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Objective: To explore the role of m6A regulatory genes in atrial fibrillation (AF),
we classified atrial fibrillation patients into subtypes by two genotyping methods
associated with m6A regulatory genes and explored their clinical significance.

Methods: We downloaded datasets from the Gene Expression Omnibus (GEO)
database. The mMmG6A regulatory gene expression levels were extracted. We
constructed and compared random forest (RF) and support vector machine (SVM)
models. Feature genes were selected to develop a nomogram model with the
superior model. We identified m6A subtypes based on significantly differentially
expressed m6A regulatory genes and identified m6A gene subtypes based on
m6A-related differentially expressed genes (DEGs). Comprehensive evaluation of
the two m6A modification patterns was performed.

Results: The data of 107 samples from three datasets, GSE115574, GSE14975 and
GSE41177, were acquired from the GEO database for training models, comprising
65 AF samples and 42 sinus rhythm (SR) samples. The data of 26 samples from
dataset GSE79768 comprising 14 AF samples and 12 SR samples were acquired
from the GEO database for external validation. The expression levels of 23
regulatory genes of m6A were extracted. There were correlations among the m6A
readers, erasers, and writers. Five feature m6A regulatory genes, ZC3H13, YTHDF1,
HNRNPA2B1, IGFBP2, and IGFBP3, were determined (p < 0.05) to establish a
nomogram model that can predict the incidence of atrial fibrillation with the
RF model. We identified two m6A subtypes based on the five significant m6A
regulatory genes (p < 0.05). Cluster B had a lower immune infiltration of immature
dendritic cells than cluster A (p < 0.05). On the basis of six m6A-related DEGs
between m6A subtypes (p < 0.05), two m6A gene subtypes were identified. Both
cluster A and gene cluster A scored higher than the other clusters in terms of m6A
score computed by principal component analysis (PCA) algorithms (p < 0.05). The
mM6A subtypes and m6A gene subtypes were highly consistent.

Conclusion: The m6A regulatory genes play non-negligible roles in atrial
fibrillation. A nomogram model developed by five feature m6A regulatory genes
could be used to predict the incidence of atrial fibrillation. Two m6A modification
patterns were identified and evaluated comprehensively, which may provide
insights into the classification of atrial fibrillation patients and guide treatment.

atrial fibrillation, m6A regulatory genes, bioinformatics, predictive model, m6A subtypes

01 frontiersin.org


https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2023.1073538
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2023.1073538&domain=pdf&date_stamp=2023-06-26
https://doi.org/10.3389/fncel.2023.1073538
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncel.2023.1073538/full
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/

Zhao et al.

1. Introduction

Atrial fibrillation (AF) is one of the most prevalent arrhythmias
with rapid and disordered atrial contraction in clinical practice,
and its main mechanism is atrial remodeling, including electrical
and structural remodeling (Wakili et al., 2011). The incidence
of atrial fibrillation increases with age and is closely related to
other heart diseases, such as myocardial infarction and heart
failure, which has become a public health problem that cannot
be ignored (Ruddox et al, 2017). However, the mechanism
of atrial fibrillation occurrence and development is not fully
understood, and effective prevention and treatment methods
are still relatively limited. Therefore, it is urgent to clarify the
specific molecular mechanism of atrial fibrillation as soon as
possible.

The chemical modification of RNA by all living organisms
exceeds 160 different types (Boccaletto et al, 2018). Of all
RNA modifications, N6-methyladenosine (m6A) is the most
extensive internal methylation modification at the N6 position
of adenosine (Huang et al., 2020). Many biological processes are
regulated by m6A in eukaryotes, and its regulatory genes include
writers, readers, and erasers, which influence the occurrence
and development of a variety of diseases. Currently, studies
on m6A mainly focus on tumors, and it has been confirmed
that m6A is closely related to lung cancer, cervical cancer, and
other cancers (Wang et al., 2020; Yin et al, 2021). However,
in cardiovascular diseases, there are few studies on m6A,
which mainly focus on heart failure, hypertension, coronary
atherosclerotic heart disease, etc., and there are still no clear
results in the related studies on atrial fibrillation (Mo et al., 2019;
Berulava et al, 2020; Guo et al., 2020). Therefore, clarification
of how m6A regulatory genes are involved in AF may provide
new insights into the mechanism, prevention, and treatment of
AF.

