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Microglia are dynamic guardians of neural tissue and the resident immune cells of the

central nervous system (CNS). The disease-associated microglial signature (DAM),

also known as the microglial neurodegenerative phenotype (MGnD), has gained

significant attention in recent years as a fundamental microglial response common

to various neurodegenerative disease pathologies. Interestingly, this signature shares

many features in common with developmental microglia, suggesting the existence

of recycled gene programs which play a role both in early neural circuit formation

as well as in response to aging and disease. In addition, recent advances in single

cell RNA sequencing have revealed significant heterogeneity within the original DAM

signature, with contributions from both yolk sac-derived microglia as well as bone

marrow-derived macrophages. In this review, we examine the role of the DAM

signature in retinal development and disease, highlighting crosstalk between resident

microglia and infiltrating monocytes which may critically contribute to the underlying

mechanisms of age-related neurodegeneration.
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Introduction

Microglia, the resident immune cells of the central nervous system (CNS), have emerged as
essential players in the development and degeneration of neural parenchyma (Li and Barres,
2018). They are a yolk sac-derived myeloid lineage distinct from bone marrow and fetal
liver monocytes and, under physiological conditions, are long-lived and self-renewing without
contribution from the peripheral immune system (Alliot et al., 1999; Ajami et al., 2007; Ginhoux
et al., 2010; O’Koren et al., 2016; Askew et al., 2017; Reu et al., 2017; Tay et al., 2017). Microglia
are exquisitely complex and dynamic cells, surveilling the entirety of neural parenchyma every
few hours and exhibiting high sensitivity to even subtle changes in their microenvironment
(Nimmerjahn et al., 2005; Hickman et al., 2013; Gosselin et al., 2017). Historically, microglia
have been categorized as either “resting” or “activated” based largely on morphology and
the presence of certain cell-surface markers (Butovsky and Weiner, 2018). Among activated
microglia, a distinction has been drawn between proinflammatory “M1” (classically activated) or
anti-inflammatory “M2” (alternatively activated) microglia (Colonna and Butovsky, 2017). New
approaches in RNA sequencing, however, have revealed the need for more granular analyses of
microglial phenotypes and functions.

In the context of aging and neurodegeneration, microglia acquire a unique transcriptional
signature characterized by up-regulation of proinflammatory, phagocytic, and lipid metabolism
genes (Keren-Shaul et al., 2017; Krasemann et al., 2017; Hammond et al., 2019). This signature,
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referred to as the disease-associated microglial (DAM) phenotype,
has been associated with several models of CNS degeneration and is
distinct from microglial activation associated with lipopolysaccharide
stimulation or viral infection (Holtman et al., 2015; Friedman et al.,
2018). Although the term microglial neurodegenerative phenotype
(MGnD) may also be used in these contexts, we will predominately
refer to “DAM” in this review in alignment with cited literature.
Intriguingly, several genes characteristic of the DAM phenotype are
up-regulated by postnatal microglia during periods of white matter
refinement, cell death, and synaptic pruning (Butovsky et al., 2014;
Hagemeyer et al., 2017; Wlodarczyk et al., 2017; Anderson et al.,
2019a, 2022; Hammond et al., 2019; Li et al., 2019), as well as
by retinal microglia in response to certain regeneration paradigms
(Todd et al., 2020). Developmental remodeling is a finely orchestrated
process, with dysregulation of microglial reactivity leading to
impaired synaptic circuits and the onset of neurodevelopmental
disorders (Paolicelli et al., 2011; Sellgren et al., 2017; Carloni
et al., 2021; Xiao et al., 2021). Thus, how DAM microglia promote
normal tissue maturation in development but are associated with
pathological neuron loss in disease remains an open area of
investigation.

In this review, we examine the role of the DAM signature in
retinal development and retinal disease, identifying cell death and
phagocytosis of myelin components as unifying stimuli. We then
highlight recent computational advancements which have revealed
significant and previously unseen differences between bona fide
DAMs and infiltrating disease-inflammatory macrophages (DIMs)
in the brain, the latter of which are virtually absent in development
but increase with aging (Silvin et al., 2022). Finally, we propose
a speculative model in which the interplay between microglia and
DIMs in disease contributes to a state of maladaptive reactivity,
leading to chronic inflammation and neurodegeneration.

Disease-associated microglia (DAM)

The DAM phenotype was first identified by single cell RNA
sequencing of isolated myeloid cells in a transgenic Alzheimer’s
disease (AD) model, revealing a core microglial signature which
is conserved in human disease (Keren-Shaul et al., 2017). This
microglial transcriptional profile is characterized by acquisition of
CD11c (Itgax), a leukocyte-activating and complement-associated
integrin (Benmamar-Badel et al., 2020), as well as a suite of phagocytic
and lipid metabolism genes proposed to function in the clearance of
amyloid beta (Aβ) plaques. In both mouse and human disease, DAM
microglia were spatially located around plaques, with phagocytes
in these regions exhibiting nearly complete co-expression with
lipoprotein lipase (LpL), a key metabolic enzyme involved in the
clearance of myelin lipid debris (Eckel and Robbins, 1984; Bruce et al.,
2018). Interestingly, acquisition of the DAM phenotype was shown to
be biphasic and dependent in part on Triggering Receptor on Myeloid
Cells 2 (Trem2), a well-established genetic risk factor for AD (Gratuze
et al., 2018). In Stage 1 DAM, microglia up-regulated apolipoprotein
E (ApoE) with concurrent down-regulation of the microglial
homeostatic program (e.g., Cx3cr1, P2ry12, and Tmem119). This
Trem2-independent stage led successively to a Trem2-dependent
stage, Stage 2 DAM, characterized by full acquisition of the DAM
signature (e.g., Itgax, LpL, Spp1, and Clec7a).

