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hypoxia-induced long-term
potentiation of NMDA
neurotransmission in the visual
retinocollicular pathway
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Department of Neuronal Network Physiology, Bogomoletz Institute of Physiology, National Academy of

Science of Ukraine, Kyiv, Ukraine

The identification of processes and mechanisms underlying the early stage

of hypoxic injury of the retinocollicular pathway may be beneficial for the

future prevention and treatment of navigation, orientation, and visual attention

impairments. Previously, we have demonstrated that short-term hypoxia led to

long-term potentiation (LTP) of NMDA neurotransmission in the background of

long-term depression of GABAA retinocollicular transmission. Here, we sought

to obtain insight into the mechanisms of hypoxia-induced LTP of NMDA

retinocollicular neurotransmission and the role of the protein kinase C (PKC)

signaling pathway in it. To investigate these, we recorded pharmacologically

isolated NMDA transmission in cocultivated pairs of rat retinal ganglion cells and

superficial superior colliculus neurons under normoxic and hypoxic conditions,

using the paired patch-clamp technique and method of fast local superfusion. We

tested the involvement of the PKC by adding the potent and selective inhibitor

chelerythrine chloride (ChC, 5µM). We observed that hypoxia-induced LTP of

NMDA neurotransmission is associated with the shortening of current kinetics.

We also found that the PKC signaling pathway mediates hypoxia-induced LTP

and associated shortening of NMDA currents. The ChC completely blocked the

induction of LTP by hypoxia and associated kinetic changes. Contrary e�ects

of ChC were observed with already induced LTP. ChC led to the reversal of

LTP to the initial synaptic strength but the current kinetics remain irreversibly

shortened. Our results show that ChC is a promising agent for the prevention

and treatment of hypoxic injuries of NMDA retinocollicular neurotransmission and

provide necessary electrophysiological basics for further research.
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1. Introduction

Pathogenesis of numerous diseases and traumas as well as several physiological states

are associated with hypoxia (Biddlestone et al., 2015; Luo et al., 2022). The retinocollicular

pathway, as part of the visual system, is extremely sensitive to oxygen deprivation

(Wong-Riley, 2010). Lesions of this pathway lead to navigation, orientation, and visual

attention deficits, and also could be involved in several neurological and psychiatric disorders

such as attention deficit hyperactivity disorder, and autism (Brace et al., 2015; Mathis et al.,

2015; Jure, 2022). In our research, we focus on the very early hypoxia-induced processes

and their mechanisms as potential therapeutic targets serving to prevent lesions of the

retinocollicular visual transmission.
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We have shown previously, that hypoxia induces a significant

shift in excitatory-inhibitory balance toward excitation. Oxygen

deprivation led to long-term potentiation (LTP) of NMDA

transmission and persistent increase in the amplitude and

occurrence frequency of spontaneous NMDA events in the

background of long-term depression of GABAA retinocollicular

transmission (Dumanska and Veselovsky, 2019). Such

pathologically-induced functional alterations may reflect structural

changes in NMDAR subunit composition. These receptors are

extremely important in the development and refinement of the

neurotransmission (Cull-Candy and Leszkiewicz, 2004; Rebola

et al., 2010). The synaptic retinocollicular NMDARs contain

NR2A and NR2B subunits at different developmental stages

that determine the receptors distinct properties and functions

(Townsend et al., 2004). The structural and functional alterations

of NMDARs were observed in various pathological states and may

contribute to molecular processes affecting cell survival or death

(Lau and Zukin, 2007; Dewachter et al., 2009; Georgiou et al.,

2010). Multiple intra and extracellular messengers, and enzymes

regulate such alterations (Yaka et al., 2002; Lin et al., 2006). Among

all, testing the involvement of the protein kinase C (PKC) signaling

pathway in hypoxia-induced LTP of NMDA transmission seems

to be the most promising prospect. Previous studies have shown

that the PKC signaling pathway is involved in cellular response

to hypoxia as well as in structural and functional alterations of

NMDAR (Goldberg et al., 1997; Yan et al., 2000; Chen and Roche,

2007; Lee et al., 2007; Rebola et al., 2010; Kim et al., 2016). In

this study, we tested the hypothesis that the protein kinase C

(PKC) pathway might be involved in hypoxia-induced LTP NMDA

retinocollicular transmission.

