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Development of network
oscillations through adolescence
in male and female rats
Sonia Sibilska, Rola Mofleh and Bernat Kocsis*

Department of Psychiatry, BIDMC, Harvard Medical School, Boston, MA, United States

The primary aim of this research was to study the developmental trajectory

of oscillatory synchronization in neural networks of normal healthy rats

during adolescence, corresponding to the vulnerable age of schizophrenia

prodrome in human. To monitor the development of oscillatory networks

through adolescence we used a “pseudo-longitudinal” design. Recordings were

performed in terminal experiments under urethane anesthesia, every day from

PN32 to PN52 using rats-siblings from the same mother, to reduce individual

innate differences between subjects. We found that hippocampal theta power

decreased and delta power in prefrontal cortex increased through adolescence,

indicating that the oscillations in the two different frequency bands follow distinct

developmental trajectories to reach the characteristic oscillatory activity found

in adults. Perhaps even more importantly, theta rhythm showed age-dependent

stabilization toward late adolescence. Furthermore, sex differences was found

in both networks, more prominent in the prefrontal cortex compared with

hippocampus. Delta increase was stronger in females and theta stabilization was

completed earlier in females, in postnatal days PN41-47, while in males it was only

completed in late adolescence. Our finding of a protracted maturation of theta-

generating networks in late adolescence is overall consistent with the findings

of longitudinal studies in human adolescents, in which oscillatory networks

demonstrated a similar pattern of maturation.
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1. Introduction

Adolescence and early adulthood is commonly recognized as a critical period
of psychiatric diseases, including schizophrenia (SZ). During this period, the brain
undergoes dramatic developmental changes characterized, in general, by pruning of
excitatory synapses, increased myelination, and proliferation of inhibitory circuits
(Feinberg, 1982; Weinberger, 1987; Insel, 2010; Uhlhaas and Singer, 2011). All these
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components may affect the development of oscillations and long-
range interregional coupling. There are also striking alterations
in different neurotransmitter systems including those involved in
generating network oscillations, such as GABA and glutamate, and
NMDA receptor mechanisms (Monyer et al., 1994; Wenzel et al.,
1997; Dumas, 2005a; Tseng and O’Donnell, 2007; Benoit-Marand
and O’Donnell, 2008; Lewis and Gonzalez-Burgos, 2008; Hoftman
and Lewis, 2011; Kilb, 2011; O’Donnell, 2011, 2012; Sturman
and Moghaddam, 2011b; Huppe-Gourgues and O’Donnell, 2012).
These changes occur at different time points and at a different
pace during periadolescent stages of development. There are
also discrepancies between neuronal developments of different
structures resulting in a period between childhood and adulthood
characterized by interregional imbalance (Casey et al., 2008;
Somerville and Casey, 2010; Sturman and Moghaddam, 2011b). In
particular, structural and functional development of the prefrontal
cortex (PFC) and limbic circuits are more protracted into early
adulthood compared with sensory cortex (Cressman et al., 2010).
These data were mostly collected, however, using cross-sectional
designs which have limited potential to decipher timing and
trajectories of complex pathological processes.

The importance of longitudinal observations has been
recognized in human studies using EEG and fMRI as indicators
of adolescent brain maturation (Almli et al., 2007; Whitford
et al., 2007a; Possel et al., 2008; Campbell and Feinberg, 2009;
Uhlhaas et al., 2009; Feinberg and Campbell, 2010; Cragg et al.,
2011; Feinberg et al., 2011; Gmehlin et al., 2011; Maurer et al.,
2011; Uhlhaas and Singer, 2011; Mikanmaa et al., 2019). The
common finding of human studies was a late maturation of
oscillatory networks, indicated e.g., by increases in evoked and
induced gamma oscillations in the auditory and visual cortex
(Rojas et al., 2006; Poulsen et al., 2009; Uhlhaas et al., 2009;
Werkle-Bergner et al., 2009). Developmental trends, also peaking
in late adolescence and early adulthood, were also reported in
low-frequency oscillations (Whitford et al., 2007b; Muller et al.,
2009) and in long-range coupling between frontal and parietal
regions (Srinivasan, 1999; Uhlhaas et al., 2009). A similarly delayed
maturation of PFC-dependent executive control is well-established
(Cressman et al., 2010; Miller et al., 2012; Naneix et al., 2012;
O’Donnell, 2012).

