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SMN post-translational
modifications in spinal muscular
atrophy
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Lotti*

Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology,
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Since its first identification as the gene responsible for spinal muscular atrophy

(SMA), the range of survival motor neuron (SMN) protein functions has increasingly

expanded. This multimeric complex plays a crucial role in a variety of RNA

processing pathways. While its most characterized function is in the biogenesis

of ribonucleoproteins, several studies have highlighted the SMN complex as

an important contributor to mRNA trafficking and translation, axonal transport,

endocytosis, and mitochondria metabolism. All these multiple functions need to

be selectively and finely modulated to maintain cellular homeostasis. SMN has

distinct functional domains that play a crucial role in complex stability, function, and

subcellular distribution. Many different processes were reported as modulators of

the SMN complex activities, although their contribution to SMN biology still needs

to be elucidated. Recent evidence has identified post-translational modifications

(PTMs) as a way to regulate the pleiotropic functions of the SMN complex. These

modifications include phosphorylation, methylation, ubiquitination, acetylation,

sumoylation, and many other types. PTMs can broaden the range of protein functions

by binding chemical moieties to specific amino acids, thus modulating several

cellular processes. Here, we provide an overview of the main PTMs involved in the

regulation of the SMN complex with a major focus on the functions that have been

linked to SMA pathogenesis.
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Introduction

Since its identification in 1995 as the disease-causing gene product of spinal muscular atrophy
(SMA; Lefebvre et al., 1995), the landscape of survival motor neuron (SMN) protein functions
has expanded tremendously. SMN is an evolutionary conserved and ubiquitously expressed
protein that localizes to both the cytoplasm and the nucleus, where it concentrates in nuclear
bodies termed Gemini of Cajal bodies (Gems; Liu and Dreyfuss, 1996). SMN1 gene mutations
or deletions are responsible for SMA, which represents the leading cause of death for a genetic
disorder in infants (Lefebvre et al., 1995).

Humans hold on the same chromosome a paralogous gene, SMN2, that differs from SMN1
for a single nucleotide leading to the exclusion of exon 7 in the transcript and to the production
of a truncated SMN protein (also known as SMN∆7), rapidly degraded. Remarkably, the
number of copies of SMN2 inversely correlates with the severity of the disease phenotype in
SMA. However, SMN2 copies can be structurally different between SMA patients and other
genetic modifiers of the disease have been identified that add complexity to the clinical picture
and need to be taken into account in the context of prenatal counseling (Wadman et al., 2020).
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SMA is characterized by progressive degeneration of the spinal
motor neurons, leading to paralysis and respiratory failure. In
addition, studies in SMA animal models have identified multiple
perturbations in the motor circuit that include dysfunction and
loss of neuromuscular junctions (NMJs) and central proprioceptive
sensory synapses onto motor neurons (Mentis et al., 2011; Tisdale and
Pellizzoni, 2015).

SMN exerts its major functions as part of a multi-subunit complex
comprised of eight additional core components (Gemins2–8 and
Unrip). Although the SMN complex is likely a multifunctional
machinery involved in several aspects of RNA metabolism (Burghes
and Beattie, 2009; Li et al., 2014; Donlin-Asp et al., 2016), its
best-characterized function is in the assembly of small nuclear
ribonucleoproteins (snRNPs) of the major (U2-dependent) and
minor (U12-dependent) spliceosomes (Meister et al., 2001; Pellizzoni
et al., 2002). In addition to spliceosomal snRNPs, the SMN complex
is required for the assembly of a variant core comprising Sm
and Sm-like (LSm10 and LSm11) proteins on the U7 snRNA
(Pillai et al., 2003; Tisdale et al., 2013). U7 snRNP functions
in the unique 3’-end processing of replication-dependent histone
mRNAs that comprise the most abundant class of intron-less and
non-polyadenylated transcripts in metazoans (Marzluff et al., 2008).
Accordingly, SMN deficiency impairs U7 biogenesis, leading to
histone mRNA processing deficits in SMA (Tisdale et al., 2013).

Increasing evidence link the function of the SMN complex in
snRNP biogenesis with the etiology of SMA (Chari et al., 2009;
Li et al., 2014). Defects in snRNP assembly correlate with disease
severity and lead to a reduction in the steady-state levels of snRNPs
in mouse models of SMA (Gabanella et al., 2007; Zhang et al.,
2008). In addition, the injection of purified snRNPs in SMN-deficient
embryos was shown to suppress motor axon outgrowth deficits in
a zebrafish model of SMA (Winkler et al., 2005), while selective
enhancement of the U12 splicing by adeno-associated virus-mediated
overexpression of minor snRNAs prevented the loss of proprioceptive
synapses onto motor neurons in SMA mice (Osman et al., 2020).
The predicted outcome of reduced snRNP assembly is an alteration
in splicing due to reduced snRNP levels. Importantly, several studies
identified SMN-dependent splicing events that are essential for motor
neuron function in vivo and linked defective splicing of these genes
to sensory-motor dysfunction and to the death of motor neurons in
SMA models (Lotti et al., 2012; Simon et al., 2017, 2019; Van Alstyne
et al., 2018; Osman et al., 2020; Tisdale et al., 2022). These findings
highlighted the impairment of SMN function in snRNP assembly as
one mechanism contributing to SMA pathology.