2. Materials and methods

In our experiments, we used an in vitro model of the visual

retinocollicular pathway – primary coculture of rat retinal cells and

superficial superior colliculus (SSC) neurons.

All manipulations with animals were performed in aseptic

conditions in accordance with animal research regulations

approved by theUkrainian Academy of Science (in accordance with

the European Convention for the Protection of Vertebrate Animals

used for Experimental and other Scientific Purposes - Explanatory

Report, 1986; World Medical Association Declaration of Helsinki,

1996; Convention for the Protection of Human Rights and Dignity

of the Human Being with regard to the Application of Biology and

Medicine: Convention on Human Rights and Biomedicine, 1997).

2.1. Coculture

The coculture was prepared as we previously described

(Dumanska and Veselovsky, 2019). Briefly, the retinal and SSC

tissues were obtained from pups P0-P1 of Wistar rats, both

sexes. For this research we used 9 pups. After enzymatic and

mechanical dissociation of the primary tissues, two suspensions

of cells were placed in separate compartments of the originally-

designed chamber for cocultivation in a Petri dish. The chamber

consists of a silicon ring with a vertical glass baffle placed on the

coverslip. One hour of incubation in a humidified atmosphere of

5 ± 0.5% CO2 at 37 ± 0.5 C was enough for cell adhesion to the

coverslip. After that, the silicon ring was removed, and the cells

were stored in the incubator for further cocultivation.

2.2. Electrophysiological recordings

In the coculture, we identified synaptically connected pairs of

retinal ganglion cells (RGCs) and SSC neurons by their spatial

location, morphological and electrophysiological characteristics

(Moriton et al., 2013; Villalobos et al., 2018). The recordings

were performed from synaptically connected pairs of RGCs and

SSC at room temperature (20–24◦C) using the paired whole-

cell patch clamp technique. Pharmacologically isolated NMDA-

mediated postsynaptic currents (PSCs) were evoked in SSC

neurons by generation action potentials in presynaptic RGCs.

Spontaneous currents were recorded in SSC neurons in the absence

of presynaptic stimulation.

In all experiments, the extracellular solution contained (in

mM): NaCl 140; KCl 3; CaCl2 3; Hepes 20, and glucose 15

(Sigma-Aldrich); pH 7.4. For pharmacological isolation of NMDA

currents, we added to the external solution dinitroquinoxaline-

2,3(1H, 4H)-dione (DNQX, 20µM) and bicuculline methiodide

(10µM). The internal pipette solution contained (in mM):

potassium gluconate 155; EGTA 0.5;MgCl2 1 andHepes 20 (Sigma-

Aldrich); pH 7.4. We tested the involvement of the PKC by adding

5µM of chelerythrine chloride (ChC) to the external solution.

Patch pipettes were prepared from borosilicate glass capillaries

(World Precision Instruments, USA) with internal tip diameters

1.0–1.5 µm.

During the electrophysiological recordings, we constantly

evaluated the quality of voltage clamping by monitoring the

variations of the leakage current amplitude (Ileak) and the time

constant of the capacitive current (τcap) recorded upon applications

of short (10ms) small-amplitude hyperpolarizing rectangular

stimuli (– 10mV). The data obtained were analyzed if variations

of the τcap and Ileak values did not exceed 20 % of the mean value.

For both types of neurons, membrane potential varied

from −50 to – 70mV. Short-term hypoxic states did not

lead to statistically significant changes in membrane potential

(depolarization or hyperpolarization).

Data were recorded and digitized (10 kHz) using two

Axopatch-1D amplifiers (CV-4 headstages, gain: × 1/100; 5 kHz

cutoff low-pass 4-pole Bessel filter), Digidata 1322A and Clampex

9.0 software (Axon Instruments).

2.3. Modulation of short hypoxic states in
vitro

Using the method of fast local superfusion (Veselovsky et al.,

1996) we applied hypoxic solutions on synaptically -connected

pairs of neurons during the electrophysiological recordings to

mimic short-term hypoxic states in vitro. Thismethod allowed us to

control the area and speed of the application. The hypoxic solutions

were obtained by saturation of the external solutions with nitrogen
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for 20min just before the electrophysiological recordings. We used

the next protocol for the experiments: first, we applied a normoxic

external solution for 5min – this period we called a control, then

we switched to the hypoxic solution for 5min – hypoxia, and then

back to the normoxic external solution – reoxygenation.