In the present study, we comprehensively evaluated the
significance of the AF subtype results of two genotyping methods
based on the GSE115574, GSE14975, and GSE41177 datasets from
the Gene Expression Omnibus (GEO) database. We established a
nomogram model predicting the incidence of AF based on five
m6A regulatory genes (ZC3H13, YTHDF1, HNRNPA2B1, IGFBP2,
and IGFBP3). In addition, we revealed that the results of the two
genotyping methods were highly consistent in different aspects,
which may be meaningful to the classification and treatment of AF.
The research flow and rationale are shown in Figure 1.

Abbreviations: ACE, angiotensin converting enzyme; AF, atrial fibrillation;
CDF, cumulative distribution function; CFs, cardiac fibroblasts; DCA,
analysis of decision curves; DEGs, differentially expressed genes; ERK,
extracellular signal-regulated kinases; GEO, gene expression omnibus; GO,
gene ontology; GWAS, genome-wide association studies; HNRNPA2B1,
heterogeneous nuclear ribonucleoprotein A2/B1; IGF, insulin-like growth
factor; IGFBP2, insulin-like growth factor-binding protein-2; ILK, integrin-
linked kinase; KEGG, Kyoto Encyclopedia of Genes and Genomes;
m6A, N6-methyladenosine; MDSCs, myeloid dendritic cells; METTL3,
methyltransferase-like 3; NF-kB, nuclear factor kappa-light-chain-enhancer
of activated B cells; PCA, principal component analysis; PTEN, Phosphatase
and tensin homolog; RF, random forest; ROC, receiver operating
characteristic; SR, sinus rhythm; ssGSEA, single sample gene set enrichment
analysis; SVM, support vector machine; VEGF, vascular endothelial
growth factor; YAP, yes-associated protein; YTHDF1, YTH domain N6-
methyladenine RNA-binding protein 1; ZC3H13, Zine finger CCCH domain-
containing protein 13.
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2. Materials and methods

2.1. Data acquisition and preprocessing

We searched for expression microarrays that matched terms
of atrial fibrillation in the GEO database. The top organisms were
filtered by “Homo sapiens,” entry type was filtered by “Series,” and
study type was filtered by “Expression profiling by array.” The
datasets from the same platform, gathered from clinical studies
investigating subjects over 18 years old, employing atrial tissue with
experiments (AF) and controls (SR), were included.

R version 4.2.1 was employed for all data processing. All
datasets were preprocessed by the R packages “impute” and
“limma.” Annotated gene symbols with gene probes. Missing value
imputations were performed. Excluded probes without matching
gene symbols and average genes with multiple probes. The gene
expression quantity with a value greater than 100 was logged,
and the gene expression quantity with a value smaller was not
processed. Then, datasets were merged and processed to eliminate
batch effects and analyzed using the R packages “limma” and “sva.”
Finally, each sample was annotated as “treat” or “con” to distinguish
the AF samples from the SR samples.

2.2. Extraction and differential analysis of
m6A regulatory genes

Twenty-three m6A regulatory genes were collected, including
seven writers, fourteen readers, and two erasers. The significant
m6A regulatory genes with statistically significant expression levels
between the AF samples and the SR samples were screened out
and visualized (p < 0.05). A boxplot was plotted employing the
“ggpubr” package, and a heatmap was plotted employing the
“pheatmap” package in R software. Perl language was used to make
each extracted m6A regulatory gene correspond to its chromosomal
location, which was visualized by the R package “RCircos.”

2.3. Correlation analysis among m6A
readers, writers, and erasers

Spearman analysis was conducted with the R packages
“ggplot2” “ggpubr” and “ggExtra” to explore and visualize the
correlations among these m6A regulatory genes. The absolute value
of the correlation coefficient was set to no less than 0.4. The p-value

was set to no less than 0.001.