Another foundational report published the same year as Keren-
Shaul et al. (2017) demonstrated the existence of a disease-associated

cluster in mouse models of AD, amyotrophic lateral sclerosis (ALS),
and multiple sclerosis (MS) using bulk RNA sequencing of isolated
microglia (Krasemann et al., 2017). This transcriptional profile,
termed the MGnD, highlighted several key genes shared with the
DAM signature (e.g., ApoE, Trem2, Spp1, Clec7a) with increased
attention to proinflammatory mediators such as Ccl2. Krasemann
et al. (2017) further demonstrated that DAM microglia are spatially
localized around Aβ plaques in AD and that ApoE expression is
positively correlated with severity of disease in mouse models of
MS and ALS. Of significance, this report showed that up-regulation
of MGnD genes could be elicited in microglia via stereotactic
administration of apoptotic neurons, indicating that the presence
of dead neurons is sufficient to induce the MGnD microglial
phenotype. Activation of MGnD in response to transplanted dead
neurons was critically dependent on ApoE, such that ApoE knockout
(KO) mice exhibited suppression of key disease-associated markers,
including the secreted lectin Galectin-3 (Lgals3). Mechanisms of
MGnD activation in response to apoptotic neurons may include
several cell-death cues, including phosphatidylserine exposure and
increases in extracellular ATP (Inoue, 2002; Scott-Hewitt et al., 2020;
Park et al., 2021; Kurematsu et al., 2022; Ma et al., 2022).

DAM in white matter development and
degeneration

A reciprocal relationship between microglial ApoE and
homeostatic gene expression has also been demonstrated in
neurodevelopment (Butovsky et al., 2014; Hammond et al., 2019;
Li et al., 2019), suggesting that postnatal microglia may encounter
similar challenges in their microenvironment, including neuronal
apoptosis and myelin debris clearance. Indeed, it has been estimated
that half of the postnatal CNS cell population must be eliminated
and cleared early in development (Oppenheim, 1981; Burek
and Oppenheim, 1999), placing significant burden on microglial
functions. Developmental microglia thus constitute an exceedingly
heterogenous population (Hammond et al., 2019; Li et al., 2019),
which are responsible for performing diverse roles in the postnatal
brain and retina, including synapse formation (Paolicelli et al., 2011;
Parkhurst et al., 2013; Miyamoto et al., 2016; Weinhard et al., 2018),
modulation of axonal growth (Pont-Lezica et al., 2014; Squarzoni
et al., 2014), secretion of key trophic factors (Ueno et al., 2013),
and clearance of redundant neuronal precursors (Cunningham
et al., 2013). Single cell RNA sequencing of brain microglia across the
murine lifespan revealed a developmental peak in the DAM signature
at P5 (Hammond et al., 2019); however, the functional significance of
this peak is not completely understood.

One of the strongest overlaps between disease-associated
and developmental microglia exists between DAM microglia and
proliferative-region associated microglia (PAM), a subset of CD11c+

developmental microglia characterized by ameboid morphology,
high metabolic activity, and up-regulation of genes such as ApoE,
LpL, Spp1, and Clec7a (Li et al., 2019). The identification of PAM
builds upon a prior body of work identifying a sharp increase in
CD11c+ brain microglia between P3 and P5, which begins to decline
significantly by P7 (Wlodarczyk et al., 2017). The emergence of the
PAM microglial population coincides with a wave of programmed
oligodendrocyte death during early myelination, suggesting that this
subset may play a role in efferocytosis and metabolism. Interestingly,
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the appearance of PAM is independent of ApoE and Trem2 (Li et al.,
2019). Common to both the DAM and PAM signatures is expression
of insulin growth like factor 1 (Igf1), a neurotrophic factor involved
in neurogenesis (Nieto-Estevez et al., 2016) and oligodendrocyte
precursor cell (OPC) survival (Hagemeyer et al., 2017; Wlodarczyk
et al., 2017), suggesting that DAM-like microglia in this context
may simultaneously mediate both cell elimination and cell survival.
Indeed, it has been demonstrated that microglia engulf both apoptotic
and non-apoptotic OPCs in the corpus callosum between P4 and
P11 and are thus active modulators of white matter development
(Nemes-Baran et al., 2020). A similar transcriptional profile has
been reported for a subset of axon tract-associated microglia (ATM),
which occupy regions adjacent to heavily myelinated axons prior
to myelination onset (Hammond et al., 2019). These subsets reflect
significant heterogeneity in microglial states and functions during
early CNS development.

A diversity of microglial states has also been observed in the
context of white matter aging. In contrast to the Trem2-independent
formation of PAM microglia, which facilitate the phagocytosis of
oligodendrocytes and OPCs during white matter development (Li
et al., 2019), a Trem2-dependent subset of white matter-associated
microglia (WAM) have been described in the context of aging and AD
(Safaiyan et al., 2021). This microglial subset has been shown to play
a key role in the uptake of myelin debris and shares several features
of both PAM and DAM microglia, including down-regulation of
the homeostatic microglial program with strong up-regulation of
disease-associated genes (Safaiyan et al., 2021). One of the most
strongly up-regulated genes by WAM microglia was Lgals3, the
gene encoding the carbohydrate-binding lectin Galectin-3, which
has previously been shown to facilitate myelin debris clearance by
primary microglia in vitro (Rotshenker et al., 2008). Prior work has
demonstrated that Trem2 may bind anionic lipid species (Wang
Y. et al., 2015; Ulrich et al., 2017) including various phospholipids
(Cannon et al., 2012) and act as a receptor for myelin debris uptake
(Cantoni et al., 2015; Poliani et al., 2015; Wang Y. et al., 2015);
however, Safaiyan et al. (2021) demonstrated that Trem2 is not
required for microglial engulfment of myelin basic protein despite
its critical role in promoting lysosomal activity and initiating the
WAM signature. This finding implicates Trem2 in the control of
downstream genetic programs and points toward the presence of
compensatory lipid-sensing receptors on the microglial surface which
may aid in myelin phagocytosis.