2.4. Statistical analysis

Statistical analysis of data obtained has been done in Origin

8.5 Pro (OriginLab Corporation, USA) and Clampfit 9.0 (Axon

Instruments, USA). The data is presented as mean ± SD. The

decay time constants of the currents were fitted by a standard

single-exponential function. We checked the normality of data sets

using the Shapiro-Wilks test, the differences between two sets of

values using two-sample t-test and the differences between the two

functions using Kolmogorov-Smirnov criteria. The results of the

t-test are represented as t-values (t), degrees of freedom (df), and

p-values (p).

3. Results

In the coculture, each identified synaptically connected pair of

RGCs and SSC neurons reflects a single fiber of the retinocollicular

pathway (Figure 1). We examined 38 pairs of RGCs-SSC neurons.

The evoked and spontaneous NMDA currents were identified

by their kinetic and pharmacological characteristics (Furman and

Crair, 2012).

As we have reported before (Dumanska and Veselovsky, 2019),

the application of a hypoxic solution for 5min led to the long-term

potentiation (LTP) of NMDAneurotransmission (Figure 2A, n= 8,

unpublished data). PSCs displayed single exponential deactivation

time course. We observed that hypoxia-induced LTP is associated

with a rapid, irreversible and statistically extremely significant

shortening of evoked PSCs – the decrease in current decay time

constants (Figure 2D; control 39.7± 2.6ms; hypoxia 16.7± 2.0ms;

reoxygenation 16.4 ± 2.5ms; t = 85.6, df = 296, p < 0.0001 –

hypoxia compare to control; t = 103.2, df = 897, p < 0.0001 –

reoxygenation compare to control).

To investigate the role of the PKC signaling pathway in

hypoxia-induced LTP we carried out two series of experiments. In

the first, we added ChC (5µM) to the external solution during the

reoxygenation, and in the second – during hypoxia. In the first

case, the hypoxia application successfully induced potentiation of

the evoked PSCs but the presence of ChC during reoxygenation

led to the decrease of the elevated amplitudes to the basal pre-

LTP level (Figure 2B, n = 8). The dynamic of the PSCs decay

time constants represents the irreversible and statistically extremely

significant decrease during hypoxia and reoxygenation (Figure 2E;

control 31.1 ± 4ms; hypoxia 19.5 ± 3.2ms; reoxygenation in the

presence of ChC 19.2 ± 2.5ms; t = 27.6, df = 296, p < 0.0001

– hypoxia compare to control; t = 46.8, df = 897, p < 0.0001 –

reoxygenation compare to control). In the second case, the presence

of ChC in the hypoxic solution completely blocked the hypoxia-

induced LTP of NMDA transmission (Figure 2C) and associated

changes in PSCs kinetics (Figure 2F; control 32.4± 3.9ms; hypoxia

in the presence of ChC 32.5± 3.9ms; reoxygenation 32.4± 3.6ms;

t= 0.2, df= 296, p= 0.8 – hypoxia compare to control; t= 0, df=

897, p= 1 – reoxygenation compare to control.

We also tested the effect of ChC on the hypoxia-induced

increase of spontaneous NMDA retinocollicular activity. As

with the evoked neurotransmission, we added ChC during the

reoxygenation (n = 8), and during hypoxia (n = 7). In the first

case, we observed the hypoxia-induced decrease of the currents

decay time constants in the background of the increase in currents

amplitudes. The presence of ChC during reoxygenation restored

both parameters to the basic level (Figures 3A, C, F; decay time

constants during control 43.7 ± 8.2ms; hypoxia 15.6 ± 3.8ms;

reoxygenation in presence of ChC 42.8 ± 6.5ms; t = 18.5, df =

60, p < 0.0001 – hypoxia compare to control; t = 0.4, df = 38, p =

0.7 – reoxygenation compare to control). In the second case, ChC

abolished the hypoxia-induced changes of spontaneous currents

amplitudes and decay time constants (Figures 3B, D, H; control

37.3 ± 4.9ms; hypoxia in the presence of ChC 39.3 ± 5.8ms;

reoxygenation 38.5 ± 6.1ms; t = 1.1, df = 50, p = 0.2 – hypoxia

compare to control; t = 0.6, df = 33, p = 0.6 – reoxygenation

compare to control). In both cases, the hypoxia-induced increase of

the occurrence frequency of spontaneous events remains elevated

despite the presence of ChC. The quantitative analysis of changes

in the frequencies of spontaneous NMDA currents is depicted on

the cumulative probability plots (Figures 3E, G).