In addition to its role in snRNP biogenesis, SMN has been
reported to be involved in a number of other RNA-mediated
processes. A large body of literature documented the interaction
of SMN with several RNA-binding proteins (RBPs) involved in
many aspects of RNA metabolism, including splicing, transport,
stability, and translation of mRNAs (Li et al., 2014; Donlin-Asp et al.,
2016). The fact that SMN interacts with several RBPs that are not
involved in snRNP biogenesis, combined with the observation that
SMN can localize to mobile granules in axons, suggested a role
for SMN in axonal mRNA metabolism. Consistent with this, SMN
colocalizes in neuronal granules with hnRNP R, FMRP, HuD, KSRP,
and IMP1 (Rossoll et al., 2002, 2003; Piazzon et al., 2008; Fallini et al.,
2011, 2014). In addition, granules containing ectopically expressed
fluorescently-tagged SMN exhibit rapid, bidirectional movement in
the axons of cultured neurons (Zhang et al., 2003, 2006; Fallini et al.,

2010). Moreover, an alternatively spliced form of SMN (axonal-SMN
or a-SMN) has been found in the axons of motor neurons and its
upregulation resulted in axonal-like development in non-neuronal
cells and accelerated motor neuron axonogenesis in a time-dependent
manner (Setola et al., 2007). In agreement with the role of SMN
in mRNP transport, β-actin and other mRNAs have reduced axonal
localization upon SMN deficiency (Rossoll et al., 2003; Akten et al.,
2011). Defects in mRNA localization are accompanied by a similar
decrease in axonal levels of RBPs such as HuD and IMP1 as well as by
reduced levels of polyadenylated mRNA-containing granules (Fallini
et al., 2011, 2014; Rage et al., 2013). Thus, akin to its role in snRNP
assembly, SMN may function to directly assemble mRNP complexes
by increasing the affinity of RBPs for their target mRNAs (Donlin-
Asp et al., 2016, 2017). These cellular processes are tightly linked
to mRNA translation and recent evidence has pointed to a direct
role for SMN in its regulation. Consistent with this, SMN associates
with and affects the subcellular distribution of components of the
translation machinery which have an impaired translational rate in
SMN-depleted cells (Gabanella et al., 2016, 2020). In addition, SMN
has been reported to associate with ribosomes (Sanchez et al., 2013)
with SMN deficiency resulting in a reduced number of ribosomes
associated with polysomes and consequent impairment of translation-
related transcripts in SMA mice (Bernabò et al., 2017). Remarkably,
the population of ribosomes interacting with SMN are associated with
a specific subset of mRNAs that form functionally related clusters
suggesting that SMN can act as a master modulator of ribosome
heterogeneity on a subset of disease-relevant mRNAs (Lauria et al.,
2020).

Full-length SMN contains highly conserved functional domains
that are important for its stability and functions (Figure 1). At
its N-terminal, SMN harbors an interaction motif for binding to
Gemin2, important for stabilizing SMN self-oligomerization and
complex formation (Feng et al., 2005; Ogawa et al., 2007; Zhang
et al., 2011; Grimm et al., 2013). At its center, SMN contains a
Tudor domain that is involved in the interaction with di-methylated
proteins, including Sm proteins (Bühler et al., 1999; Selenko et al.,
2001). At its C-terminal SMN harbors a YG box required for
its self-oligomerization (Martin et al., 2012) and for interaction
with other Gemins (Zhang et al., 2011). The multifunctional
nature of the SMN complex requires its interaction with many
different protein partners, but how the specificity of these protein-
protein interactions is achieved is not known. Many different
mechanisms were reported as modifiers of SMN, although the full
picture still needs to be elucidated. Post-translational modifications
(PTMs) have been shown to play a major role in regulating
the pleiotropic functions of the complex. Here, we provide an
overview of the PTMs involved in the regulation of the SMN
complex functions with a focus on those that have been linked to
SMA etiology.