Yet, the common approach to cellular and network-level
investigation of development in animal models has until now been
limited to comparing data from pre-adolescents (Spear, 2000; Kilb,
2011) with adults (Pen et al., 2006; Hogsden and Dringenberg, 2009;
Gvilia et al., 2011; Sturman and Moghaddam, 2011a). Strong and
rigorous research was primarily aimed at the role and mechanisms
of oscillations, both local and transmitted between regions, in
neonates (Leinekugel et al., 1997, 2002; Garaschuk et al., 1998;
Khazipov et al., 2004; Buhl and Buzsaki, 2005; Ben-Ari et al.,
2007; Minlebaev et al., 2007; Mohns et al., 2007; Brockmann et al.,
2011; Del Rio-Bermudez et al., 2017; Griguoli and Cherubini, 2017;
Ahlbeck et al., 2018) while periadolescent stages remain much less
explored (Sato et al., 1979; Konopacki et al., 1988; Slawecki, 2002;
Slawecki and Ehlers, 2003; Lychakov et al., 2007; Burton et al., 2008;
Pian et al., 2008; Ehlers et al., 2013, 2018; Caban et al., 2018; Buzzell
et al., 2019; Medlej et al., 2019; Muessig et al., 2019; Zhang et al.,
2019).

In normal healthy brain of adults, slow and fast oscillations
functionally interact to create an oscillator hierarchy which

normally operates across multiple spatial and temporal scales
(Bragin et al., 1995; Lakatos et al., 2004, 2005; Schroeder and
Lakatos, 2009a,b; Belluscio et al., 2012). Neuronal ensembles
dynamically synchronize their activities at fast (40–100 Hz gamma
and >120 Hz high frequency oscillations) and characteristic slow
oscillations (delta and theta). These latter also serve for long-
range oscillatory coupling between distant networks. For example,
hippocampal theta rhythm can modulate spike activity and locally
generated gamma rhythm in target structures, including the PFC
and vice versa, PFC slow oscillations in the delta range may in
turn modulate spike and network activity in the hippocampus
(Fujisawa and Buzsaki, 2011; Roy et al., 2017). Dynamic coupling
between these structures is particularly important for specific
cognitive functions in adults and plays an important role in early
neurodevelopment (Leinekugel et al., 2002; Khazipov et al., 2004;
Karlsson et al., 2006; Mohns et al., 2007; Mohns and Blumberg,
2008; Brockmann et al., 2011; Janiesch et al., 2011). Abnormal
oscillations in the adult brain are well-established in SZ (Kwon
et al., 1999; Spencer et al., 2008; Spencer, 2011; Gandal et al.,
2012; Gonzalez-Burgos and Lewis, 2012; Gonzalez-Burgos et al.,
2015; Hirano et al., 2015; Pittman-Polletta et al., 2015; Ferrarelli
and Tononi, 2017; Hunt et al., 2017; Pratt et al., 2017; Uhlhaas
et al., 2017; Dienel and Lewis, 2019); having been formulated
as the concept of “gamma oscillatory endophenotype” (Gandal
et al., 2012) that may underlie downstream phenotypic deficits
characteristic for SZ. Slow oscillations are also altered but these are
less clear and less studied (Boutros et al., 2008, 2014; Bates et al.,
2009; Ducharme et al., 2012; Basar, 2013; Narayanan et al., 2014;
Cousijn et al., 2015; Michaels et al., 2018; Kaefer et al., 2019).