We have also pointed out that the presence of ChC under

normoxic conditions didn’t induce any changes in spontaneous

current amplitudes, their kinetic characteristics, distribution, or the

occurrence frequency of spontaneous events.

4. Discussion

Our results show that two phenomena underlie hypoxia-

induced LTP of NMDA retinocollicular neurotransmission: (1) the

shortening of PSCs kinetics and (2) the involvement of the PKC

signaling pathway in its induction and maintaining.

Functional NMDARs are heteromeric assemblies of NR1,

NR2, and NR3 subunits. Each subunit composition of the

receptor demonstrates distinct functional and electrophysiological

properties (Cull-Candy and Leszkiewicz, 2004). The NR2 subunits

determine such functional properties as the open probability of

the receptor, its high affinity for glutamate, modulation by glycine,

sensitivity to voltage-dependent block by Mg2+, and current

kinetics (Perin-Dureau et al., 2002; Cull-Candy and Leszkiewicz,

2004; Hatton and Paoletti, 2005; Paoletti and Neyton, 2007).

The changes in NR2 subunits composition lead to changes in

electrophysiological characteristics of NMDA currents and vice

versa (Vicini et al., 1998; Roberts and Ramoa, 1999).

The shortening of NMDA currents in the background of

hypoxia-induced elevation of amplitudes we observed might reflect

changes in NMDAR subunit composition. Using decay kinetic

characteristics and literature-based analysis, we considered that

the decrease of the PSCs decay time constant might be caused

by an increase in the NR2A/2B ratio (Vicini et al., 1998; Philpot

et al., 2001; Xue et al., 2010). Because of stronger glutamate

binding affinity and longer duration of currents, NR2B containing

NMDARs are more permeable for calcium than NR2A containing

ones (Flint et al., 1997; Vicini et al., 1998). Therefore, the
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FIGURE 1

Reconstructed microphotography of synaptically connected couple of presynaptic retinal ganglion cell and postsynaptic superficial superior

colliculus neuron in coculture during paired patch-clamp recording and fast local superfusion application on the 21st day in vitro; the scale marker

corresponds to 100 µm.

FIGURE 2

The e�ects of chelerythrine chloride (ChC) on hypoxia-induced LTP of NMDA synaptic neurotransmission. (A–C) The dynamics of the evoked

postsynaptic current (PSCs) normalized average amplitudes with 5min duration of the hypoxia application. The ChC (5µM) was added during

reoxygenation (B) and during hypoxia (C). Representative recordings of the evoked PSCs are plotted against the corresponding period (control -

black, hypoxia - red, and reoxygenation - blue) (D–F). The dynamics of the currents decay time constants from (A–C), respectively. Representative

normalized currents are plotted bellow.
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FIGURE 3

The e�ects of chelerythrine chloride (ChC) on the hypoxia-induced increase of spontaneous NMDA synaptic activity. (A, B) The dynamics of

spontaneous currents normalized amplitudes with 5min duration of hypoxia application. The ChC (5µM) was added during reoxygenation (A) and

during hypoxia (B). The representative recordings of spontaneous currents are plotted against the corresponding period (control - black, hypoxia -

red, and reoxygenation - blue) (C, D) The dynamics of currents decay time constants from (A, B), respectively (E, G) The cumulative probability plots

of the interevent interval of spontaneous currents from (A, B), respectively (F, H) Normalized currents from (A, B), respectively.

increase in the NR2A/2B ratio should decrease calcium influx

during hypoxia-induced potentiation of NMDA retinocollicular

neurotransmission. Moreover, using some statistical models,

authors have declared that NR2A may not only shorten the

decay time but also increase current amplitudes (Iacobucci and

Popescu, 2017). In our research, there was no statistically significant

synchronization between the increase in current amplitudes and

the decrease in the decay time. Due to the short period of

hypoxia duration, subunits changes might be associated with lateral

receptor mobilization from adjacent locations, rather than with a

new subunits expression (Baez et al., 2018). Overall, we tend to

consider the shortening of the current kinetics as a compensatory

mechanism in the background of pathologically-induced long-term

plasticity as it aims to decrease calcium influx.