Phosphorylation

Phosphorylation is one of the first modification type identified in
SMN (La Bella et al., 2004). Out of the 50 putative phosphorylation
sites present in SMN, 26 of them have been identified by mass
spectrometry (Husedzinovic et al., 2014; Detering et al., 2022;
Table 1). The phosphorylation sites span across the entire protein,
with a mild enrichment in the N-terminus (Figure 1). In addition to
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FIGURE 1

SMN protein PTM sites. SMN harbors a K-rich domain, a Tudor domain, a P-rich domain, and a YG domain that are binding sites for different PTM.
P, phosphorylation; U, ubiquitination; S, sumoylation; A, acetylation; M, methylation; SIM, SUMO-interacting motif; SMN, survival motor neuron; PTM,
post-translational modification.

SMN, a myriad of phosphorylation sites has also been identified in
other members of the SMN complex, suggesting a major impact of
this PTMs on the function of the complex (Figure 2).

Phosphorylation was initially described to modulate SMN
complex function, stability, and subcellular distribution. In particular,
the phosphorylation of serines 28 and 31 has been functionally linked
to snRNP assembly activity of the SMN complex (Grimmler et al.,
2005). In addition, more active SMN complex has been identified
in the cytoplasm and linked to a higher level of phosphorylation
(Grimmler et al., 2005). The finding that phosphatase treatment
mobilizes cytoplasmic SMN to the nucleus suggested that the
phosphorylation status of SMN acts also on its subcellular
distribution. Indeed, non-phosphorylatable SMN mutants showed
significantly less efficient accumulation in the nucleus compared

to the corresponding wild-type protein, while the phospho-
mimetic mutants frequently displayed cytoplasmic accumulations
(Husedzinovic et al., 2014). This suggests that some of the identified
sites regulate specific functions of SMN or the exchange of SMN
between the nucleus and the cytoplasm and raised the hypothesis
that dephosphorylation would primarily act on the nuclear SMN
complex. However, this simple model of an asymmetric distribution
of phosphorylated forms of the SMN complex has been recently
challenged by observations that nuclear phosphorylation of SMN on
serines 49 and 63 are crucial for the condensation of the SMN protein
in Cajal bodies (CBs; Schilling et al., 2021).

Phosphorylation has also been reported to influence SMN
stability by modulating its capability to self-oligomerize and to
be incorporated into high molecular weight complexes. Both the

TABLE 1 Site of SMN PTMs and their functions.

PTM Site Effect Reference

Phosphorylation S28, S31 snRNP assembly Grimmler et al. (2005)

S49, S63 Condensation of SMN protein in CBs Schilling et al. (2021)

S290, S292 Self-oligomerization, protein stability Rademacher et al. (2020)

Y109, Y127, Y130 Localization in CBs Husedzinovic et al. (2014)

S4, S5, S8, S18, S25, S31, T37, Y43, S49, T68, T69, S80, T85, S88,
S166, S175, S180, S187, S192

PKA-mediated, interaction with Gemins and
coilin

Husedzinovic et al. (2014) and
Detering et al. (2022)

Methylation R204 Modulation of snRNP biogenesis Guo et al. (2014)

Ubiquitination U41, U45, K51, K55, K83, K179, K184, K186, K209 SMN degradation through UPS Danielsen et al. (2011), Kim et al.
(2011), Wagner et al. (2011), Han et al.
(2012), Povlsen et al. (2012), and
Akimov et al. (2018)

Acetylation K119 Interaction with proteins of the SMN complex
(i.e. Sm, coilin); increased SMN stability (SMN
turnover reduction)

Lafarga et al. (2018)

SUMOylation K55, K119, VVVYT, K285 Spliceosomal snRNPs and SMN complex
assembly; localization in CBs; sensory-motor
circuit integrity

Tapia et al. (2014) and Riboldi et al.
(2021)

The table summarizes the known sites of PTM (phosphorylation, methylation, acetylation, SUMOylation) of SMN and their effect on SMN function and biological processes. UPS,
ubiquitin proteasome system; CBs, Cajal bodies.
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Tudor domain at the SMN N-terminus and the YG-box at its
C-terminus contribute to SMN self-oligomerization. However, only
phosphorylation of the C-terminal affected SMN self-oligomerization
capability while phosphorylation of the N-terminus showed no
impact (Rademacher et al., 2020). In addition, the SMN phospho-
mimetic S290D revealed a remarkably reduced protein stability and
a consequent reduction in the number of SMN-containing CBs
(Rademacher et al., 2020). Furthermore, SMN phosphorylation by
phosphokinase-A (PKA) at non-canonical sites (Figure 1) promotes
its stability by facilitating SMN interaction with Gemins and its
incorporation into high molecular weight complexes (Burnett et al.,
2009; Wu et al., 2011). SMN protein stability is determined also by its
binding with phosphatase and tensin homolog (PTEN; Rademacher
et al., 2020) and with ASK1, a serine-threonine protein kinase
involved in neuronal differentiation and mitogen-activated protein
kinase (MAPK) pathway (Takeda et al., 2000; Matsuzawa et al.,
2008; Kwon et al., 2011). Interaction with Gemin5 also potentiates
ASK1 function (Kim et al., 2007). It has been proposed that
ASK1 could act as a novel binding partner of SMN and controls
its stability through complex formation (Kwon et al., 2011). Even
though SMN is phosphorylated by ASK1 in vitro, the kinase activity
of ASK1 seems to not be involved in its ability to stabilize SMN, as
ectopic expression of ASK1 or of a kinase-inactive mutant equally
increased SMN protein levels (Kwon et al., 2011).