Neural oscillations are directly related to parvalbumin-
expressing (PV+) GABA interneurons which were shown impaired
in SZ—representing one of the few signs consistently found in
post-mortem examinations in human SZ (Blum and Mann, 2002;
Heckers and Konradi, 2015; Kaar et al., 2019) and common in
rodent models (Steullet et al., 2017). NMDA receptor (NMDA-
R) input to PV+ neurons is essential for setting the level of their
overall activity affecting the excitation/inhibition (E/I) balance,
crucial for precise network activity. Dysregulation of E/I balance
was implicated in SZ and NMDA-R antagonists were shown
to mimic some of the positive and negative symptoms of SZ
(Javitt and Zukin, 1991; Olney and Farber, 1995; Homayoun and
Moghaddam, 2007), along with disrupting oscillator hierarchy
(Pinault, 2008; Kittelberger et al., 2012; Kocsis, 2012b; Pittman-
Polletta et al., 2018). The major input controlling PV+ cell
activity, specifically targeting NMDA receptors expressing the
NR2A (GluN2A) subunit, develops weeks after birth, well after the
switch in GABA transmission from excitatory to inhibitory.

In this study we designed longitudinal investigations through
the peri-adolescent period of normal rats, males and females to
define how the oscillatory hierarchy develops in hippocampus
and PFC. We hypothesized that maturation of oscillatory cortical
networks is a protracted process occurring over the length of
adolescence and into early adulthood during which the different
components of the oscillatory hierarchy may follow different
trajectories to arrive to the pattern of well-coordinated neural
synchronization at different frequencies in adults. The study was
limited to healthy rats to create a basis for future investigations
aimed at development in psychiatric diseases.

Frontiers in Cellular Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fncel.2023.1135154
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1135154 April 28, 2023 Time: 14:2 # 3

Sibilska et al. 10.3389/fncel.2023.1135154

2. Materials and methods

2.1. Animals

A total of 27 Spraque-Dawley rats were used to perform this
experiment. All experiments were performed in accordance to
the Beth Israel Deaconess Medical Center’s Institutional Animal
Care and Use Committee (IACUC). A total of 22 Sprague-Dawley
rats [both genders (10 males and 12 females) pups-siblings from
two mothers (Charles River Laboratories, Cambridge, MA, USA)
were used for recordings under urethane anesthesia in adolescence.
Weaning occurred at postnatal day 21 (PN21) and the animals
were recorded one a day, every day through adolescence, from
PN32 to PN52 (body weight: 115–310 g). Three male rats from
a third mother was delivered early after weaning and recorded
under urethane anesthesia inPN25. Longitudinal recordings in
unanesthetized, freely moving conditions were recorded in two
rats, for several days through adolescence (PN41–PN52) and early
adulthood (PN66–PN73).

2.2. Surgery

Surgery was performed under urethane anesthesia, which
unlike other anesthetics, allows theta generation under controlled
circumstances, in adult rats. The rat was injected intraperitoneally
with two doses of urethane based on a concentration of 1 g/kg,
with a 1 h interval. A total of six electrodes were implanted in
the rat for recording in accordance to the stereotaxic coordinates,
using the rat brain atlas of Paxinos & Watson (Paxinos and Watson,
1986). Specifically, two single-wire electrodes were implanted in the
right and left prefrontal cortex (AP: +3.2, DV: -4.8, ML: +0.5 and -
0.5, respectively) and a twisted double-wire electrodes implanted
in the dorsal hippocampus (AP: -3.7, DV: -3.5, ML: +2.2)—the
coordinates reflect the location of the longer electrode of the twisted
pair whereas the shorter was located 0.8–1.2 mm dorsally. The
electrodes were cemented to the bone using methyl methacrylate to
secure them in place and then connected to the recording apparatus
(A.M. Systems) for data collection.

2.3. Brain cryosectioning and histology

After the surgery and the data recording, the rats were
euthanized with a 1 ml injection of ketamine and decapitated for
the removal of the brain. The brain was stored at a low temperature
in a 10% formalin solution (Fisher Scientific) in a glass vial. The
formalin solution in the glass vial was exchanged for a 20% sucrose
solution (Fisher Scientific), prior to sectioning. After removing the
brain from the sucrose solution and freezing it with dry ice, a
freezing microtome (Microm HM 450, Thermo Scientific) was used
for slicing sections 50 µm thick. The brain slices were separated
according to the rat brain atlas in a petri dish containing PBS, and
then mounted on Superfrost plus microscope slides using gelatin
buffer [Gelatin type A (Acros), chromium (III) potassium sulfate
(Fisher Science Education), Sodium Azide (Fisher Scientific)].
The slices were left to dry before being stained in Cresyl Violet
(Fisher Scientific) staining. After drying from the staining, the

slides were cover-slipped with Permaslip (Alban Scientific Inc.) for
preservation and a light microscope was used for the analyses of the
electrode placements.