In addition to its accumulation during aging and age-related
disease, myelin debris may be generated as the result of traumatic
CNS injury (Kopper and Gensel, 2018). Following spinal cord
injury, it has been demonstrated that myelin debris inhibits
axonal regeneration (McKerracher et al., 1994), remyelination,
and oligodendrocyte differentiation (Kotter et al., 2006), while
acting as an inflammatory stimulus to local macrophages (Kroner
et al., 2014; Wang X. et al., 2015). Thus, the physiological
clearance of myelin debris by recruited microglia and macrophages
may serve to promote a pro-regenerative CNS environment
(Neumann et al., 2009). The phagocytosis of opsonized myelin is
facilitated by complement-mediated inflammatory pathways – such
as those downstream of complement receptor 3 (CR3) –which
can lead to the activation of FAK/PI3K/Akt/NF-κβ signaling and
increased proinflammatory cytokine production (Sun et al., 2010).
Conversely, activation of Trem2 pathways has been shown to lead
to anti-inflammatory clearance of myelin debris in experimental
autoimmune encephalomyelitis (EAE) (Takahashi et al., 2007);

however, whether this receptor plays an anti-inflammatory role
following acute nerve injury is not known. Following optic nerve
crush (ONC) injury, a model of optic neuropathy leading to retinal
ganglion cell (RGC) degeneration, it has been demonstrated that
complement proteins C1q, C3, and CR3 are necessary for RGC
regeneration (Peterson et al., 2021). It was shown that C1q opsonizes
myelin debris for clearance by CR3+ microglia, a mechanism which
reflects the reparative activity of macrophages following peripheral
nerve damage (Barrette et al., 2008). Taken together, these studies
implicate a critical role for microglia and macrophages in managing
degenerated myelin components and promoting CNS repair.

DAM in retinal development

Although microglia exhibit regional heterogeneity in distinct
CNS compartments (De Biase et al., 2017; O’Koren et al., 2019), it has
been demonstrated that retinal microglia are ontogenetically similar
to microglia of the brain and spinal cord (Silverman and Wong, 2018;
O’Koren et al., 2019). These cells colonize the retinal parenchyma
prior to E11.5, transiently expressing markers of activation, including
CD45 and CD68 (Hume et al., 1983; Santos et al., 2008; Sierra
et al., 2014). In adulthood, retinal microglia are laminarly distributed
in the inner plexiform and outer plexiform layers, with small
numbers also present in the nerve fiber layer (NFL) and ganglion
cell layer (GCL), but are essentially absent from outer retinal layers
(Silverman and Wong, 2018; Figure 1). As in the brain, microglia
colonize the retina in pursuit of neuronal “eat-me” signals (Medina
and Ravichandran, 2016; Silverman and Wong, 2018) a concerted
process which may be disrupted by inhibition of programmed cell
death (Casano et al., 2016; Xu et al., 2016). After entry into the
retina, it has been shown that microglia refine retinal circuitry by
both removing dead and dying “corpses” (Brown and Neher, 2014;
Reichenbach and Bringmann, 2016; Anderson et al., 2022) and
contributing to pro-death processes via secretion of toxic factors
and proinflammatory cytokines, including tumor necrosis factor α

(Tnf-α) (Sedel et al., 2004). Recently, it has been demonstrated that
microglia phagocytose non-apoptotic RGCs via C1q-CR3 signaling
(Anderson et al., 2019b), although the mechanisms which direct this
fatal “tagging” by complement remain poorly understood.

Using bulk RNA sequencing of retinal microglia in development,
Anderson et al. (2019a) have demonstrated that retinal microglia
acquire a CD11c+ signature with peak postnatal density at P7.
Isolated CD11c+ retinal microglia also shared marked similarities
with both DAM and PAM microglia, including up-regulation of
ApoE, Spp1, Clec7a, and Igf1, with concurrent down-regulation
of Cx3cr1 and other microglial homeostatic genes. Similar to the
developmental PAM subset (Li et al., 2019), CD11c+ retinal microglia
were shown to be largely ApoE- and Trem2- independent, such that
ApoE KO resulted in down-regulation of Itgax, while Trem2 KO
resulted in down-regulation of Itgax, LpL, and Cd68, with selective
up-regulation of Tmem119. Other DAM genes remained unaffected,
including ApoE levels in Trem2 KO retinas, and the total number of
DAM-like microglia remained unchanged. Although the downstream
effect of genetic targeting of ApoE and Trem2 in developmental
retinal microglia was modest in comparison to the ablation of these
genes in disease, the effect of these KOs on microglial function and
postnatal RGC density remains an open question.

In the absence of the pro-apoptotic factor Bax (Pequignot
et al., 2003), postnatal retinal microglia retained a predominately
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FIGURE 1

Anatomy of the retina anterior to posterior: NFL, nerve fiber layer;
GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear
layer; OPL, outer plexiform layer; ONL, outer nuclear layer;
Photoreceptor layer (Rods/Cones); SRS, subretinal space; RPE, retinal
pigment epithelium; Choroid; Sclera. Created with
www.biorender.com.

homeostatic signature, suggesting that it is the presence of apoptotic
neurons in development which drives acquisition of the DAM-
like program (Anderson et al., 2019a). In a subsequent report,
single cell RNA sequencing revealed distinct microglial subclusters
in the postnatal retina which were similarly dependent on Bax
(Anderson et al., 2022). Retinas harvested from Bax KO mice
exhibited a five-fold increase in the homeostatic microglial cluster
(e.g., P2ry12, Tmem119) compared to wild-type, with concurrent
decreases in the ApoE-enriched remodeling cluster (e.g., ApoE,
Ctsb), chemokine/cytokine expressing cluster (e.g., Cxcl2, IL-1β),
ATM-PAM-like cluster (e.g., Spp1, Fabp5), and PLX-enriched cluster
(e.g., Npl, Apoc1). This report further demonstrated that CR3 and
Mer receptor tyrosine kinase (MerTK) are critical for microglia-
mediated efferocytosis of RGCs, while Axl receptor tyrosine kinase
is dispensable for RGC clearance but essential for mediating
microglial Csf1r-independence (Anderson et al., 2022). Activated
CD11c+ microglia in the developing retina were shown to be
Csf1r-independent, such that they resisted depletion with the Csf1r
inhibitor PLX3397 and subsequently comprised significantly higher
proportions of the retinal microglial population (Anderson et al.,
2019a, 2022). Interestingly, Csf1r-independence has also been shown
in the context of ocular injury, although lineage tracing revealed these
cells to be infiltrated monocyte-derived macrophages which were
resistant to PLX5622 treatment only in the injured state (Paschalis
et al., 2018).