Although there is substantial knowledge on the kinases targeting
SMN, less is known about the involved phosphatases. The
co-purification of Gemin3 and Gemin4 with the Serine-Threonine
phosphatase PPP4 provided the first evidence for phosphatases
interacting with the SMN complex (Carnegie et al., 2003).

Overexpression of the regulatory subunits of PPP4 stimulated
the accumulation of SMN in CBs suggesting a positive influence
on SMN complex activity in snRNP assembly (Figure 2). Two
other phosphatases were identified as interaction partners of
SMN, the nuclear protein phosphatase magnesium-dependent
1 gamma (PPM1G) and the protein phosphatase 1 γ (PP1γ). In
co-immunoprecipitation assays, Gemin8 could be purified together
with PP1γ suggesting an indirect interaction with SMN. PP1γ

mediates the accumulation of SMN in CBs of human cells in
culture. Phosphorylated forms of SMN itself increase after the
knockdown of PP1γ (Renvoisé et al., 2012). PPM1G knockdown
leads to hyperphosphorylation of both SMN and Gemin3, which
goes along with a loss of the accumulation of SMN in CBs (Petri
et al., 2007). The identification of PPM1G and PP1γ as modulators
of SMN complex function has been confirmed in a comprehensive
screen for human phosphatases interacting with the SMN complex
(Husedzinovic et al., 2015). This screen highlighted also PTPN23 as
a novel regulator of SMN complex functions (Husedzinovic et al.,
2015). PTPN23 is catalytically inactive as it carries a conserved
alanine in a position that usually requires a serine for catalytic
activity. The binding of PTPN23 to SMN may therefore stabilize
its tyrosine-phosphorylation state but not dephosphorylate the
protein (Husedzinovic et al., 2015). Indeed, the loss of tyrosine-
phosphorylations within the Tudor domain of human SMN (Y109,
Y127, Y130) abolishes SMN accumulation in CBs (Husedzinovic
et al., 2014), suggesting that tyrosine-phosphorylation and its
maintenance by PTPN23 are required for the nucleocytoplasmic
trafficking of SMN and for ongoing snRNP assembly in the cytoplasm
(Figure 2).

FIGURE 2

Main PTMs involved in SMN complex functions and localization. SMN complex functions and nucleocytoplasmic location are finely regulated by different
PTMs that bind to specific sites on the complex.
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Methylation

Methylation and demethylation are also important in regulating
SMN complex activity. SMN is a Tudor protein and this domain is
known to interact with methylated arginine (R) or lysine (K) residues
(Huyen et al., 2004; Botuyan et al., 2006; Huang et al., 2006; Chen
et al., 2011). Mono- or di-methylation of arginine is particularly
relevant in this context (Gary and Clarke, 1998). The process
is mediated by six different arginine methyltransferases (PRMT1-
PRMT6). In glycine- and arginine-rich regions (GARs), arginines can
be dimethylated symmetrically (sDMA) or asymmetrically (aDMA;
Gary and Clarke, 1998). sDMA is driven exclusively by PRMT5,
which complexes in the cytoplasm with pICln and MEP50 and
recruits Sm proteins via the pICln subunit (Friesen et al., 2001;
Meister et al., 2001). sDMA is crucial for modulating snRNP
biogenesis by targeting the C-terminal tail domains of SmB, D1,
and D3, which is believed to facilitate their transfer onto the SMN
complex (Brahms et al., 2001; Friesen et al., 2001; Meister et al., 2001).
Accordingly, inhibition of methylation causes the loss of methylated
SmB and abolishes the formation of CBs (Figure 2; Boisvert et al.,
2002).

Arginine methylation is also important for the process of
condensation and for the formation of membrane-less organelles
(MLOs) such as CBs and Gems (Courchaine et al., 2021). The Tudor
domain of SMN is critical in this context by binding DMA-containing
proteins and providing the specificity required for the formation
of endogenous MLOs (Courchaine et al., 2021). The implication of
this observation is that biomolecular condensation can be driven by
specific interactions of each Tudor domain with its DMA ligands
(Courchaine et al., 2021). In line with these observations, an early
report showed that sDMA substrates are enriched in CBs and cells
derived from SMA patients show a granular pattern of sDMA in the
nucleus (Boisvert et al., 2002).