2.4. Electrophysiological recording and
data analysis

Electrodes were connected to an amplifier (A-M systems) and
local field potentials (LFPs) were recorded via the implanted
electrodes and saved in DASYLab 7.0 Acquistion System
Laboratory for the data collection. Each recording session
lasted approximately two hours and was followed by euthanasia of
the rat using an 1 ml injection of Ketamine. The signals as ∼.DDF-
files in DASYLab 7.0 were extracted into Spike2 Cambridge
Electronic Devices) for further filtering (low-pass filter set to pass
signals under 10 Hz) and signal analysis in Spike2’s waveform and
“sonogram” (spike-frequency plots) mode. Low-pass filter was set
to pass signals under 10 Hz. Signals were subjected to Fast Fourier
Transform and power density spectra were calculated. Frequencies
with the greatest power (peak frequencies) were identified in
the hippocampus and prefrontal cortex to define theta and delta
oscillations, respectively. Peak power values were then calculated
and Microsoft Excel formulas and functions (version 16.40) were
used for the statistical computations and data analysis. Pearson’s
correlation coefficient (r) was calculated between peak power and
age for both theta and delta oscillations. It’s significance was tested
using the excel procedure p = TDIST(x) where x = r∗SQRT[(N-
2)/(1–r∗r)] approximately follows a t-distribution. Group averages
of theta and delta power were compared using t-test for the entire
population and two-way ANOVA for age-sex groups.

3. Results

3.1. Development of hippocampal theta
rhythm through adolescence–urethane
anesthetized rats

The presence of adult-type lasting theta oscillations under
urethane anesthesia was verified at an early age after weaning, in
PN25, in three rats-siblings (all male). Theta and wide-band delta
activity alternated in all these experiments. Theta rhythm appeared
at ∼4 Hz in the hippocampus as well as in the PFC (Figure 1).
Narrow-band delta rhythm, present in the PFC in adults during
theta states, was less obvious, it was either missing or spread in a
wider range below 3–4 Hz (Figure 1).

The development of low frequency oscillations was then
analyzed in this model through adolescence, in detail. Urethane has
an important advantage compared with other common anesthetics:
intrinsic oscillations in forebrain networks, including hippocampal
theta rhythm are preserved in adult rats under urethane. Therefore,
this model provided major help in studying network mechanisms
of oscillatory synchrony in adults, over decades (Kocsis and Vertes,
1994, 1996, 1997; Li et al., 2007; Sorman et al., 2011; Thorn
et al., 2022). On the other hand, recordings under Urethane
represent terminal procedures; the rats are sacrificed at the end
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FIGURE 1

Rhythmic synchronization in prefrontal cortex (PFC) (top) and
hippocampus [CA1, (bottom)] at PN25. Time-frequency plot
(850 s × 0–10 Hz) under urethane anesthesia.

FIGURE 2

Weight of female (blue) and male (red) rat siblings born to two
mothers (So1 and So2) in adolescence (age PN32–PN52).

of experiments. Thus, to monitor the development of oscillatory
networks through adolescence we used a “pseudo-longitudinal”
design. Recordings were performed every day from PN32 to PN52
using rats-siblings from the same mother, to reduce individual
innate differences between subjects. A total of 22 rats (10 males
and 12 females) from two mothers were included in this study.
As shown in Figure 2, we recorded one or two rats a day with
progressively increasing body weights from 115 to 190 grams in
females and 120 to 310 grams in males.