DAM in glaucoma

Myeloid cells, including resident microglia and recruited
monocytes, have gained significant attention in recent years as
pathogenic players contributing to RGC loss in glaucoma, the leading
cause of irreversible blindness for which elevated intraocular pressure
(IOP) is one of the main risk factors (Williams et al., 2017; Zeng and
Shi, 2018). These studies date back to early observations of myeloid
cell activation and accumulation in the optic nerves of glaucomatous
eyes (Neufeld, 1999; Yuan and Neufeld, 2001), which have more
recently been shown to include a population of CD163+macrophages

(Margeta et al., 2018). Myeloid cell activation has similarly been
demonstrated in the DBA/2J mouse model of glaucoma (Bosco
et al., 2011) and in other IOP-elevating disease models (Ebneter
et al., 2010; Kezic et al., 2013; Bordone et al., 2017), with the
observation that immune activation both precedes RGC loss (Bosco
et al., 2011) and is positively correlated with the extent of subsequent
RGC degeneration (Bosco et al., 2015). These activated myeloid
cells have further been shown to up-regulate Toll-like receptor 4
(Tlr4) in glaucoma (Luo et al., 2010), suggesting a role for NF-κB-
mediated inflammation in disease pathogenesis. Though the issue of
microglial vs. monocyte involvement in glaucoma remains tangled,
these studies and others have demonstrated an unequivocal role for
neuroinflammatory processes in glaucoma pathogenesis.

In glaucomatous eyes, activated myeloid cells were present in
the optic nerve head and co-localized with activation markers and
inflammatory mediators, such as CD68 and TNF-α (Neufeld, 1999;
Yuan and Neufeld, 2001). Interestingly, genetic deletion of CD11b, a
cell-surface integrin expressed by activated myeloid cells, or Tnf-α, a
powerful proinflammatory effector critical for macrophage function
(Parameswaran and Patial, 2010), has been shown to ameliorate
RGC loss in mouse models of glaucoma (Nakazawa et al., 2006).
Pharmacological modulation of the immune system has also been
shown to prevent disease progression, such that administration
ibudilast, a Tlr4 antagonist, or Etanercept, a Tnf-α antagonist,
ameliorated experimental RGC loss despite IOP elevation (Roh et al.,
2012; Cueva Vargas et al., 2016). Conversely, genetic deletion of the
microglial homeostatic checkpoint, Cx3cr1, exacerbated both RGC
loss and axonal transport dysfunction in glaucoma models (Wang
et al., 2014; Breen et al., 2016), perhaps by decreasing the threshold
for microglial activation (Yu et al., 2020). Under physiological
conditions, Cx3cr1 inhibits the expression of the proinflammatory
cytokine Il-1β and monocyte-chemoattractant Ccl2 (Cardona et al.,
2006; Combadiere et al., 2007; Sennlaub et al., 2013), suggesting
that its down-regulation in the DAM signature might prime the
onset of a proinflammatory response propagated by positive feedback
mechanisms.

The importance of microglial signaling in glaucoma pathogenesis
is supported by our recent work, which revealed a critical role for the
DAM signature in the development of glaucoma and progression of
RGC degeneration (Margeta et al., 2022). Using bulk RNA sequencing
of isolated microglia from two distinct models of glaucomatous
degeneration, a DAM was identified which overlapped significantly
with the transcriptional profile described in several models of brain
neurodegeneration (Keren-Shaul et al., 2017; Krasemann et al.,
2017). This signature was characterized by up-regulation of secreted
molecules such as ApoE, Lgals3, proinflammatory cytokines (e.g., Tnf-
α, Il-1β), complement (e.g., C4b), and potent chemotaxis molecules
(e.g., Ccl2, Ccl12). As reported by Krasemann et al. (2017) this
disease-associated “switch” was controlled by ApoE signaling, such
that genetic targeting of ApoE prevented acquisition of the DAM
profile in glaucoma. Furthermore, selective targeting of ApoE in long-
lived myeloid cells was shown to preserve RGCs both structurally and
functionally, suggesting that ApoE acts in microglia [and possibly,
border-associated macrophages (BAMs)] to promote the onset of
neuroinflammation in glaucoma.

We further demonstrated that intravitreal injection of apoptotic
neurons was sufficient to induce retinal microglial activation in vivo,
pointing toward neuronal apoptosis as a critical stimulus for the
induction of the DAM profile (Margeta et al., 2022). Furthermore, it
was demonstrated that intravitreal injection of phagocytic microglia
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from donor mice was sufficient to induce RGC loss in the absence of
elevated IOP, although the transplanted microglia remained localized
in the vitreous cavity. These findings point toward secreted factors as
key drivers of microglial cytotoxicity in glaucoma. Indeed, one of the
most highly up-regulated molecules downstream of ApoE signaling
in glaucoma was Galectin-3, a secreted carbohydrate binding lectin
previously implicated in a myriad of CNS degenerations (Jiang
et al., 2009; Boza-Serrano et al., 2019; Siew et al., 2019). Galectin-3
deficiency was shown to be neuroprotective in glaucoma, such that
genetic or pharmacologic targeting of Galectin-3 conferred robust
protection of RGCs despite IOP elevation. Although the mechanism
of Galectin-3 cytotoxicity to RGCs remains poorly understood, this
molecule is a ligand for Tlr4 (Burguillos et al., 2015; Boza-Serrano
et al., 2019), suggesting that it may be upstream of inflammasome-
mediated pathways. Furthermore, Galectin-3 binds the phagocytic
receptor MerTK (Caberoy et al., 2012), and has been proposed to
serve as a “bridge-ligand” linking microglial MerTK to its target cargo
(Karlsson et al., 2009; Puigdellivol et al., 2020). Taken together, these
studies support a role for Galectin-3 in pathological inflammation
and efferocytosis of neurons in glaucoma.