2.4. Establishment of the RF, SVM, and
nomogram models

Classifiers based on machine learning, random forest (RF) and
support vector machine (SVM), were established to determine
feature m6A regulatory genes among significant m6A regulatory
genes and predict the incidence of atrial fibrillation. The expression
levels of significant m6A regulatory genes in 107 samples from
GSE115574, GSE14975 and GSE41177 were used as training
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Flow chart of research design and analysis. The data of 65 AF samples and 42 SR samples from three datasets, GSE115574, GSE14975 and GSE41177,
were acquired from the GEO database. The expression levels of 23 m6A regulatory genes were extracted. Their locations on chromosomes were
located, and correlation analysis was conducted among them. Significant m6A regulatory genes were screened out. The random forest (RF) model
was proven superior to the support vector machine (SVM) model. Feature genes in significant m6A regulatory genes were determined by the RF
model to establish a predictive nomogram model. The data of 14 AF samples and 12 SR samples from dataset GSE79768 were used for external
validation. The m6A subtypes were identified based on the significant m6A regulatory genes, and analysis of immune infiltration was conducted
between m6A subtypes. The m6A-related differentially expressed genes (DEGs) were screened between m6A subtypes to conduct Gene Ontology
(GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and genotype the AF samples into m6A gene
subtypes. Differential analysis of the m6A score computed by principal component analysis (PCA) algorithms and proven AF-related genes was
conducted between the results of the two genotyping methods. The consistency of m6A subtypes, m6A gene subtypes and m6A scores was
demonstrated in a Sankey diagram. *p < 0.05, **p < 0.01, and ***p < 0.001.
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data, while 26 samples from GSE79768 were used for external
validation. The accuracy of the two models was compared by
plotting “boxplots of residual,” “reverse cumulative distribution
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of residual” and “receiver operating characteristic (ROC)” curves.
The RF model was established by the “randomForest” package
in R software, and in this model, it was set to 3 and 500 for
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TABLE 1 Twenty-three m6A regulatory genes extracted in this study.

Type m6A regulatory genes

METTL3
METTL14
WTAP
ZC3H13
RBM15
RBM15B
CBLL1
YTHDC1
YTHDC2
YTHDF1
YTHDEF2
YTHDE3
HNRNPC
FMR1
LRPPRC
HNRNPA2B1
IGFBP1
IGFBP2
IGFBP3
ELAVL1
IGF2BP1
FTO
ALKBH5

m6A writer

m6A reader

mO6A eraser

Through atrial tissue gene analysis between patients with atrial fibrillation (AF) and sinus
rhythm (SR), we extracted 23 m6A regulatory genes from the datasets, including seven
writers, fourteen readers, and two erasers.

mtry and ntree, respectively. The importance of significant m6A
regulatory genes was assessed according to the selected optimal
ntree. We employed the “rms” package in R software to depict a

10.3389/fncel.2023.1073538

nomogram model that can predict the incidence of atrial fibrillation
according to feature m6A regulatory genes. A calibration graph
is used to compare the projected value with the actual value.
Additionally, a decision curve analysis (DCA) was conducted, and
a clinical impact curve was depicted to determine the benefits of the
model for patients.

2.5. Consensus clustering analysis and
analysis of differentially expressed levels
of immune cell infiltration

We employed the unsupervised clustering algorithm by
the “ConsensusClusterPlus” package in R software. On the
basis of the consensus level of significant m6A regulatory
genes, we divided the AF samples into diverse subtypes. The
most reasonable number of subtypes was decided on the
delta area plot and consensus cumulative distribution function
(CDF) curves. Additionally, we performed principal component
analysis (PCA) to assess the classification. Employing single-
sample gene set enrichment analysis (ssGSEA), we computed
the AF samples’ immune cell abundance. Furthermore, on
the basis of the ssGSEA score, immuno-correlation analysis
was performed. Heatmaps and boxplots were generated to
display the results.

