of cluster 1 according to

REACTOME (Figure 7D). Furthermore, the result of GSVA backed
the results above as well (Figures 7E, F). We also found that a
high GRORS was mainly enriched in HGG patients with higher
WHO grade, IDH wildtype, 1p19q non-codeletion, ATRX wildtype,
MGMT promoter un-methylated, TERT promoter mutant, and
more malignant histology (Supplementary Figures 7A–I).

In our study, the proportion of activated NK cells, monocytes,
and plasma cells in the high-risk group was prominently higher
than in the low-risk group. Contrarily, the immunosuppressive
cells, such as regulatory T cells (Tregs), tumor-associated
macrophages, and neutrophils were found to be enriched in the
high-risk group (Figure 8 and Supplementary Figures 8A, B).
The ESTIMATE analysis demonstrated that the stromal score,
immune score, and ESTIMATE score of the high-risk group were
significantly higher than those of the other group. Besides, the
tumor purity of the high-risk group was lower than its counterpart
(Figures 8B, C and Supplementary Figures 8C–F). On the other
hand, RNA-seq data revealed that a variety of immune deficiency
markers, such as CD274 (PD-L1), CTLA4, NRP1, and LAGLS9,
were increasingly expressed in the high-risk group, which was in
line with our previous findings as regards immune suppression of
cluster 1 determined by ROGs (Figures 8D, E and Supplementary
Figure 8G). In the TIDE analysis, we found that HGG patients in
the high-risk group exhibited higher potential sensitivity to ICBs
compared to the low-risk groups (Figures 8F–H). Taken together,
our findings suggest that HGG patients with high GRORS should
be eligible for immunotherapy.

Discussion

High-grade gliomas are a kind of highly fatal tumors
accounting for about 50% of gliomas (Stupp et al., 2009; Ostrom
et al., 2021). Although adopting standard surgical resection,
radiotherapy plus concomitant chemotherapy, and chemotherapy,
the therapeutic effect remains to be improved urgently (Chen
et al., 2017). Among countless tumor-promoting factors, the altered
metabolism of tumor cells is a main contributor to high malignancy
for HGGs (Bi et al., 2020). New insights into the effect of
Redox homeostasis on the vicious evolution of HGGs are rapidly
emerging. GBM cells can oxidize glucose through glycolysis to
supply other biosynthetic activities, for example, forming a large
glutamine pool in the tumors, which is critical to glutathione
biosynthesis and to promote aggressive tumor growth (Marin-
Valencia et al., 2012). Given the protective effect of GSH for
radiation and oxidation stress cytotoxicity, research finds that
2-oxoglutarate(2-OG)dependent transaminases, branched-chain
amino acids transaminases (BACT1/2), and glutaminase exert
complementary roles in GSH biosynthesis. The overproduction
of 2- hydroxyglutarate (2-HG) in IDH mutant gliomas potently
inhibits BACT1/2, which explains why the glutaminase inhibitors
specifically sensitized IDH mutant gliomas to oxidation stress
compared to IDH wild-type gliomas and suggest the strategy
on the basis of redox to obtain maximum effectiveness for
gliomas should take into consideration of comprehensive GSH
biosynthesis pathways (McBrayer et al., 2018). Moreover, the
activated AKT/NRF2/HO-1 oxidative stress axis confers amplified
defense against ROS. Eventually, it causes glioblastoma resistant to
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FIGURE 5

Development and validation of prognostic GRORS. (A) Average of coefficients of each ROG in the LASSO Cox regression model at different lambda
values. (B) Forest plots showing HRs of each selected ROG. (C–F) K-M curves for high- and low-risk group divided by GRORS in TCGA training
cohort (C), TCGA validation cohort (D), CGGA cohort (E), and WCH cohort (F). (G,H) Forest plots showing the HRs of GRORS and clinicopathological
indicators in univariate Cox regression (G) and multivariate Cox regression (H).

TMZ treatment, which suggests redox imbalance is an important
regulator of resistance to gliomas (Chuang et al., 2021). Our study
further investigated the association between ROGs and the survival
of HGG patients by taking advantage of bioinformatics. We also

constructed a prognostic model based on these genes to predict the
clinical outcomes and immunotherapy response of HGGs.