In addition to its role in snRNP biogenesis, symmetrical
dimethylation by PRMT5 of the carboxyl-terminal domain of
Polymerase II in arginine R1810 has been reported to facilitate the
recruitment of SMN and senataxin to form a complex responsible for
R-loops resolution during transcriptional termination (Figure 2; Zhao
et al., 2016).

Finally, in a proteomic study of arginine-methylated proteins
in the mouse brain, SMN has been reported to contain a
monomethyl group at its R204 residue (Figure 1 and Table 1,
Guo et al., 2014). Although the functional implication of this
SMN’s arginine modification has not been investigated yet, it can
be crucial for SMN to facilitate interactions with its numerous
protein partners.

Ubiquitination

Degradation of both full-length SMN and its truncated form
lacking exon 7 (SMN∆7) is achieved by the ubiquitin-proteasome
system (UPS; Chang et al., 2004; Burnett et al., 2009). Several
ubiquitination sites have been described for SMN, with at least 10 of
them confirmed to be ubiquitylated by proteomics (Figure 1 and
Table 1, Danielsen et al., 2011; Kim et al., 2011; Wagner et al., 2011;
Han et al., 2012; Povlsen et al., 2012; Akimov et al., 2018). Early
studies showed that SMN levels are increased upon inhibition of
the proteasome (Chang et al., 2004; Burnett et al., 2009). Consistent

with this, E3 ubiquitin ligases, deubiquitinases, and other factors
influencing SMN stability through ubiquitination have been identified
(Figure 2).

The first mediator of SMN ubiquitination identified is the
Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) protein, also
known as PGP 9.5. This is a very abundant neuron-specific protein
that has been shown to interact with SMN in P19 and NSC34 cells
(Hsu et al., 2010). Also, its expression is increased in SMA patient
fibroblasts and in mouse models, while it is significantly reduced
in induced pluripotent stem cells (iPSC)-derived motor neurons
from SMA patients (Hsu et al., 2010; Fuller et al., 2016). In
SMA fibroblasts and in animal models, UCHL1 increase is likely a
compensatory response to the reduction of Ubiquitin-like modifier
activating enzyme 1 (Uba1), indicative of an attempt to restore
aberrant ubiquitination caused by low SMN levels (Powis et al., 2014).
Consistent with this, pharmacological inhibition of UCHL1 has been
shown to exacerbate rather than improve SMA symptoms in a mouse
model of the disease (Powis et al., 2014).

A second E3 ubiquitin ligase acting on SMN is the multi-domain
protein mind bomb 1 (Mib1). Mib1 is involved in a broad spectrum
of functions, ranging from modulation of apoptosis, tyrosine kinase
receptors ubiquitination, and promotion of post-mitotic neurons
differentiation through the Delta-Notch signaling pathway (Jin et al.,
2002; Choe et al., 2007; Berndt et al., 2011). One study reported
interaction between SMN and Mib1 with overexpression of the latter
increasing ubiquitination and degradation of SMN in cultured cells
(Kwon et al., 2013). Importantly, the binding with SMN∆7 was
stronger compared to full-length SMN, probably because of inefficient
oligomerization of the truncated protein and impaired interaction
with E3 ubiquitin ligases (Zhang et al., 2003; Kwon et al., 2013).
This could contribute to the higher instability of the SMN∆7 protein.
Remarkably, Mib1 knockdown caused an increase in SMN levels in
cultured cells and improved a neuromuscular defect in Caenorhabditis
elegans deficient in SMN. Consistent with the physiological role of
Mib1 in modulating SMN, pharmacological inhibition of Mib1 was
shown to partially rescue the disease phenotype in a mouse model of
SMA (Abera et al., 2016).

While UCHL1 and Mib1 are the ubiquitin ligases that mainly
drive the degradation of SMN, Itch is a ubiquitin ligase that modulates
SMN localization (Han et al., 2016). Specifically, Itch interacts
and monoubiquitinates SMN promoting its nuclear export. In
addition, cell expressing a mutant of SMN deficient for ubiquitination
present impaired CBs and coilin/Sm co-localization, suggesting that
mislocalization of SMN disrupts CB integrity and likely impairs
snRNP maturation (Han et al., 2016). However, the conclusions of
this work are hard to interpret since all 22 lysines of SMN are mutated
to arginines, therefore this mutant does not discriminate between the
loss of ubiquitination and other lysine PTMs acting on SMN (see
below).