2.6. Identification of m6A gene subtypes
based on the DEGs among m6A subtypes

Differentially (DEGs)
subtypes were screened out and used to

expressed  genes among mO6A
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FIGURE 2

The m6A regulatory genes in AF samples and SR samples. (A) The differential expression boxplot of 23 m6A regulatory genes between patients with
AF and SR. (B) The expression heatmap of five significant m6A regulatory genes in the AF samples and SR samples. (C) The chromosomal position of

the m6A regulatory genes. *p < 0.05, **p < 0.01, and ***p < 0.001.
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Ontology (GO) enrichment analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis. Then,
DEGs were used to perform an unsupervised clustering
algorithm, dividing AF samples into different m6A gene
The PCA utilized to
a m6A score for each AF sample. Difference analysis of

subtypes. technique was compute
the m6A score between the m6A subtypes or m6A gene
subtypes was performed. A Sankey diagram was plotted
by the R packages “ggalluvial” “ggplot2” and “dplyr” to

demonstrate the consistency among the m6A subtypes, m6A

«

gene subtypes and m6A scores.

2.7. Differential analysis of AF-related
genes in different subtypes

Some AF-related genes were chosen to perform differential
analysis in m6A subtypes and mé6a gene subtypes, including
SCN5A, KCNH2, TBX3, TBX5, NKX2-5, PITX2, PRRX1, KCNJ5,
CASQ2, PKP2, GJAS5, KCNJ2, and MYH?7 (Roselli et al., 2018). The
m6A methylation status of these genes was checked in the m6A-
Atlas and directRMDB databases (Tang et al., 2021; Zhang et al,
2023). Heart tissue-specific methylation information was checked
in m6A-TShub (Song et al.,, 2022).

3. Results

3.1. Data collection

The data of 107 samples from three datasets, GSE115574,
GSE14975 and GSE41177, were downloaded from the GEO
database for training, including 42 SR samples and 65 AF samples.
The data from the three datasets were normalized, merged, and
processed by R language to eliminate batch effects. The data from
the GSE79768 dataset, which included 14 AF samples and 12 SR
samples, were downloaded from the GEO database and normalized
for external validation.

3.2. Landscape of the 23 m6A regulatory
genes in atrial fibrillation

Twenty-three m6A regulatory genes were extracted, including
seven writers, fourteen readers, and two erasers (Table 1). The
differences in the expression levels of 23 m6A regulatory genes
between the AF samples and SR samples are presented (Figure 2A).
Five genes with statistically significant expression levels (ZC3H13,
YTHDF1, HNRNPA2BI1, IGFBP2, and IGFBP3) were screened
out (p < 0.05). IGFBP2, YTHDFI, and IGFBP3 were upregulated
in the AF samples and downregulated in the SR samples. In
contrast, ZC3H13 and HNRNPA2B1 were downregulated in the
AF samples and upregulated in the SR samples. The heatmap of
the five significant genes was plotted (Figure 2B). The locations
of the m6A regulatory genes on chromosomes are presented in
Figure 2C.
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3.3. Correlation among m6A readers,
writers, and erasers in atrial fibrillation

How m6A readers, writers, and erasers correlated with
each other was examined by linear regression analyses. In
general, it showed high positive correlations between readers’
and writers expression levels (Figures 3A-J), while readers
YTHDC2 displayed negative correlations with writer RBM15B
(Figure 3K). The most significant correlation was between
reader HNRNPA2B1 and writer METTL3, with a correlation
coefficient of 0.64 and a p-value of 1.2e-08 (Figure 3F).
Positive correlations were also found between the reader
YTHDEF2 and eraser FTO (Figure 3L). Atrial fibrillation
patients with a high level of the eraser ALKBH5 showed
low expression levels of the reader HNRNPA2B1 and writer
METTL3 (Figures 3M, N). Further details are provided in
Supplementary File 1.

3.4. Establishment of the RF, SVM, and
nomogram models

Both the RF model and SVM model were developed using
training data to determine feature m6A regulatory genes within
the five significant m6A regulatory genes to characterize disease
and forecast the incidence of atrial fibrillation. Using the data
from dataset GSE79768 for external validation, the results
of the boxplots of residual, reverse cumulative distribution
of residual, and ROC curves (Figures 4A-C) revealed that
the RF model predicts more accurately, indicating that this
model was superior to the SVM model. The RF model
showed a lower residual value and a larger area under the
ROC curve than the SVM model. This can be attributed
to the RF models ability to handle complex interactions
and non-linear relationships among variables, as well as
reducing overfitting and bias by averaging the outcomes of
multiple decision trees. As a result, the RF model was chosen
(Figure 4D). We checked the five significant m6A regulatory
genes after they were ranked according to their importance
(Figure 4E).