Cancer cells are usually characterized by imbalanced redox
status owing to high levels of oxidative stress mainly exerted by
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FIGURE 6

Capacity of prognosis prediction of GRORS and nomogram with its assessment. (A–C) ROC curves for predicting 1–3-year OS in TCGA cohort (A),
CGGA cohort (B) and WCH cohort (C). (D) Nomogram based on GRORS and independent prognostic clinical variables. (E–G) Calibration curves for
assessing the predictive capacity of the nomogram in TCGA cohort (E), CGGA cohort (F), and WCH cohort (G).

ROS. Notably, the disturbance of redox could affect the genesis
and development of tumors from varied aspects, for example,
reshaping immune landscape of the TME (Gorrini et al., 2013;
Kennel and Greten, 2021). The altered redox balance in ovarian
cancers significantly elevates the ROS level, which favors tumor
growth by leading to a reduction of macrophage migration and
decreasing of CD8+ T-lymphocyte through PD-L1 upregulation
(Li et al., 2022). It suggests that ROS plays a vital role in tumor
immunosuppression formation. We divided the HGG patients

into two clusters according to the ROG levels. We found that
the patients of cluster 1 had a worse OS than cluster 2. The
DEGs of two clusters were enriched in the processes of immune
response and signaling. In addition, other immune-associated
diseases, such as T1DM (Ilonen et al., 2019) and SLE (Thanou et al.,
2021) are also related to the DEGs, which endorse the interaction
between redox and immunity. It was reported that the interplay of
these immune systems could regulate redox production, and vice
versa in numerous diseases including tumors and inflammatory
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FIGURE 7

Functional annotations of DEGs between the risk groups based on the TCGA cohort. (A,B) Top 10 KEGG pathways (A) and REACTOME pathways (B)
of the DEGs. (C,D) Top 5 KEGG pathways (C) and REACTOME pathways (D) of GSEA. (E,F) Top 10 KEGG pathways (E) and REACTOME pathways (F) of
GSVA.

diseases (Sun et al., 2020). IDH mutation can affect mitochondria
biochemistry of tumor cells by enhancing the enzymatic activity
(Hvinden et al., 2021), then inducing an alteration of the redox
status. Intriguingly, we found that the redox subtype of cluster 2
is significantly associated with IDH mutation in HGGs.

Our study suggests that ROGs of HGGs are associated with
immune and metabolism of tumors. In order to further understand
the effect of ROGs on the immune reactivity of HGGs, we find
that HGGs of cluster 1 contain more tumor-promoting immune
cells, suggesting that the redox status of cluster 1 liable to generate
an immunosuppressive TME. A previous study reported that a

hypoxia TME could trigger immunosuppression through hypoxia-
inducible factor (HIF), with both M1 and M2 macrophages’
participation (Grabowski et al., 2021). This may partly explain why
both M1 and M2 macrophages are increasing in HGGs of cluster
1. Glutaredoxin regulates redox homeostasis in many cancers.
Its coding gene GLRX is an independent prognostic factor in
glioma, and closely associates with an immunosuppressive tumor
microenvironment with GLRX being precisely expressed in the
M0 macrophages (Chang et al., 2020). In vivo investigations will
need to determine the effect of each macrophage subtype on the
immunosuppression of HGGs mediated by ROGs.
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FIGURE 8

Immune phenotypes of two risk group. (A) Estimated fraction of 22 tumor infiltrating immune cells with CIBERSORTx algorithm. (B) Stromal,
immune and ESTIMATE score with the method of ESTIMATE. (C) Tumor purity estimation with the method of ESTIMATE. (D) mRNA expression of 33
tumor infiltrating immune cells in TCGA cohort. (E) mRNA expression of 30 ICPs in CGGA cohort. (F–H) Estimation of potential therapeutic response
to ICBs in TCGA (F), CGGA (G), and WCH cohort (H). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

We next established a scoring system based on 13 ROGs,
GRORS, which was proved to be an independent risk predictor
for HGGs. Among genes of GRORS, most of them were
antioxidative genes (Marchitti et al., 2010; Raza, 2011; Wickham
et al., 2011; Wang et al., 2020). Our work also illuminated an
interaction between GRORS and the tumor immune profiles.