Ubiquitin on SMN can also be removed by deubiquitinases
(DUBs). USP9X is a deubiquitinating protein that interacts with the
SMN complex (Han et al., 2012). It holds a ubiquitin-like domain
and a ubiquitin C-terminal hydrolase domain and acts on ubiquitin
lysine residues in mono- and poly-ubiquitinated proteins (Nijman
et al., 2005). ASK1, which directly interacts with SMN, is one of the
USP9X substrates and can recruit USP9X itself, thus inhibiting the
poly-ubiquitination of SMN (Nagai et al., 2009; Kwon et al., 2011).
Knockdown of USP9X in cells induces alterations of SMN stability,
protein level, and function, with no modification on SMN mRNA
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levels (Han et al., 2012). Similar results are reported for Gemin8,
while Gemin2 and 3 decrease only in overall proteins level, with no
modification in terms of increased degradation (Han et al., 2012).
While full-length SMN is mostly monoubiquitinated, SMN∆7 is
mostly polyubiquitinated (Boutet et al., 2007). This could explain the
reason why SMN∆7 is less stabilized by USP9X and its degradation
by the UPS is more prominent. Moreover, SMN∆7 has a prominent
nuclear localization, while USP9X is mostly cytoplasmic (Zhang et al.,
2003).

In addition to the UPS, a role for autophagy in regulating SMN
protein levels has been proposed, however it is not clear whether this
pathway is inhibited (Custer and Androphy, 2014; Periyakaruppiah
et al., 2016; Rodriguez-Muela et al., 2018) or stimulated (Piras et al.,
2017; Gonçalves et al., 2018) by SMN deficiency. Mechanistically,
it has been reported that SMN degradation is mediated by its
ubiquitination and interaction with the autophagy receptor p62
(Periyakaruppiah et al., 2016; Rodriguez-Muela et al., 2018). Although
depletion of p62 levels partially rescues motor neuron death in vitro
and extends the lifespan of SMA animal models (Rodriguez-Muela
et al., 2018), the direct contribution of autophagy to SMA pathology
remains to be established.

Acetylation

Lysine acetylation is a major PTM acting on many aspects
of cellular metabolism (Choudhary et al., 2014). Co-activators
CREB-binding protein (CBP) and its paralog E1A-binding protein
(p300) have been reported to interact with SMN (Lafarga et al., 2018).
CBP/p300 play central roles in gene expression regulation via various
mechanisms, among which is the acetylation of histones to modulate
chromatin conformation (Wang et al., 2013). Lysine 119 (K119) in
SMN is predicted to be acetylated by in silico tools and has been
validated by functional assays (Lafarga et al., 2018; Figure 1 and
Table 1). Interestingly, K119 is also predicted to be sumoylated (Tapia
et al., 2014) and could represent an opportunity for crosstalk between
different SMN’s PTMs (see below).

K119 is located in the Tudor domain, a key portion of
SMN responsible for interaction with several proteins residing in
CBs, including Sm proteins and coilin. Consistently, mutation of
K119 causes the formation of microbodies in the nucleus that
are lacking the classical marks of the CBs, such as coilin, while
retaining some characteristics of promyelocytic leukemia (PML)
bodies (Lafarga et al., 2018). At the same time, loss of acetylation
of SMN promotes the interaction with a different set of proteins,
compared to wildtype SMN, causing impaired snRNP delivery to
the spliceosome and splicing defects. Impaired assembly of the CBs
following loss of acetylation at K119 is also mediated by a reduction
of the nucleocytoplasmic transport of SMN through a reduction
of diffusion of SMN (Figure 2). Finally, acetylation was shown to
increase the stability of SMN by reducing the turnover of the protein
(Lafarga et al., 2018).

Interestingly, histone deacetylase (HDAC) inhibitors, such as
valproic acid and Trichostatin A, have been tested for the treatment
of SMA, with the goal of increasing SMN2 transcription levels by
modulating promoter accessibility (Avila et al., 2007; Narver et al.,
2008). In line with what has been summarized above, the lack of
positive outcomes of these agents in clinical trials could be the result
of a perturbation of other functions of acetylation of SMN that are lost

upon treatment with HDAC inhibitors (Lafarga et al., 2018; Chaytow
et al., 2021).

Sumoylation

Small Ubiquitin-like Modifier (SUMO) conjugation (or
sumoylation) has been increasingly proposed as a central
mechanism for the regulation of multiple biological processes
(Flotho and Melchior, 2013). SUMO proteins form covalent
bonds with lysine residues on target proteins, a process mediated
by activating (E1), conjugating (E2), and ligating (E3) enzymes
(Pichler et al., 2017). Sumoylation is a highly dynamic process
modulated by a family of SUMO-specific proteases that are
responsible for SUMO deconjugation (Hickey et al., 2012). In
addition to the covalent attachment of SUMO to its substrates,
an increasing number of proteins, including SMN, have been
shown to bind SUMO non-covalently via SUMO interaction
motifs (SIMs; Tapia et al., 2014). Interactions between SUMO and
SIM-containing proteins play an important role in nuclear bodies
dynamics by mediating physical interactions between proteins
(Jentsch and Psakhye, 2013).