Electroencephalograms (EEG) over frontal and parietal cortices
and local field potentials (LFP) in deep electrodes placed in
the prefrontal cortex (PFC) and hippocampus CA1 and DG
(dentate gyrus) showed the pattern of activity typically recorded
in urethane-anesthetized adult rats. Segments of wide band
activity mostly in the delta range (1–4 Hz) alternated with
segments showing strong oscillations. These episodes occurred
simultaneously in all EEG and LFP channels; their occurrence
and length was unpredictable, and not elicited by experimental
interventions of any kind (Figure 3). Theta rhythm was dominant
in parietal cortex and hippocampus in all rats, both male and
female, from PN32 and PN52. It was also present in frontal cortex
and PFC in lesser extent, simultaneously with a dominant rhythm
in the delta range (Figure 4). Theta frequency varied between 3.66
and 5.37 Hz in individual rats. There was no significant difference
between individuals in the two families (labeled as So1 and So2
in all figures) or between males and females (M and F in figures).

Theta frequency did not change over adolescent development
from PN32 to PN52 (Figure 5). Regular (not wide band) delta
oscillations did not change either, remained in the narrow range
of 1.22–2.65 Hz, similar in So1 and So2, and in the two sexes
(Figure 5).

Theta was dominant in hippocampal recordings, the peak
amplitude was 3.75 + 0.7 times higher than delta power
(Figure 6A). In the PFC, peak delta power was larger (14.74
times) than local theta and varied in a wide range (1.39–28.04)
(Figure 6B). Importantly however, the two rhythms in the two areas
showed different developmental trends. Whereas theta dominance
in the hippocampus showed no changes over time (p > 0.3), delta
dominance in PFC became stronger to late adolescence (PN48–
PN52) compared with the first (PN32–PN39; p = 0.02) and second
weeks (PN41–PN47; p = 0.003), i.e., indicating either an increase
in delta power in the PFC or a relative decrease in theta power
transmitted from the hippocampus.

Next we analyzed the temporal evolution of theta power
in the hippocampus and delta in the PFC. Hippocampal theta
power decreased through adolescence, shown both by significant
differences between age groups (Figure 7A) and significant declines
within the youngest (PN32—PN39, n = 7, r[age, theta] correlation,
p = 0.014) and middle-age groups (PN41—PN47, n = 7, p = 0.003)
to reach stable level in the oldest group (PN48—PN52, n = 6, p = 41)
(Figure 7B). Perhaps even more importantly, theta power stabilized
with age, as indicated by drastic reduction of standard deviation
(Figure 7A) from the youngest group to middle-aged and then to
older adolescents. The correlation between age and theta power
was significant in both males and females for the entire period of
adolescence (p < 0.001). Theta stabilization, i.e., drastic reduction
of standard deviation, was also apparent in both sex groups, but
whereas in females it was complete by the middle-age group,
in males this process appeared slower or delayed (Figure 7C),
although sex differences were not statistically different (two-way
ANOVA, factors: age and sex with 3 and 2 levels, respectively).

Development of narrow-band delta oscillations in PFC
followed a different route. PFC delta was not seen at PN25
(Figure 1), but delta peak power significantly increased through
adolescence (p = 0.038), with strong sex differences (p = 0.0007 for
females and not significant in males: p = 0.413; p = 0.07 for sex-age
interaction in two-way ANOVA) (Figure 8).

3.2. Timing of theta development relative
to gamma rhythm—in a small sample of
freely moving rats

Oscillatory network activity is undoubtedly affected by
anesthesia, both by the lack of normal behavior and sleep-wake
sates and by side effects of urethane. Importantly, while slow
oscillations (delta, theta) are present under urethane, gamma
rhythm is generally suppressed. Gamma is a key component
of oscillatory synchrony, involved in cognitive processing and
expressed in all cortical structures in a behavior-dependent manner.
Although investigations in freely behaving animals were beyond the
scope of this study, we tested in a small sample (n = 2) how trends
of development might compare for theta and gamma rhythms
which normally co-occur in adult animals in wake exploration
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FIGURE 3

Examples of electrophysiological recordings (time frequency plots, power shown by color) in the hippocampus (CA1) in male and female rats at early
(PN33) and late (PN51–52) adolescence. Note alternating states with narrow-band oscillations in theta and delta ranges and states characterized by
wide-band delta activity (labeled in the last example).