Because their importance scores were all greater than
2, they were all qualified for establishing the nomogram
model (Figure 5A). In the nomogram model, each gene
can be scored individually. The total score that can predict
the incidence of atrial fibrillation is computed by adding
up the scores. The data from dataset GSE79768 were used
for external validation again. The solid and dotted lines
were close in the calibration curves (Figure 5B). The red
line representing the m6A genes in the decision curve
deviated from the gray and black lines (Figure 5C). Both
the above graphs and the clinical impact curve (Figure 5D)
indicated that the model demonstrates promising potential
for prognosis in atrial fibrillation patients. However, we
acknowledge the need for further validation with larger
diverse datasets to confirm its

and more prognostic

capability.
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Clustering analysis of five significant m6A regulatory genes
associated with AF. (A—D) Consensus matrices display the clustering
of the five significant m6A regulatory genes for k values ranging
from 2 to 5. (E) The k value of 2 exhibits the smallest descending
grade in the consensus cumulative distribution function (CDF)
curve, indicating optimal clustering. (F,G) Expression heatmap and
boxplot demonstrate the differential expression of the five
significant m6A regulatory genes between cluster A and cluster B.
(H) Principal component analysis (PCA) illustrates the distinct
expression patterns of m6A subtypes. Statistical significance is
denoted as follows: ***p < 0.001.

3.5. Two m6A subtypes identified by
significant m6A regulatory genes

The consensus clustering algorithm in the R package
“ConsensusClusterPlus” was adopted to identify m6A subtypes
according to the five significant m6A regulatory genes. The
results showed that the AF samples were divided into two m6A
subtypes (Figures 6A-E). Eighteen samples belonged to Cluster
A, while 47 samples belonged to Cluster B (Supplementary
File 2). To demonstrate the differential expression of the five
significant m6A regulatory genes between the two clusters, a
heatmap and a boxplot were graphed (Figures 6F, G). There
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was evidently a greater level of IGFBP2 expression in cluster A
(p < 0.001).

Principal component analysis of the expression of the five
m6A regulatory genes indicated that the two m6A subtypes
could be distinguished by the five genes (Figure 6H). Employing
ssGSEA, we computed AF sample immune cell abundance.
In this study, we examined the differences in immune cell
infiltration between clusters A and B (Figure 7A). Compared
to cluster B, cluster A displayed a higher number of infiltrated
immature dendritic cells (p < 0.05). In addition, an examination
of the relationship between five significant m6A regulatory
genes and immune cells was conducted (Figure 7B). The
outcome showed that immune cells were most strongly
associated with IGFBP3. We performed correlational analysis
between IGFBP3 and immune cells (Figure 7C). There was
an increase in immune cell infiltration of regulatory T cells
(p < 0.05), natural killer cells (p < 0.05), and activated
CD4 T cells (p < 0.05) in samples with higher IGFBP3
expression.

3.6. Identification of two m6A gene
subtypes and consistency check
between two genotyping methods

Six m6A-related DEGs with statistically significant expression
levels were identified between the two m6A subtypes and were
included in the KEGG and GO functional enrichment analyses. The
top 10 biological processes, cellular components, and molecular
functions are shown in Supplementary Figure 1B. The top 10
KEGG pathways are shown in Supplementary Figure 1D. These
DEGs were mainly enriched in the following pathways: vascular
smooth muscle contraction, cGMP-PKG signaling pathway, and
thermogenesis. The consensus clustering algorithm was employed
again. On the basis of six m6A-related DEGs between two m6A
subtypes, two m6A gene subtypes were identified (Figures 8A-
E), which was similar to the genotyping results of m6A subtypes
(Supplementary File 3). How the six m6A-related DEGs were
expressed in m6A gene subtypes is displayed in the heatmap
(Figure 8F). Similar to the m6A subtypes, IGFBP2 expression
was evidently higher in gene cluster A (p < 0.001) (Figure 8G).
To exactly quantify the m6A subtypes, PCA was adopted to
compute the m6A score. A differential analysis of the m6A score
was performed between m6A subtypes or m6A gene subtypes.
The outcome indicated that cluster A or gene cluster A scored
statistically higher than the other clusters (p < 0.05) (Figures 9A,
B). In the Sankey diagram, we observed high consistency among the
m6A subtypes, m6A gene subtypes, and m6A scores (Figure 9C).