We found that HGGs with high GRORS contains a high
fraction of the immunosuppressive cells, such as regulatory T-cells
(Tregs), tumor-associated macrophages, and neutrophils. Tregs
can inhibit antigen-presenting cells by CTLA-4, consuming IL-
2, and producing immune inhibitory cytokines and molecules
(Togashi et al., 2019). Tregs exert an immunosuppressive function
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by inhibiting CD4+ effector T-cells with a mechanism of inducing
redox perturbation, including decreased GSH biosynthesis (Yan
et al., 2010). After switching to an M2-like state, TAMs promote
angiogenesis by secreting pro-angiogenic factors, suppressing
T-cell infiltration and cytotoxic T-cell function, and remodeling
ECM (Myers et al., 2019). Nuclear Factor (erythroid-derived 2)-
like 2 (NrF2) is a vital regulator keeping the homeostasis of
oxidative stress through initiating anti-oxidative genes expression
(Kensler et al., 2007). Cancer cell-produced lactate can activate
Nrf2 of macrophages which leads to macrophage polarization
toward an M2-like phenotype. In turn, the M2-like macrophage
upregulates Nrf2 expression of cancer cells to promote the
epithelial-mesenchymal transition of tumors (Feng et al., 2018).
Tumor-associated neutrophils are capable of suppressing innate
and adaptive lymphoid cell function by producing ROS, reactive
nitrogen intermediates (RNI), ARG1 (Jaillon et al., 2020). The GSH
system of the activated neutrophils affects function of these cells
heavily by stimulation of glutathione reductase. Moreover, cellular
redox status can significantly influence the function of individual
neutrophils. For example, persistently upregulated ROS may result
in the internalization of membrane chemokine receptors, CXCR2,
thus suppressing neutrophil migration (Morris et al., 2022). In
total, redox can interact with multiple components in tumors and
regulate the aggressive growth of tumors.

Similarly, immune deficiency markers, such as CD274 (PD-L1),
CTLA4, NRP1, and LAGLS9, were increasingly expressed in the
high GRORS tumors. The representative immune checkpoints of
PD-L1/PD-1 and CTLA4/B7 1/2 can potently block the generation
of stimulating cytokines, such as IFN-γ, tumor necrosis factor-
α (TNF-α), and IL-2, which decreases the immunoreactivity of
tumors (Kiaie et al., 2021). Galectin-9 (LGALS9) can induce T cell
death through binding with TIM-3 (Yang et al., 2021). Moreover,
CD48 could act as an immunosuppressive mediator by enhancing
the function of Tregs in hepatocellular carcinomas (Wang et al.,
2021). Similarly, IDO1 promotes immune escape in multiple
tumors such as melanoma, colon cancer, and glioma by regulating
Tregs (Zhai et al., 2015; Munn and Mellor, 2016). Therefore,
HGGs with high GRORS have the characteristic of antioxidative
ability and an immunosuppressive TME and thus suffering a poor
outcome.

Immunotherapy is a promising treatment for many cancers,
which part of mechanisms related to redox. PD-1 inhibition
promotes tumor cell ferroptosis through interferon-gamma (Wang
et al., 2019). Unfortunately, current immunotherapies on gliomas
have been all far from effective (Sener et al., 2022). Glutathione
peroxidase 2 (GPX2), a member of GPX family (GPX1-8), protects
cells against from oxidative damage by exhausting a wide range
of ROS using GSH. Apart from scarce pan-leukocyte infiltration
in immunologically cold tumors, the metabolic enzyme of GPX2
overexpressed in several smoking-related cold tumors is another
novel targetable effector mediating tumor immune escape. Tumors
with GPX2 overexpression have a more incompetent tumor
immune environment (Ahmed et al., 2022). The TME can influence
the efficacy of cancer therapy and is currently considered another
therapeutic target (Quail and Joyce, 2017). These suggest that
alteration of immune landscape of HGGs may be a possible way
to improve the efficacy of immunotherapy. A study has reported
that inhibition of SIRT6/NF-κB by icariin can alter redox status
and enhance anti-tumor immunity and thus contain the growth

of triple-negative breast cancer (Song et al., 2020), indicating that
the immune reprogramming strategy could be performed through
redox intervention. Our results indicate high sensitivity to ICBs
of HGGs with high GRORS, suggesting future studies should try
to adopt ICBs to overcome these fatal HGGs. On the other hand,
immune reprogramming should be investigated to increase the
response of HGGs with low GRORS for ICBs.