Early work using immunocytochemistry and transfection
experiments showed the presence of SUMO-1 and the SUMO
E2 enzyme (UBC9) in a subset of CBs in undifferentiated neuron-like
UR61 cells (Navascues et al., 2008). In addition, SUMO-1 was
shown to transiently localize into CBs from adult nervous tissue in
response to osmotic stress (Navascues et al., 2008). In a follow up
study from the same group, SUMO1 has been reported to mainly
localize in SMN-positive CBs, rather than the coilin-positive/SMN-
negative ones (Tapia et al., 2014). A putative acceptor lysine
(K119) was identified in the Tudor domain of SMN and SMN
has been reported to be a SUMO1 substrate (Tapia et al., 2014;
Figure 1). Interestingly, mutation of the acceptor lysine (K119R)
did not abolish SMN sumoylation, suggesting that other acceptor
lysines might be at play. Consistently, in addition to K119, lysines
55 and 285 have been predicted to be sumoylated (Figure 1 and
Table 1). A combinatorial mutation of these residues might be
necessary to determine which of the potential SUMO sites of SMN
are functional.

Importantly, Tapia and colleagues reported a SUMO-interacting
motif (SIM)-like sequence (V124/V125/V126) within the Tudor
domain of SMN that mediates non-covalent interaction with SUMO
(Tapia et al., 2014). While mutation of this SIM-like sequence does
not affect covalent SMN sumoylation, the authors presented evidence
that this domain is important for SMN interactions with SmD1 and
coilin (Tapia et al., 2014). It is therefore possible that both covalent
SUMO modification and non-covalent SUMO binding may regulate
SMN function (Figure 2).

A recent work investigated the role of SUMO-SMN interactions
using in vitro functional assays and two animal models of SMA
(Riboldi et al., 2021). This study reported that, in addition to
being modified by SUMO-1 and SUMO-2, SMN can interact
non-covalently with SUMO through its SIM. A SIM-inactivated
mutant of SMN (SMN-2VA) failed to assemble in high molecular
weight complexes and showed a decreased activity in the assembly
of spliceosomal snRNPs (Riboldi et al., 2021). In addition,
SMN-2VA failed to localize in CBs, suggesting that a network of
SUMO-SIM interactions contributes to the spatial organization of
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the SMN complex (Riboldi et al., 2021). Consistent with this view,
Gemin3 and Gemin5 were reported to be sumoylated, with their
sumoylation required for the interaction with SMN. Accordingly,
global inhibition of sumoylation through knockdown of the E2 ligase
UBC9 resulted in the mislocalization of SMN and other core
components of the complex as well as altered the interaction
of SMN with SUMO-modified components of the SMN complex
(Figure 2).

Moreover, this study showed that sumoylation modulates the
SMN activities that are relevant for SMA. Indeed, expression of
SMN-2VA failed to prevent motor neuron development defects
induced by SMN deficiency in zebrafish. In SMA mice, expression
of SMN-2VA prevented motor neuron death and improved NMJ
denervation, while failing to rescue sensory-motor connectivity
deficits (Riboldi et al., 2021). Taken together, these findings establish
sumoylation as an important determinant of the integrity and
function of the SMN complex and link this PTM to select aspects
of sensory-motor circuit dysfunction in animal models of SMA.
Accordingly, a recent study reported that SMN can be modified
by SUMO2 and can be desumoylated by the SUMO/sentrin-specific
protease SENP2 (Zhang et al., 2021). SENP2 deficiency induced SMN
hyper-sumoylation and promoted the degradation of SMN by the UPS
pathway. Importantly, SENP2-deficient mice developed an SMA-like
phenotype, suggesting a role for sumoylation in the etiology of the
disease (Zhang et al., 2021).

Crosstalk between PTMs of SMN

The many sites in SMN that undergo PTMs raise the question
about the relative significance of a single-site modification in the
regulation of SMN complex function. Indeed, in most cases, the
contribution of a single site modification to the overall protein
function is barely decisive. Instead, widespread crosstalk between
modifications is at play and the integration of all this information
determines a context-dependent functional output. In this context,
crosstalk is intended as the combinatorial action of multiple PTMs
on the same or on different proteins (Leutert et al., 2021). There
are several ways in which PTM crosstalk can act and cooperative
modification crosstalk where a modification promotes the effect of
another or antagonistic modification crosstalk where a modification
blocks the effect of another are the main modes of action (Hunter,
2007).