3.7. Role of m6A genotyping in
classifying atrial fibrillation

To uncover the link between atrial fibrillation and the results of
the two genotyping methods, we examined the correlation between
the two genotyping results and SCN5A, KCNH2, TBX3, TBX5,
NKX2-5, PITX2, PRRX1, KCNJ5, CASQ2, PKP2, GJA5, KCNJ2,
and MYH?7. These genes have been verified to be involved in AF
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FIGURE 7

Analyses based on ssGSEA results. (A) Differences in immune cell infiltration between cluster A and cluster B. (B) Immuno-correlation analysis was
performed between immune cells and five significant m6A regulatory genes. IGFBP3 was the most strongly associated with immune cells.
(C) Differential immune cell infiltration between groups with lower and higher IGFBP3 expression. *p < 0.05.
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(Roselli et al., 2018). All these genes are present in m6A-Atlas,
while KCNH2, TBX3, NKX2-5, PITX2, PRRX1, KCNJ5, PKP2,
and KCNJ2 are present in directRMDB due to the two databases
using different techniques (Tang et al., 20215 Zhang et al., 2023).
Unfortunately, these genes are not specifically methylated in heart
tissues according to m6A-TShub (Song et al., 2022). The outcome
demonstrated that both cluster A (p < 0.01) and gene cluster A
(p < 0.001) had lower PRRX1 expression levels, which indicated
that cluster A and gene cluster A may have action potential
shortening (Tucker et al., 2017; Figures 9D, E).

4. Discussion

We screened five significant m6A regulatory genes from a
total of 23 extracted m6A regulatory genes. With the RF model,
we established a nomogram model to predict the incidence of
AF based on the five feature genes. Then, we genotyped the AF
samples according to five significant m6A regulatory genes and six
m6A-related DEGs. Furthermore, we performed diverse analyses,
including m6A regulatory gene expression, immune infiltration,
PCA, and AF-related gene expression, of the genotyping results,
discovering that the subtype results of the two genotyping methods
were consistent.

Atrial fibrillation is the most common serious arrhythmia in
clinical practice. Despite extensive research on AF pathogenesis
and treatment, therapeutic outcomes remain suboptimal, and AF
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continues to be a significant contributor to mortality and healthcare
expenditure (Zimetbaum, 2017; Hu et al., 2019; Qin et al., 2019).
Recent studies have indicated that m6A, as an essential regulator,
is involved in cancer development (Zhang et al., 2017; Cai et al.,
2018). However, there are still limited studies on the mechanism of
m6A regulatory genes in atrial fibrillation. Thus, investigating how
mo6A regulatory genes are involved in AF, constructing a nomogram
model to predict the incidence, classifying AF patients according to
m6A regulatory genes, and clarifying genotyping significance will
be helpful for AF treatment and prevention.