FIGURE 4

Examples of electrophysiological recordings (time frequency plots, power shown by color) in the prefrontal cortex (PFC) and hippocampus (CA1) at
early (PN33) and late (PN51) adolescence. Note more dominant delta oscillations in PFC and theta in CA1, both at PN33 and PN51.

and REM sleep. In this pilot experiment, 24 h EEG recordings
were made in a longitudinal study through adolescence and early
adulthood (PN41–PN72), every other day over the frontal and
parietal cortices. We found a tendency of theta development
resembling that under urethane in adolescence i.e., a decrease from
PN43–PN46 to PN48–PN52, which however, was followed by a
massive increase in theta power after the rats reached adulthood

(PN65–PN72) (Figure 9A). In contrast, gamma activity showed
increase with age which appeared faster than theta, i.e., gamma
power already reached the adult level in late adolescence (PN49–
PN51; green in Figure 9B), around the time of theta stabilization
under urethane. This finding suggests that slow and fast oscillations
might be controlled by divergent rules; their relative trajectories of
maturation remain to be investigated.
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FIGURE 5

Frequency of theta and delta rhythms measured in hippocampal
(HPC) and PFC recordings, respectively, through adolescence.

4. Discussion

The primary findings of this study was that both theta
and delta oscillations were already present at age PN32 and
then hippocampal theta peak power decreased and PFC delta
peak power increased through adolescence, indicating that
the oscillations in the two different frequency bands follow
distinct developmental trajectories to reach the characteristic
oscillatory activity found in adults. Perhaps even more importantly,
theta rhythm showed age-dependent stabilization toward late
adolescence. Standard deviation of peak theta power over the
group drastically dropped, potentially symbolizing maturation
of oscillatory networks in the hippocampus during adolescence.
Furthermore, prominent sex difference was found in both
networks. In the hippocampus, theta stabilization was completed
earlier in females, in mid-adolescence, while in males it was
completed in late adolescence. In the PFC, large interindividual
variations in early adolescence appeared only in males and
stabilized by late adolescence. These dissimilarities in time of
stabilization of both rhythms highlights a potential gender
difference in maturation where the development of oscillatory
networks in males appears a more extended process. Our finding
of a protracted maturation of theta-generating networks in late
adolescence is overall consistent with the findings of longitudinal
studies in human adolescents, in which oscillatory networks
demonstrated a similar pattern of maturation (Rojas et al., 2006;
Uhlhaas et al., 2009).

The findings are, in general, also consistent with the principles
of development of oscillatory networks and the mechanisms
involved, at another critical time of development, in neonates
(Brockmann et al., 2011; Janiesch et al., 2011). Adult-like
oscillations were confirmed in urethane-anesthetized rats as early
as PN25, i.e., a few days after weaning. This is consistent with
understanding of the development of oscillatory networks in
neonates dependent on the critical switch between the function of
GABAergic synapses from excitatory in neonates to inhibitory at
later stages (Khirug et al., 2008; Kaila et al., 2014; Rinetti-Vargas
et al., 2017). Thus, synchronized activity in neonates, appear as
giant depolarizing potentials (Ben-Ari et al., 1989; Griguoli and
Cherubini, 2017), or intermittent short oscillations (Leinekugel
et al., 2002; Ben-Ari et al., 2007; Brockmann et al., 2011; Ahlbeck
et al., 2018) different from network oscillations which are based on
inhibitory GABA signaling which appear later.