We also observed that the presence of ChC completely

blocked hypoxia-induced LTP of NMDA retinocollicular

neurotransmission and the elevation of the amplitudes of

spontaneous NMDA events. ChC is the most recognized potent

and specific inhibitor of PKC for isoforms α and β (Herbert et al.,

1990; Chmura et al., 2000). The activity of PKC in hypoxic injury

has been shown in different tissues. But the distinct role of PKC in

cell response to hypoxia as well as the type of isoforms involved

in it are still controversial (Skaper et al., 2001; Matsumoto et al.,

2004; Bright and Mochly-Rosen, 2005). We showed that the

blockade of PKC activity is able not only to prevent pathological

hypoxia-induced LTP of NMDA neurotransmission but also to

reverse synaptic strength from the potentiated to basal, pre-LTP

level. The reversal of LTP is called depotentiation. In contrast to

activity-dependent synaptic plasticity that underlies such higher

cognitive processes as learning and memory, depotentiation

may be responsible for forgetting or mediating degenerative

disorders (Huang et al., 2001; Babür et al., 2018). Besides,

depotentiation might be involved in developmental changes of

synaptic transmission (Huang et al., 2001; Qi et al., 2013; Tao et al.,

2019). However, there is no evidence of what role it may play in

pathologically-induced LTP.

We also found that ChC blocked the initiation of hypoxia-

induced shortening of NMDA evoked and spontaneous currents.

It is interesting that, already induced shortening of evoked NMDA

PSCs showed irreversibility despite the presence of ChC, whereas

spontaneous currents showed the ability to reverse their kinetic

to the initial duration. PKC activity is thought to play a key role

not only in such functional changes of NMDAR as an increase in

the amplitude of currents, channel open probability, and current

kinetics but also in trafficking and inserting the receptors into

synaptic membranes (Gerber et al., 1989; Chen and Huang, 1992;

Xiong et al., 1998; Lan et al., 2001). The existence of such a

difference in the reversibility of evoked and spontaneous current

kinetics proves the differential regulation of synaptic and extra-

synaptic NMDAR (Li et al., 2002; Hardingham and Bading,
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2010). The blockade of the PKC signaling pathway didn’t affect

the hypoxia-induced increase in the occurrence frequency of

spontaneous NMDA events.

In this study, we demonstrated that the PKC signaling

pathway mediates hypoxia-induced LTP of NMDA retinocollicular

neurotransmission at the expression and maintenance stages.

According to the literature, PKC might affect NMDAR function

directly by phosphorylation of its subunits (Lan et al., 2001; Liao

et al., 2001; Zhou et al., 2021) or indirectly by interacting with

molecules related to LTP including calcium/calmodulin-dependent

protein kinase II (CaMKII) (Gardoni et al., 2001; Yan et al., 2011),

postsynaptic density protein (PSD-95) (Wang and Peng, 2016), etc.

Moreover, the PKC might act pre- or postsynaptically (Soderling

and Derkach, 2000; Brager et al., 2003). Identification of precise

mechanisms of PKC-mediated LTP of NMDA retinocollicular

neurotransmission will reveal molecules, or complexes involved in

hypoxia injury.

The physiological significance of our research can be

summarized in the following, (1) hypoxia-induced LTP of NMDA

retinocollicular synaptic transmission is associated with the

shortening of PSCs, which is a potential cellular compensatory

mechanism (2) The PKC signaling pathway mediates both

hypoxia-induced LTP and associated changes in current kinetics

(3) Moreover, the blockade of PKC by ChC leads to depotentiation

of hypoxia-induced LTP. We consider that under pathological

conditions, such depotentiation reflects the ability of the system

to restore normal functioning, and ChC is a promising agent for

the prevention and treatment of hypoxia-induced lesions of the

retinocollicular neurotransmission (4) Our results provide the

necessary electrophysiological platform for further research.
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