In this study, we focused on the relevance of our findings
to the regulatory mechanisms leading to AF and their potential
clinical applicability. We provided concise information regarding
the potential biological and clinical translation of our findings.
In our study, we found that IGFBP2, IGFBP3, and YTHDF1
were upregulated in AF samples, highlighting their potential
biological significance in AF development and progression. IGFBP-
2 is crucial for VEGF expression and angiogenesis (Azar et al,
2014). VEGF-D concentrations have been associated with AF
(Berntsson et al,, 2019), suggesting IGFBP-2’s role in AF through
VEGEF-D regulation. IGFBP2 promotes ERK phosphorylation
in an integrin-dependent manner (Han et al, 2014), which
could link it to atrial fibrosis and AF pathogenesis via cellular
signaling pathways (Goette et al., 2000). IGFBP2 activates integrin
B1 and downstream pathways, requiring ILK for cell motility
induction and NF-kB activation (Holmes et al., 2012). NF-
kB is involved in inflammatory cytokines, thrombogenesis, and
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Consensus clustering of the six m6A-related DEGs. (A—D)
Consensus matrices of the six m6A-related DEGs (k = 2—-5). (E) The
k value of 2 had the smallest descending grade in the consensus
CDF curve. (F) Expression heatmap of six feature m6A-related DEGs
between gene cluster A and gene cluster B. (G) Expression boxplot
of the five significant m6A regulatory genes between gene cluster A
and gene cluster B. *p < 0.05, ***p < 0.001.
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fibrosis gene expression (Haradaetal,2015), suggesting that
the IGFBP2/integrin/ILK/NF-kB network may contribute to AF
development and progression. IGFBP2 suppresses PTEN and
promotes vascular smooth muscle cell growth through enhanced
PTEN tyrosine phosphorylation via dimerization with RPTPB
(Shen et al,, 2012). Given the role of the PTEN/AKT/mTOR
pathway in cardiac hypertrophy and fibrosis (Sun et al,
2021), IGFBP2’s modulatory effect on PTEN may influence AF
development. m6A modifications may control IGFBP3 expression
during cardiac fibrosis development (Ding et al., 2023). Silencing
METTL3 led to downregulation of IGFBP3 expression and
inhibition of cardiac fibroblast activation and fibrosis (Ding
et al, 2023). Low IGF1/IGFBP3 ratios are associated with
higher AF prevalence (Busch et al, 2019). ALKBH5-mediated
m6A modification increased YTHDF1 expression, promoting the
translation of Yes-associated protein (YAP), a core regulator of
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heart regeneration (Han et al., 2021). This process may be related
to the lack of cardiac repair in AF.

At present, predictors of risk models for predicting AF
incidence include classical cardiovascular risk factors, biomarkers,
genetic variants, and imaging methods (Yuasa and Imoto, 2016;
Borschel et al, 2021; Yang et al, 2022). Several risk models,
such as CHARGE-AF and HMS, have been assessed for their
accuracy in identifying high-risk individuals (Poorthuis et al,
2021). Genetic risk prediction models have also been developed,
with some showing improved AF prediction as the number of
SNPs increases (Lubitz et al., 2017; Borschel et al., 2021). However,
no study has used m6A regulatory gene expression to establish a
predictive model. Our nomogram model provides a convenient tool
for predicting AF incidence at the gene expression level but needs
validation with larger samples.

Inflammation is one of the risk factors for atrial fibrillation.
Inflammation and the immune response caused by it participate
in the occurrence and development of AF (Aviles et al., 2003;
Hu et al, 2015). A recent review also proposed the concept
of immune remodeling in AF, highlighting significant changes
in the immune system during AF and its interactions with the
cellular and environmental factors involved in AF initiation and
maintenance (Yao et al., 2022). Studies suggest that dendritic cells
and regulatory T cells may be related to AF pathogenesis (Li et al.,
2021; Xiao et al., 2021; Liu et al., 2022; Xie et al., 2022). The PD-
1/PD-L1 pathway plays a key role in AF immunomodulation by
regulating T-cell activation and promoting inflammatory factor
secretion (Liu et al,, 2015; Chang et al., 2022). IL-6-miR-210 can
inhibit regulatory T-cell function by targeting Foxp3, promoting
atrial fibrosis and leading to AF development (Wang et al., 2021).
Our study found differences in immune cell infiltration, including
immature dendritic cells, regulatory T cells, natural killer cells, and
activated CD4 T cells, between m6A subtypes and AF samples
divided by IGFBP3 expression. These findings imply that m6A may
be involved in AF development by regulating immune infiltration.

Atrial fibrillation is thought to depend on abnormal pulse
formation, conduction, and the propensity to reenter the ostium
of the pulmonary veins. Most AF-causing foci are located near
the pulmonary veins’ ostium, where myocardial cells and vascular
smooth muscle cells interlace (Wijffels et al., 1995; Haissaguerre
et al, 1998; Carballo et al, 2018). Gap junction proteins in
cardiomyocytes are regulated by the phenotypic transition of
pulmonary vein vascular smooth muscle cells, leading to heterolytic
junctions and AF occurrence (Zhou et al., 2020). KEGG analysis
revealed that the vascular smooth muscle contraction pathway
was significantly enriched, suggesting that the m6A gene may
be involved in regulating vascular smooth muscle cells on
cardiomyocytes, leading to AF. This finding aligns with previous
studies and adds new hints for understanding the mechanism of
AF and guiding its treatment.