Although mice possess one variant of ApoE, in humans, it
is found in three major isoforms – APOE2, APOE3, and APOE4
(Farrer et al., 1997), with APOE4 being well-established as the
major risk factor for AD (Corder et al., 1993). One of the key
findings from Margeta et al. (2022) is that APOE regulates the
DAM signature in glaucoma in an isoform-dependent manner, such
that humanized mice carrying the APOE4 allele exhibit impaired
response to neurodegeneration in a manner similar to ApoE KO.
Importantly, APOE4 microglia strongly suppressed proinflammatory
mediators such as Lgals3, Tnf-α, and Ccl2 despite IOP elevation,
while maintaining expression of homeostatic genes such as Cx3cr1
and Csf1r. These results may provide mechanistic understanding for
the observed association between the APOE4 allele and decreased
risk of glaucoma in the human population (Mabuchi et al., 2005;
Lam et al., 2006; Margeta et al., 2020). Interestingly, the observed
microglial quiescence in APOE4 carriers also supports findings in the
field of photoreceptor degeneration, in which subretinal space (SRS)
inflammation was reduced in humanized APOE4 mice compared
to APOE2 and APOE3 animals (Levy et al., 2015). Although the
mechanisms by which APOE isoforms modulate inflammation are
poorly understood, it has been shown that APOE4 exhibits severely
diminished lipid transport ability compared to its counterparts
(Heeren et al., 2004), a functional defect which leads to dysregulated
lipid flux in microglia as well as accumulation of intracellular and
extracellular cholesterol (Heeren et al., 2004; Sienski et al., 2021;
Victor et al., 2022). Future work may examine the effect of APOE
variants on cholesterol-associated signaling pathways, including
membrane lipid rafts (Chen et al., 2008; Grassi et al., 2020; Lee
et al., 2021), as well as the relationship between these pathways and
acquisition of the DAM signature.

DAM in photoreceptor degeneration

Photoreceptor degeneration is a complex neurodegenerative
blinding condition with diverse underlying pathologies, including
age-related macular degeneration (AMD), retinitis pigmentosa, and
other retinal dystrophies, which all converge on the degeneration
of rods and cones (Hartong et al., 2006; Wright et al., 2010).
The role of microglia and recruited macrophages in photoreceptor

degeneration has been an area of investigation since the identification
of macrophage accumulation in the interphotoreceptor space of
degenerating retinas (Essner and Gorrin, 1979), and later, the
discovery that these macrophages contained phagocytosed rhodopsin
components (Gupta et al., 2003; Zhao et al., 2015). Retinal microglia
predominately reside in two distinct niches in the inner plexiform
and outer plexiform layers of the retina, with small numbers in
the NFL and GCL, and are absent from the immunosuppressive
SRS (O’Koren et al., 2019), which is instead maintained by the
phagocytic activity of retinal pigment epithelium (RPE) cells (Ajami
et al., 2007; Yu et al., 2020; Figure 1). However, in the context
of photoreceptor degeneration, microglia breach the outer retina
(Silverman and Wong, 2018; O’Koren et al., 2019; Yu et al., 2020),
a response which may be accompanied by infiltration/recruitment
of CCR2+ monocytes from the blood (Combadiere et al., 2007;
Guo et al., 2012; Sennlaub et al., 2013; Zhao et al., 2015; Karlen
et al., 2018; Yu et al., 2020). Interestingly, compared to engrafted
macrophages, adult retinal microglia do not up-regulate the classic
DAM marker Cd11c in response to certain models of photoreceptor
degeneration (O’Koren et al., 2016). However, this deficiency appears
to be selective, as other DAM markers (e.g., Lgals3, ApoE, LpL, Spp1,
Gpnmb, and Fabp5) remain significantly up-regulated in this disease
context (O’Koren et al., 2019).

Microglia and macrophages contribute to tissue repair
throughout the body but are subsequently eliminated to allow for
resolution of inflammation (Buckley et al., 2013; Gautier et al., 2013);
however, in the case of uncontrolled photoreceptor degeneration,
their presence in the SRS becomes chronic and associated with
secretion of proinflammatory cytokines, including Tnf-α and
Il-1β (Yoshida et al., 2013; Appelbaum et al., 2017). Infiltrating
monocytes are actively recruited by resident macrophages by
Ccl2-Ccr2 chemokine attraction, a mechanism which may drive
local proinflammatory cascades as blood-derived monocytes down-
regulate their Ccr2 expression and differentiate into macrophages
with high expression of Tnf-α, Il-1β, Il-6, and Ccl2, as well as
profibrotic and angiogenic factors (Wynn et al., 2013; Yu et al., 2020).
Certain studies have pointed toward a critical role for monocyte
infiltration in photoreceptor degeneration, with Ccr2 blockade
resulting in complete neuroprotection in a Cx3cr1-deficiency model
(Sennlaub et al., 2013). Similar results have been shown in an
immunization-induced model of AMD (Cruz-Guilloty et al., 2013)
and in the rd10−/− model of retinitis pigmentosa (Guo et al., 2012).

Recently, an opposing role for monocytes and microglia has also
been demonstrated in the rd10−/− model, whereby attenuation of
circulating monocyte infiltration decreased cone degeneration, but
depletion of resident microglia exacerbated it (Funatsu et al., 2022).
This finding is supportive of prior work in the rd10−/− model which
demonstrated C3-CR3 signaling by Iba1+ macrophages as critical
for preserving photoreceptor integrity, although this study did not
distinguish between yolk sac- and bone marrow-derived lineages
(Silverman et al., 2019). Interestingly, the absence of C3 or CR3 in
the retinitis pigmentosa model increased macrophage cytotoxicity
and decreased physiological clearance of apoptotic photoreceptors.
Despite evidence pointing toward a reparative role for microglia, it
has been proposed that microglia preferentially phagocytose stressed
but viable photoreceptors due to their proximity to photoreceptor cell
bodies, active phagocytic extensions and intracellular phagosomes,
and actively surveillant behavior compared to engrafted macrophages
(Zhao et al., 2015). Additional studies will be needed to definitively
resolve this question, and interactions between monocyte-derived
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macrophages and microglia during photoreceptor degeneration
remain an open area of investigation.