The simplest case for antagonistic modification crosstalk is
that the same amino acid in SMN can be modified by different
modification types (Figure 1). For instance, lysine 55 is predicted to be
modified by both ubiquitin and SUMO, with a possible competition
between corresponding modifying enzymes to access this site. In
addition, lysine 119 has been reported to be a target for both
acetylation and sumoylation. However, functional experiments with
mutant K119R showed reduced levels of acetylation of SMN, but
not of SUMO1 modification (Lafarga et al., 2018). While SMN has
been reported to be modified mostly by SUMO2 (Riboldi et al., 2021;
Zhang et al., 2021), the contribution of K119 to this modification
has not been assessed. Interestingly, Zhang et al. (2021) reported that
SUMO2 hyper-modification of SMN leads to an increase in its level of
acetylation and ubiquitination with consequent reduction in protein
stability.

An opportunity for cooperative PTM crosstalk comes from
the PKA-mediated phosphorylation at non-canonical sites of SMN
which has been reported to promote SMN stability by modulating
its interaction with Gemins and facilitating its incorporation into
high molecular weight complexes (Burnett et al., 2009; Wu et al.,
2011). In addition, SUMO-SIM interactions can be facilitated by
the phosphorylation of residues adjacent to the SIM hydrophobic
core (Yau et al., 2021). In this context, it is interesting to note that
tyrosine 127 is located within SMN’s SIM and its phosphorylation
could provide additional negative charges for favorable electrostatic
interaction with SUMO. Interestingly, loss of Y127 phosphorylation
has been shown to abolish SMN accumulation in CBs (Husedzinovic
et al., 2014). However, whether Y127 phosphorylation facilitates
SUMO-SIM interactions in the context of the SMN complex has not
been determined yet.

Conclusions and future perspectives

Despite extensive results about multiple modification types and
the enzymes involved in the process, our understanding of the role of
these PTMs in SMN complex functions and their contribution to SMA
pathology is still in its infancy. It is currently unclear whether PTMs
of SMN are triggered by cellular stresses and whether are integrated
into regulatory networks as well as whether specific modification
states can help SMN differentiate among the myriad of interacting
partners (Figure 2). Evidence in this direction is emerging for a
network of SUMO-SIM interactions within the SMN complex that
likely contributes to the integrity and spatial organization of the
complex (Riboldi et al., 2021). In this context, SMN has been reported
to interact with two RBPs linked to ALS, such as TDP-43 and FUS
(Yamazaki et al., 2012; Tsuiji et al., 2013). Interestingly, TDP-43 has
been found to be sumoylated while FUS might work as a SUMO
E3 ligase (Oh et al., 2010; Maraschi et al., 2021). Therefore, it is
tempting to speculate that sumoylation can influence the interaction
of SMN with TDP-43 and FUS. In addition, it is not known whether
PTMs of SMN can be regulated at the tissue and cellular level to
finetune SMN functions in different cell types. Finally, although
crosstalk between SMN’s modifications has been reported, how the
combinatorial interplay of different PTMs and interaction partners is
coordinated and its contribution to SMN function is still unknown.

Liquid phase separation is an emerging concept to conceptualize a
novel mode of protein interaction (Hnisz et al., 2017). Recently, a role
for phosphorylation in the regulation of SMN phase separation has
been proposed and could serve as a paradigm for further elucidation
of the role of SMN’s PTMs in the assembly of subnuclear structures
such as Gems and CBs (Schilling et al., 2021). In this context,
interaction between SMN’s Tudor domain and DMA-modified
proteins has been proposed to define the specific composition of
certain condensate membrane-less organelles such as Gems and CBs
(Courchaine et al., 2021). Interestingly, a network of SUMO-SIM
interactions within the SMN complex has also been reported to
regulate the formation of Gems and CBs (Riboldi et al., 2021).
However, the crosstalk between these different modifications of
SMN in the assembly of these subnuclear structures has not been
investigated yet.

Despite the huge success of SMA therapies (Mercuri et al., 2022),
a significant number of patients do not, or respond less well to these
SMN augmentation approaches. Therefore, there is still potential
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for improvement provided by combinatorial therapeutic strategies
addressing molecular networks which are no longer responsive
to SMN restoration (Hensel et al., 2020). In this context, the
identification of enzymes depositing and modulating SMN’s PTMs
could inspire new ideas for effective therapeutic options that work
together with established strategies to reduce disease burden in SMA
patients. A small percentage of patients with SMA present point
mutations on the SMN gene, usually in trans with the more classical
deletion of the SMN1 gene. It is plausible that amino acid changes
at posttranslationally-modified sites can have a direct contribution to
SMA pathogenesis. In this context, a total of 12 patient mutations have
been identified in confirmed or putative phospho-sites, however their
impact on the SMA phenotypes has not been determined (Detering
et al., 2022). Therefore, a deeper understanding of the role of PTMs
in SMN biology will be important to fully dissect the multifaceted
functions of SMN and their link to SMA pathology and ultimately
broaden the knowledge necessary for the development of increasingly
effective therapies for SMA.
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