Critical changes in synaptic function continue at later stages of
development, as well. This concerns for example the reorganization
of NMDA receptors (NMDA-Rs) commonly found in different
species, including rodents, cat, rabbit, birds, frog, and human
(Laurie et al., 1997; Chen and Steinmetz, 2000; Law et al., 2003),
in which NMDA-Rs expressing the NR2B subunit, dominant from
birth, are progressively replaced by NR2A subunit expressing
receptors. The two receptors have divergent roles in synaptic
transmission, plasticity, and neurodevelopment [see rev. Hensch,
2004; Paoletti et al., 2013; Shipton and Paulsen, 2014; Baez et al.,
2018; Franchini et al., 2020; Vieira et al., 2020]. In rats, NR2A
expression peaks in PN week 2–3 (Monyer et al., 1994; Riva
et al., 1994; Zhong et al., 1995; Wenzel et al., 1997), i.e., after
the change of GABA receptors from excitatory to inhibitory is
completed, and reaches adult levels 3–5 weeks after birth. The
timeline depends on activity and varies in different brain regions
[rev. Dumas, 2005a,b]. The changes involve developmental shift
(Sheng et al., 1994) in which NR2A expression sharply increases in
the synapse and NR2Bs move to extrasynaptic receptors, resulting
in preferential synaptic NR2A enrichment (Steigerwald et al., 2000)
and extrasynaptic NR2B abundance (Groc et al., 2006). Functional
differences were identified between synaptic vs. extrasynaptic
NMDA-Rs and were traced back to differences in intracellular
signaling to pro-survival or pro-apoptotic pathways, respectively
(Hardingham and Bading, 2010).

This shift may also have direct, complex consequences on the
development of neural oscillations. PV + GABA neurons, which
are essential for rhythmogenesis (Buzsaki, 2006; Sohal et al., 2009),
are specifically vulnerable to NR2A-selective NMDA-R blockade.
NR2A subunit-containing NMDA-Rs play a specific role in the
maintenance of the phenotype of PV+ interneurons. Exposure of
cultured PV+ neurons to ketamine or NR2A-R antagonist induced
time and dose-dependent decrease in PV and GAD67 whereas
NR2B-R antagonist had no effect on PV and only partially reduced
GAD67 (Kinney et al., 2006). In adult rats, NMDA-R blockade
was also shown to act on oscillations in a subunit-specific manner,
In agreement with the disproportional distribution of NR2A-
containing NMDA-Rs on PV+ GABA neurons in rodents (Kinney
et al., 2006; Xi et al., 2009), abnormal gamma enhancement for
example, a well-known effect of non-specific NMDA-R antagonists,
was only elicited by NR2A subunit-preferring but not by NR2B-
selective antagonist (Kocsis, 2012a). Furthermore, slow rhythms
modulating the amplitude of fast oscillations are also differentially
affected by NR2A-active compounds. While enhanced theta
modulation was prominent or potentiated by non-specific of
NR2B-selective blockade, NR2A-preferring antagonist switched the
balance in the opposite direction, from theta to delta modulation
(Pittman-Polletta et al., 2018).

In this study we used a “pseudo-longitudinal” design in
anesthetized rats, pursuing the obvious technical advantages of this
model. The findings will however, require further validation in
freely moving animals. Studies under urethane have traditionally
been tested in parallel with freely moving experiments, from
the very beginning (Kramis et al., 1975; Buzsaki et al., 1983,
1986; Brankack et al., 1993). It is important to note that even
though different types of brain oscillations better survive urethane
anesthesia than other anesthetics (Kramis et al., 1975; Kocsis and
Gyimesi-Pelczer, 1998; Granata and Cohen, 2004; Szkudlarek et al.,
2012; Totah et al., 2018), the comparison with natural states has
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FIGURE 6

Dominance of theta (theta/delta ratio) in the hippocampus (A) and delta (delta/theta ratio) in the prefrontal cortex (PFC) (B) through adolescence.
Right: average ± S.E.M of these parameters in age groups (early PN32—PN39, middle PN41—PN47, and late adolescence PN48—PN52). Asterisks
show significant differences (p < 0.05).