Considering the challenge of identifying stable cell-type specific
markers for different myeloid cell subpopulations, fate mapping
has become the experimental approach of choice for differentiating
between resident microglia and blood-derived monocytes (Parkhurst
et al., 2013; Yona et al., 2013). Using fate mapping in combination
with single cell RNA sequencing, a report by O’Koren et al.
(2019) identified a unique transcriptional profile of subretinal
microglia during photoreceptor degeneration which is distinct
from that of infiltrating monocytes, and which shares significant
similarities to the DAM phenotype, including up-regulation of
Lgals3, LpL, Spp1, Trem2, and Cd68 (Keren-Shaul et al., 2017;
Krasemann et al., 2017). Conditional depletion of microglia prior
to light damage or in the RhoP23H/WT model of retinal dystrophy
aggravated neurodegeneration, indicating a neuroprotective role
for the DAM signature in these contexts (O’Koren et al., 2019).
Microglia from both the inner and outer plexiform layers migrated
to the SRS following light damage; however, the neuroprotective
response was shown to be niche-specific, specifically requiring
Il-34-dependent microglia from the inner plexiform layer (IPL).
In contrast, peripheral macrophages repopulated the neuroretina
following microglial depletion but were virtually absent from the SRS
in these models (O’Koren et al., 2019).

The report by O’Koren et al. builds upon a wealth of literature
which has demonstrated migration of inner retinal microglia
and infiltration of macrophages in response to photoreceptor
degeneration; however, these studies have predominately pointed
toward a pathogenic role for mononuclear phagocytes in the outer
retina and SRS (Combadiere et al., 2007; Guo et al., 2012; Cruz-
Guilloty et al., 2013; Sennlaub et al., 2013; Levy et al., 2015; Calippe
et al., 2017). It is thus interesting to speculate why the DAM
phenotype described by O’Koren et al. is neuroprotective, in contrast
to what has been described in glaucoma (Margeta et al., 2022).
A potential line of reasoning for this discrepancy may include
a compensatory role for microglia in promoting photoreceptor
integrity and phagocytosing spent outer segment disks, an RPE-
mediated maintenance process which may be interrupted in the
case of RPE dysfunction (Young and Bok, 1969; Finnemann
et al., 1997; Bazan, 2007; Dransfield et al., 2015; Yu et al., 2019;
Vargas and Finnemann, 2022). Indeed, photoreceptor degeneration
likely involves a complex interplay between photoreceptors, RPE,
and infiltrating myeloid cells, a dynamic which is absent from
degenerations involving the inner retina, including glaucoma.
Alternatively, it is intriguing to note the relationship between
neuroprotection and the absence of proximate monocyte-recruits, as
the SRS was shown to be a microglia-privileged niche in both the
light damage and RhoP23H/WT models employed by O’Koren et al.
(2019). From these studies and others, a key question emerging in
the field is the dynamic interplay between microglia and infiltrating
monocytes, as well the pathways which may shift the balance from a
net-reparative to net-degenerative microglial response.

Heterogeneity within the DAM signature

Marker specificity continues to be one of the greatest hurdles
in distinguishing the roles of microglia and peripherally derived
macrophages in disease. This matter is further complicated by the
presence of BAMs, a long-lived myeloid cell population that includes

dural, perivascular, and choroid plexus macrophages (Prinz et al.,
2021). Though the pan-macrophage nature of markers such as Iba1,
CD11b, and Cx3cr1 is historically well established (Amici et al.,
2017; Reyes et al., 2017), such considerations have more recently
been extended to include a broader suite of cell-surface markers
and sorting strategies (Yu et al., 2020). Additionally, monocyte-
derived macrophages have been shown to repopulate the brain
following microglial depletion and up-regulate a suite of microglial
markers, including P2ry12, Tmem119, and Fcrls, suggesting that these
markers may be niche-specific rather than lineage-specific in the CNS
(Bennett et al., 2018; Lund et al., 2018b). A similar acquisition of
microglial surface markers has also been demonstrated by infiltrating
macrophages in response to photoreceptor degeneration (O’Koren
et al., 2019) and ocular injury (Paschalis et al., 2019; Lei et al., 2021).
However, whether the acquisition of these microglial markers by
peripherally derived cells implies long-term functional equivalence
has not been thoroughly investigated.

Considering persistent overlaps in microglial marker expression
by different myeloid cell subpopulations, resolving the ontogeny
of the DAM population has been a matter of some debate (Jay
et al., 2015; Van Hove et al., 2019; Silvin et al., 2022). To resolve
this uncertainty, recent advances in single cell RNA sequencing
have enabled generation of an integrated immune map which
captures myeloid cell heterogeneity throughout development, aging,
and disease with single cell resolution (Silvin et al., 2022). One
of the most striking observations taken from this integration was
the composition of the area representing developmental microglia.
Although this cluster was predominately comprised of cells from
embryonic and postnatal periods (Hammond et al., 2019; Silvin et al.,
2022), it also contained a significant proportion of cells from AD
mice (Keren-Shaul et al., 2017; Van Hove et al., 2019), suggesting
that microglia undergo a developmental-like reprogramming in the
context of neurodegeneration. This finding builds on prior reports
demonstrating significant similarities between DAM microglia in
AD and CD11c+ microglia in development (Hagemeyer et al., 2017;
Wlodarczyk et al., 2017; Anderson et al., 2019a; Li et al., 2019).

It was also discovered that myeloid cells expressing disease-
associated markers from the original Keren-Shaul et al. (2017) dataset
were localized in two distinct areas on the integrated map: one in
the developmental microglia area, which was enriched for Cd11c
(Itgax), and one in the mature microglia area, which exhibited
high expression of proinflammatory mediators (Silvin et al., 2022).
The cells whose transcriptional signatures positioned them in the
developmental microglia area were thus referred to as DAMs, for
bona fide DAMs, due to their expression of classical DAM markers
including Itgax and Spp1. These cells displayed anti-inflammatory
and pro-phagocytic expression profiles. In contrast, cells localized
in the mature microglial area were referred to as DIMs due to
their high expression of proinflammatory pathways, including Il-
1α, Il-1β, Il-6, Tnf-α, and molecules involved in Tlr signaling, as
well as increased nitric oxide (NO) and reactive oxygen species
(ROS) production. DIMs were shown to be relatively sparse during
development but accumulated significantly both in AD and in aging,
comprising approximately 25% of isolated microglia from brains of
P540 mice (Hammond et al., 2019; Silvin et al., 2022). Importantly,
lineage tracing using the Ms4a3-tdTomato fate mapping strategy
demonstrated that DIMs were monocyte-derived macrophages, while
bona fide DAMs were yolk sac-derived microglia (Silvin et al., 2022).
The accumulation of DIMs in aging and neurodegenerative disease
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is in line with prior reports demonstrating compromised blood-
brain-barrier integrity in these settings (Rustenhoven and Kipnis,
2019).