There are inevitably a handful of limitations in this study.
Firstly, this study focuses on gliomas of WHO grades 3 and
4, precluding the low-grade gliomas. Instead of experimental
validation, the analysis of immune cells is estimated by algorithms
that are not so precise enough that avoid biases. In addition, our
study doesn’t explore the mechanism of ROG regulating redox
balance and further exhaustive experiments are required. Finally,
this study uses retrospective data, meaning that a prospective
cohort study is needed for further validation.

In summary, our study points toward the redox-related gene
signature playing an important role in predicting prognosis and
reshaping the immune features of TME of HGGs and highlights
GRORS is a promising predictor for the therapeutic response
of ICBs to HGGs.
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SUPPLEMENTARY FIGURE 1

Consensus clustering of IDH-mutant (IDHmut) and IDH-wildtype (IDHwt)
HGGs. (A) Consensus index matrix of IDHmut HGGs with ROGs when the
number of cluster (k) were 3. (B) Cumulative distribution functions (CDFs) of
consensus index when k was set from 2 to 10 in IDHmut HGGs. (C) Gain of
area under the CDFs when k was set from 2 to 10 in IDHmut HGGs. (D)
Consensus index matrix of IDHwt HGGs with ROGs when (k) were 3. (E)

CDFs of consensus index when k was set from 2 to 10 in IDHwt HGGs. (F)
Gain of area under the CDFs when k was set from 2 to 10 in IDHwt HGGs.

SUPPLEMENTARY FIGURE 2

Transcriptome profiles of redox subclusters in the IDH-mutant (IDHmut)
HGGs. (A–C) The KEGG, REACTOME, and msigH functional enrichment of
differentially expressed genes between subcluster 1/2 and subcluster 3 in
the IDHmut HGG, respectively. Only pathways with gene counts over 10
were plotted. Right panel enriched pathways with top 10 odds ratio.

SUPPLEMENTARY FIGURE 3

Transcriptome profiles of redox subclusters in the IDH-wildtype (IDHwt)
HGGs. (A–C) The KEGG, REACTOME, and msigH functional enrichment of
differentially expressed genes between subcluster 1/2 and subcluster 3 in
the IDHmut HGG, respectively. Only pathways with gene counts over 10
were plotted. Right panel enriched pathways with top 10 odds ratio.

SUPPLEMENTARY FIGURE 4

Status of immune biomarkers of redox subclusters in IDH-mutant (IDHmut)
and IDH-wildtype (IDHwt) HGGs. (A) mRNA expression of immune
biomarkers in IDH-mutant (IDHmut) and IDH-wildtype (IDHwt) HGGs. ns,
not significant, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

SUPPLEMENTARY FIGURE 5

Nomogram based on CGGA and WCH cohort and predicting performance
of different variables on 3-year OS. (A,B) Nomogram of HGGs based on
CGGA cohort (A) and WCH cohort (B). (C–E) ROC curves for different
variables predicting 3-year OS in TCGA cohort (C), CGGA cohort (D) and
WCH cohort (E).

SUPPLEMENTARY FIGURE 6

Heatmaps of top 20 differentially expressed gene sets with different
GRORS. (A) Heatmap with KEGG. (B) Heatmap with REACTOME dataset.

SUPPLEMENTARY FIGURE 7

The relation between GRORS and clinic-pathological indicators. The
indicator included gender (A), WHO grade (B), IDH status (C), 1p19q
codeletion (D), ATRX status (E), MGMT promoter status (F), TERT promoter
status (G), and histology (H). (I) The heatmap of clinic-pathological
indicators distribution according to the GRORS, and distribution of genes
included in GRORS calculation. ns, not significant; ∗∗∗∗p < 0.0001.

SUPPLEMENTARY FIGURE 8

Immune phenotypes of two risk groups in CGGA and WCH cohort. (A,B)
Fraction of 22 infiltrating immune cells with CIBERSORTx algorithm in
CGGA cohort (A) and WCH cohort (B). (C,E) Stromal, immune and
ESTIMATE score with the method of ESTIMATE in CGGA cohort (C) and
WCH cohort (E). (D,F) Tumor purity estimation with the ESTIMATE and CPE
algorithms in CGGA cohort (D) and WCH cohort (F). (G) mRNA expression
of 33 I in WCH cohort. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.
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