FIGURE 7

Development of theta oscillations in the hippocampus through adolescence. (A) Changes in peak theta power (average and standard deviations) with
age, between three age groups, early (PN32—PN39, n = 7), middle (PN41—PN47, n = 7), and late adolescence (PN48—PN52, n = 6). (B) Peak theta
power in individual experiments grouped by age (blue, brown, green). Age shown relative to the youngest age in each group. (C) Sex differences of
the average theta power and its spreading within different age groups (n = 4, 4, 3 females and n = 3, 3, 3 males in the three age groups).
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FIGURE 8

Development of delta oscillations in the prefrontal cortex (PFC) through adolescence. (A) Changes in peak delta power with age, between three age
groups, early (PN32—PN39, n = 7), middle (PN41—PN47, n = 7), and late adolescence (PN48—PN52, n = 6). (B) Sex differences of the average delta
power and its spreading within different age groups (n = 4, 4, 3 females and n = 3, 3, 3 males, in the three age groups).

FIGURE 9

Network oscillations in longitudinal recordings in freely moving rats (n = 2) in age PN41–PN52 (colors matching those in Figure 7C) compared with
adult (PN66–PN73, black). (A) Theta power (average in 5–10 Hz band). (B) Gamma power.

important limitations. Since theta oscillations are preserved under
urethane, this preparation has been widely used for mechanistic
investigations of generating this rhythm (Buzsaki and Eidelberg,

1983; Vertes et al., 1993; Leung et al., 1994; Kocsis and Vertes,
1997; Vertes and Kocsis, 1997; Kocsis et al., 2001; Jackson and
Bland, 2006; Shinohara et al., 2013; Vandecasteele et al., 2014;
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Bland et al., 2016) and related neuropharmacology (Li et al.,
2007; Sorman et al., 2011; Ly et al., 2013; Stoiljkovic et al., 2016;
Skovgard et al., 2018; Ahnaou et al., 2020). The urethane model
provides important information regarding neuronal organization
but theta “state” under urethane is not an analog of theta states in
freely moving animals, i.e., active waking (where theta is always
associated with locomotion) or REM sleep (always short, never
lasting longer than a few minutes). As for delta rhythm, the states
with wide-band delta activity and states with narrow-band delta
oscillations mostly accompanying theta (see Figures 3, 4) are
spontaneously alternating under urethane. In freely moving rats,
the first has been commonly associated with delta activity during
slow wave sleep for a long time while the second was shown
more recently in waking in a behavior-dependent manner. Side
effects of urethane at low frequencies were reported in previous
studies across widespread areas of the neocortex. Urethane may
trigger slow (typically, <1.0 Hz) oscillations and a prominent large-
amplitude and low frequency (1 Hz) rhythm, which is similar to
the oscillatory patterns in deactivated states of slow wave sleep
(Steriade et al., 1993; Amzica and Steriade, 1995) and suppresses
hippocampal subthreshold activity and neuronal synchronization
(Yagishita et al., 2020).

Specifically important for this study is the suppression of
gamma activity by urethane. Although excluding of the effect
of external inputs such as sensory input and inputs related to
motor activity which generate higher frequency oscillations that
interfere with slower rhythms may have advantages studying delta-
theta rhythms, suppression of gamma activity represent a major
distortion of the oscillatory hierarchy in normal neural networks.
Its assessment will require longitudinal recordings in freely moving
animals. Our pilot study on a small sample of drug-free animals
is promising in this direction. It showed that an increase in
gamma activity in late adolescence may be matching the trajectory
of stabilization of theta rhythm (compare Figures 7, 9). These
changes, if replicated in an adequate sample, might advocate for
a controlled developmental process with different timing of theta
and gamma synchronizations., i.e., indicating an orderly process
in which hippocampal theta activity assumes a progressively stable
standard drive modulating gamma oscillations locally as well as
in the PFC. Such mechanism, involving hippocampal theta, would
adhere to the same principle as that found in early development
[PN6-14 (Brockmann et al., 2011; Janiesch et al., 2011)], when
theta rhythm originating first in the hippocampus was shown to
shape the development of different forms of ensemble activity in
structures showing slower development, e.g., PFC. We hypothesize
that a similar mechanism may also function during the similarly
protracted process of maturation in adolescence which can only be

understood by the analysis of PFC-hippocampal interactions in a
longitudinal design of simultaneous multisite recordings.
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