A comparison of mRNA transcript enrichment revealed that
both DIMs and DAMs express the homeostatic microglial markers
P2ry12 and Cx3cr1; however, these markers were relatively higher
in DIMs (Silvin et al., 2022). Similarly, both DAMs and DIMs
expressed Trem2, although only DAMs were Trem2-dependent.
Differential gene expression analysis of DAMs and DIMs revealed
distinct transcriptional signatures conserved by these populations
in both murine and human single cell RNA sequencing datasets
(Figure 2). Several of these core DAM genes were also conserved
in CD11c+ developmental microglia [termed youth-associated
microglia (YAMs) by Silvin et al. (2022)], including Itgax, Igf1, Spp1,
Gpnmb, and Dkk2. Furthermore, comparative pathway analysis of
the DAM and YAM populations demonstrated that DAMs were
enriched for anti-inflammatory functions, reflecting their distinct
role in response to disease. It is interesting to note that the bona
fide DAM population was critically dependent on Trem2, such
that these cells were completely absent in Trem2 KO mice and
critically reduced in AD-Trem2 KO mice (Keren-Shaul et al., 2017;
Silvin et al., 2022). Conversely, the inflammatory DIM population
expanded dramatically in the absence of Trem2 both at baseline and
in AD, a trend which seems to mirror the accumulation of Trem2-
independent Stage 1 DAM in the original report (Keren-Shaul et al.,
2017). Taken together, these single cell RNA sequencing analyses
point toward an anti-inflammatory role for Trem2 signaling in the
brain.

Although the DAM-DIM dichotomy has thus far been
described only for brain microglia, it is tempting to speculate
that similar heterogeneity may exist in the diseased retina, suggesting
that monocyte-derived macrophages may play a critical role in
pathogenesis of retinal neurodegeneration.

Discussion and perspectives

Microglia are resident immune cells of neural tissue, with a
myriad of functions in development, adulthood, aging, and disease
(Butovsky and Weiner, 2018; Li and Barres, 2018). One of the most
interesting facets of microglial biology is the emergence of a DAM
signature in neurodegenerative disease, also referred to as the MGnD
(Keren-Shaul et al., 2017; Krasemann et al., 2017). Although this
signature is broadly defined, its intersection with developmental
microglial signatures (i.e., bona fide DAM) reflects an up-regulation
of phagocytic, metabolic, and anti-inflammatory pathways required
to maintain tissue homeostasis during periods of substantial tissue
remodeling (Silvin et al., 2022). In development, this signature has
been shown to mediate both cell elimination and cell survival and to
promote physiological synaptic pruning and white matter refinement
(Hagemeyer et al., 2017; Wlodarczyk et al., 2017; Anderson et al.,
2019a; Li et al., 2019). Prior work has also pointed toward a
physiological role for Trem2-dependent pathways in disease (Keren-
Shaul et al., 2017; Condello et al., 2018; Gratuze et al., 2018), although
the net effect of the DAM signature remains a matter of debate. In
the light damage model of photoreceptor degeneration, microglia
up-regulate Trem2-dependent and bona fide DAM genes including
LpL, Spp1, Gpnmb, Fabp5, and Cd68 and are neuroprotective in
this context (O’Koren et al., 2019; Yu et al., 2020). Considering the
multifaceted nature of the DAM signature, a significant parsing of its

component pathways may enable new insights into microglial biology
in development and disease.

Across the organismal lifespan, neuronal apoptosis has emerged
as a common stimulus leading to DAM activation. Prior reports
have demonstrated that the presence of neuronal apoptosis may
contribute to erroneous clearance of still viable neurons (Zhao
et al., 2015); however, cell death in itself should not be seen as
an inherently pathogenic factor considering the vast proportions of
CNS cells which must be cleared and metabolized in the context
of neurodevelopment. Thus, it is possible that microglial clearance
of neurons becomes pathological in disease due to interactions with
other cell types that are absent in development, including monocyte-
derived DIMs. In this review, we note two instances where the role
of DAM is cited to be beneficial rather than detrimental: in the case
of development and in the light damage and RhoP23H/WT mouse
models of photoreceptor degeneration (Anderson et al., 2019a,b,
2022; O’Koren et al., 2019). Notably, these studies reflect time-points
and conditions in which DAM microglia are operating in a microglia-
privileged niche, without significant contributions from blood-
derived monocytes. In contrast, it is possible that the deleterious
role for the DAM signature in glaucoma represents pathogenic
interactions between microglia and recruited monocytes, whereby
ApoE expression in long-lived resident myeloid cells is necessary to
initiate the inflammatory response (Margeta et al., 2022) but recruited
monocyte-derived macrophages play a key pathogenic role (Howell
et al., 2012; Williams et al., 2019; Chen et al., 2020). Interestingly,
the detrimental effect of monocyte-derived macrophages may be
regulated by TGF-β, as it has been shown that TGF-β-deficient
monocytes drive fatal demyelinating disease following engraftment
in the spinal cord, with strong up-regulation of disease-associated
molecules including Lgals3 (Lund et al., 2018a). Future studies may
serve to elucidate the functional role of engrafted macrophages in
neurodegenerative contexts as well as their long-term interactions
with resident microglia.

