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Editorial on the Research Topic

Modulation of neuronal excitability by non-neuronal cells in physiological

and pathophysiological conditions

Neuronal excitability is dynamically governed to continuously screen and encode

information. For a given neuron in a network, incoming excitatory, inhibitory or modulatory

synaptic signals are converged and integrated at the soma to determine its probability of spiking

which serves as encoding information for the neuron per se as well as output information to its

postsynaptic neurons. Neuronal spiking probability is also determined by intrinsic membrane

electrical status such as resting membrane potential, membrane conductance, action potential

(AP) threshold, and AP profile set up by different types of ion channels. Of note, neurons

are surrounded by non-neuronal cells including glial cells which are composed of astrocytes,

microglia, oligodendrocytes, NG2 (neuron-glial antigen 2) glia (Jakel and Dimou, 2017), and

brain-infiltrated peripheral immune cells (Varvel et al., 2016).

Accumulating evidence suggests that non-neuronal cells play a role in modulating neuronal

excitability in the physiological and pathophysiological processes of the brain. For instance,

by the actions of potassium channels, e.g., inwardly rectifying potassium channel Kir4.1, and

transmitter transporters, e.g., excitatory amino acid transporter-2 (EAAT2) and glutamate

aspartate transporter (GLAST, also EAAT1), astrocytes are essentially important in regulating

amount of extracellular K+ (Coulter and Steinhauser, 2015) and extrasynaptic transmitters

(Pajarillo et al., 2019) of neurons and thus influence neuronal excitation. Dysregulation of

astrocytic Kir4.1 and glutamate transporters causes neuronal hyper- or hypoexcitability and

gives rise to neuropsychiatric disorders such as epilepsy (Nwaobi et al., 2016), depression

(Cui et al., 2018), and autism (Pajarillo et al., 2019). As brain-resident macrophage-like cells,

microglia actively tune neuronal activity through pruning synapse (Wilton et al., 2019), secreting

cytokines (Klapal et al., 2016), contacting with the axon initial segment (AIS) (Cserep et al.,

2021), etc. Oligodendrocytes provide axons with myelin sheet enabling fast conduction of action

potentials. It is well-described that neural demyelination is associated with multiple sclerosis

and some other diseases (Guerrero and Sicotte, 2020). The many ways by which non-neuronal
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cells influence neuronal excitability and their underlyingmechanisms

are yet to be researched. Focusing on this, more than 50

authors of 7 articles contributed to this special Research Topic,

revealing some interesting novel aspects regarding the modulation

of neuronal excitability by glial cells under physiological or

pathophysiological conditions.

Three of these articles emphasized the role of astrocytes in

regulating brain excitability. By elevating extracellular potassium

at a moderate concentration to increase astrocytic but not

neuronal volume, Walch et al. investigated the impact of astrocyte

swelling to CA1 neuronal excitability. They found that astrocyte

swelling increased CA1 neuronal excitability in the form of mixed

AMPA/NMDA receptor mediated synaptic transmission. Reversing

astrocyte swelling by mannitol dampened the change of neuronal

excitability in the presence of elevated extracellular potassium,

confirming the contribution of astrocyte swelling to the increased

neuronal excitability in elevated extracellular potassium. The authors

further demonstrated that the effect of astrocyte swelling on the

increment of neuronal excitability mainly resulted from NMDA

receptor-mediated large, slow excitatory currents. Polyamines are

polycationic molecules which are abundantly stored in astrocytes and

upon releasing affect neuronal activity through direct interacting with

some ion channels and alter their assembly (Dhara et al., 2020) or ion

permeability (Rozov et al., 1998). For instance, spermine is able to

produce a rectifying effect of AMPA receptor and some potassium

channels by membrane potential-dependent plugging/unplugging

the pore of such ion channels (Rozov et al., 1998). In another

way, polyamines modulate neuronal activity via the availability of

astrocyte GABA which can be released from astrocytes and provide

tonic inhibition on neurons, but the pathways for polyamines

to the production of GABA and the modulation of neuronal

excitation are not clear. Kovács et al. addressed the role of astrocytic

polyamines on GABA metabolism and epileptic behavior. They

revealed that inhibition of the conversion of putrescine to spermidine

boosted astrocytic GABA production from putrescine and hence

suppresseed neural network excitability and epileptic seizures. It

has been suggested that astroglial type 1 cannabinoid receptor

(CB1R) mediates synaptic and memory impairments caused by 1
9-

tetrahydrocannabinol (19-THC), the major psychoactive ingredient

of marijuana, through COX-2 signaling (Chen et al., 2013). In this

topic issue, Cong et al. took use of transgenetic mice with conditional

expression of CB1R and revealed that astrocyte COX-2 signaling

mediated aversive behavior caused by a high dose of CP 55,940, a

synthetic analog of 19-THC.

Microglia represent a macrophage population in the brain

orchestrating a variety of functions including inflammatory response.

Hydrogen sulfide (H2S) is endogenously synthesized in mammals

and is known to regulate a variety of physiological and pathological

processes (Kimura, 2021). Zhu et al. (2021) lab synthesized a

novel H2S donor which is safer than traditional H2S donors and

is able to release H2S effectively in the brain where it exhibits

neuroprotective effects against epileptic seizures. To determine

its mechanism, they investigated microglial inflammatory profiles

associated with this H2S donor and found that it reduced seizures

by downregulating pro-inflammatory profile while simultaneously

increasing anti-inflammatory profile of microglia in pilocarpine-

induced status epilepticus mice. Dexmedetomidine (DEX) is a

specific and selective alpha-2 adrenoceptor agonist possessing potent

anti-neuroinflammatory and neuroprotective properties through the

inhibition of pro-inflammatory microglial activation. Wen et al.

tested whether such an action of DEX also exists in a neonatal

rat model of spinal inflammation and hyperalgesia induced by

systemic lipopolysaccharide (LPS) injection. As expected, they

found that pretreatment with DEX significantly decreased LPS-

induced microglia pro-inflammatory responses and consequentially

alleviated LPS-induced mechanical hyperalgesia in neonatal rats.

The expression of brain-derived neurotrophic factor (BDNF)

in microglia is controversial. Interestingly, by using conditional

reporter expression and two-photon imaging, Honey et al. found

in the motor cortex that microglia did not express BDNF in

sufficient amounts to modulate neuronal dendritic morphology

and activity.

Highlighting the in vitro astrocyte-microglia co-culture model

of inflammation developed two decades ago (Faustmann et al.,

2003), Ismail et al. in their mini review summarized the their key

findings about glia responsiveness to antiepileptic, psychotropic,

neurotrophic, immunomodulatory, and some other brain drugs.

They suggest that this unique glia co-culture model of inflammation

may be suitable for pharmacological investigations on astrocytes

and microglia with future potential. In summary, the articles

collected in this special topic present some new aspects of the

non-neuronal cells in influencing neuronal activity and their

underlying mechanisms.
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