We analyzed 13 genes related to AF between m6A subtypes
and m6A gene subtypes and found that PRRX1 was significantly
different between the two genotyping methods. Reduced PRRX1
expression leads to shortened action potentials in cardiomyocytes
and may promote AF (Tucker et al., 2017). Another study with over
half a million subjects showed that reduced PRRX1 expression was
associated with AF (Roselli et al., 2018). The finding that proven AF
genes were expressed differently in our classified subtypes indicates

frontiersin.org


https://doi.org/10.3389/fncel.2023.1073538
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/

Zhao et al. 10.3389/fncel.2023.1073538
A m6ACluster =5 A= B geneClusterss A= B
0.0014 0.00099 |
2.5 2.5
) )
Q Q
200 200
%] %]
IS IS
-2.5 °© . -2.5 .
-5.0 -5.0
o geneCluster B 7 geneCluster =
[
m6Acluster geneCluster m6Ascore
D m6ACluster 5 A3 B E geneClusteres A= B
812 b ¥ 5o & =
17} 7]
173 . 173 .
I 2
S S
59 . 59 .
j |Tra 5 |7
o} o . oo o] (- .
g [Fde @ |1 2 § | SRRy 4
6] * b # 6] * %T T
+* ’ += : ’
3 T © P a9 N8 & CIRZRS 3 Y 2 NS & & A
FXPR R IF L P IL FLIL LI FP I P
PN e L TESFEL TS EXFFL TE P LSS
SO CCFELEF TS HeCECFELLFE TS
FIGURE 9
Role of m6A subtypes and m6A gene subtypes in distinguishing AF. (A,B) m6A score differences between m6A subtypes or m6A gene subtypes
(P < 0.05). (C) Sankey diagram demonstrating the consistency among m6A subtypes, m6A gene subtypes, and m6A scores. (D,E) Differential
expression levels of SCN5A, KCNH2, TBX3, TBX5, NKX2-5, PITX2, PRRX1, KCNJ5, CASQ2, PKP2, GJAS5, KCNJ2, and MYH7 between m6A subtypes or
mM6A gene subtypes. *p < 0.05, **p < 0.01, and ***p < 0.001.

that our results are consistent with previous studies and that the
classification is meaningful.

Overall, the highlights of our study are establishing a predictive
model and proposing new genotyping methods based on m6A
regulatory genes, which may improve the prediction of AF clinically
and guide the molecular mechanism study of AF. However,
there are still some limitations in this research. First, due to
the lack of large datasets that meet the conditions in the geo
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database, we combined three chips from the same platform GP570,
which resulted in the batch effect. In our study, we focused
on the distinction between AF and control patients, but we
acknowledge the importance of differentiating between the clinical
subtypes of AF such as paroxysmal, persistent, and permanent
AF. However, due to the limited availability of suitable GEO
datasets, we were unable to conduct a comparative study of these
subtypes. The challenges in obtaining data on paroxysmal AF and
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the predominance of persistent and permanent AF cases in existing
datasets further complicated the analysis. We hope that there will be
enough datasets in the GEO database or collected by us to improve
our study. Second, the number of DEGs between m6A subtypes
was so small that we could not perform effective GO enrichment
analysis and KEGG analysis (Supplementary Figure 1). The
specific reasons also need further research. Third, the genes that we
examined for correlation with the two genotyping results are not
heart tissue-specific methylated according to m6A-TShub (Song
et al, 2022). Most importantly, additional experiments should be
carried out to elucidate the molecular mechanisms contributing to
AF. We would like to solve these limits in the future.

5. Conclusion

In conclusion, the diversity of m6A regulatory gene expression
patterns has a significant influence on the heterogeneity of atrial
fibrillation. The predictive model we established may optimize the
prediction of atrial fibrillation. Comprehensive analysis of the two
subtypes may contribute to discovering the molecular mechanism
of AF and guiding treatment based on individual genotyping.
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