In contrast to the anti-inflammatory profile of bona fide DAMs,
the proinflammatory nature of DIMs suggests that the infiltration
of these cells to parenchyma may create vicious positive feedback
cycles, such as those underpinning glaucoma and photoreceptor
degeneration (Alqawlaq et al., 2019; Yu et al., 2020). There is a
strong correlation between DIM-conserved markers in the brain and
the proinflammatory molecules known to be cytotoxic in retinal
degeneration, including Il-1α, Il-1β, Tnf-α, and Tlr4, as well as
NO and ROS production (Silverman and Wong, 2018; Alqawlaq
et al., 2019; Wooff et al., 2019; Yu et al., 2020; Baudouin et al.,
2021; Coyle et al., 2021). Thus, it could be proposed that the
primary source of these molecules in the degenerating retina may
be monocyte-derived macrophages, which up-regulate a suite of
microglial markers following engraftment and thus become difficult
to distinguish based on marker expression alone (Bennett et al.,
2018; Lund et al., 2018b; Paschalis et al., 2019; Lei et al., 2021).
Consistent with this idea, monocytes have been shown to infiltrate
the retina following ocular injury and cause RGC loss via secretion
of proinflammatory cytokines, including Tnf-α and Il-1β, which
remained chronically up-regulated by engrafted macrophages despite
differentiation into quiescent microglial morphology (Paschalis et al.,
2018; Chen et al., 2020). Similarly, in models of epilepsy, it has
been demonstrated that Tnf-α and Il-1β levels are hundreds fold
higher in circulating monocytes compared to microglia at baseline;
however, while microglia up-regulated these markers in response to
insult, their levels in monocytes remained stably high after brain entry
(Varvel et al., 2016). Although additional lineage tracing studies are
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FIGURE 2

(A) Conserved gene expression between disease-associated microglia (DAMs) and youth-associated microglia (YAMs), and (B) unique expression profile
of disease-inflammatory macrophages (DIMs). Identified by integrated single cell RNA sequencing analyses of isolated brain myeloid cells in mouse
models of Alzheimer’s disease (AD) and aging. Adapted from Silvin et al. (2022). Created with www.biorender.com.

needed, these findings suggest that microglia are dynamic responders
to injury, while engrafted macrophages exert constant inflammatory
influence on the CNS. A similar perspective has been highlighted in
a recent article on the role of CNS mononuclear phagocytes in health
and disease, which proposes that tissue-resident macrophages (i.e.,
microglia and BAMs) exert tissue-protective functions such as debris
clearance and functional support, while blood-borne phagocytes are
the primary drivers of neuroinflammation (Mundt et al., 2022).

Although infiltrating monocytes appear to act in detrimental
fashion upon recruitment to the retina and optic nerve, an open
question remains if such a response is inevitably maladaptive. It could
be proposed that monocyte infiltration to the site of CNS injury
reflects an inappropriate extension of their response to peripheral
nerve damage, where their action is an adaptive process leading to the
clearance of growth-inhibitory myelin debris and functional nerve
repair (Nguyen et al., 2002; Barrette et al., 2008; Parrinello et al.,
2010; Cattin et al., 2015). Following damage to peripheral nerves,
it has been shown that hypoxic conditions induce recruitment of
vascular endothelial growth factor (VEGF)-expressing macrophages,
which guide the reparative action of Schwann cells by promoting
local angiogenesis (Cattin et al., 2015). In the CNS, studies aiming to
promote the regenerative capacity of the optic nerve have shown that
inflammatory monocyte-derived factors are critical for promoting
RGC axon regeneration following ONC (Leon et al., 2000; Yin et al.,
2003; Peterson et al., 2021; Xie et al., 2022), although to date the
extent of this recovery remains limited. The beneficial contribution
of macrophages to acute CNS injury is further complicated by
their concurrent secretion of molecules with deleterious effects on
neurons, indicating that their presence in injured neural tissue is a
double-edged sword (Yin et al., 2003). Taken together, it is possible
that immune mechanisms which successfully promote regeneration
of peripheral nerves become maladaptive in the case of chronic
CNS neurodegeneration, due in part to prolonged production of
proinflammatory cytokines and cytotoxic agents. Future work may

investigate the mechanisms by which monocytes enter the retina
and interact with resident microglia, as these pathways could
represent promising therapeutic targets for a range of chronic
neurodegenerative diseases of the eye.

Conclusion

Microglial transcriptional signatures are the result of complex
interactions between these cells and the CNS microenvironment
(Gosselin et al., 2017). Although various acronyms have gained
widespread use as categorization tools used to characterize microglial
phenotypes and functions, new perspectives in the field have
emphasized that microglial states are not binary switches, but
rather complex transcriptional landscapes existing along continuums
(Paolicelli et al., 2022). These transcriptional states may reflect
extrinsic properties such as life stage, CNS region, sex, and
disease status (Paolicelli et al., 2022) but also integrate cell-
intrinsic properties that have yet to be elucidated (Stratoulias
et al., 2019). In the context of neurodegeneration, microglia acquire
a molecular profile characterized by up-regulation of phagocytic
and metabolic machinery that is shared by microglia in various
developmental contexts. Although a simplification of complex
biology, the intersection of these transcriptional signatures suggests
the existence of recycled gene programs which play a role both in the
early sculpting of neural circuits as well as in response to aging and
disease (Keren-Shaul et al., 2017; Silvin et al., 2022).

Despite marked overlap with developmental microglial
signatures, prior studies have demonstrated that DAM microglia are
a heterogenous population associated with both anti-inflammatory
and proinflammatory properties (Keren-Shaul et al., 2017;
Krasemann et al., 2017). Reflecting this complexity, it has been
shown that resident microglia play a deleterious role in glaucoma
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(Margeta et al., 2022) but are beneficial in certain models of
photoreceptor degeneration in which there is minimal recruitment
of monocyte-derived macrophages to the site of injury (O’Koren
et al., 2019). It therefore appears plausible that it is the crosstalk
between resident microglia and infiltrating monocytes in disease
which tips the scales to a net-degenerative outcome by facilitating
an exaggerated immune response. Indeed, monocytes are remarkably
plastic, and become difficult to distinguish from microglia following
CNS infiltration by marker expression alone (Bennett et al., 2018;
Lund et al., 2018b; Paschalis et al., 2019; Lei et al., 2021). Our
understanding of microglial and macrophage phenotypes in disease
is rapidly evolving, and it remains possible that the DAM signature
reflects dynamic neuroimmune interactions which include context-
dependent contributions from peripheral macrophages.

The notion that engrafted macrophages may be masquerading
as microglia while actively contributing to neurodegenerative disease
pathology represents a controversial topic in the field; nonetheless,
it may be one warranting additional scrutiny as lineage tracing
and single cell RNA sequencing technologies enable more granular
investigations of macrophage phenotypes and functions. Important
topics to address in future work include the infiltration, proliferation,
and lifespan of monocyte-derived cells in the degenerating retina, as
well as the interactions between these cells and resident microglia in
disease initiation and propagation.
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