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Mathematical model of
mechanobiology of acute and
repeated synaptic injury and
systemic biomarker kinetics
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2Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research
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Background: Blast induced Traumatic Brain Injury (bTBI) has become a signature

casualty of military operations. Recently, military medics observed neurocognitive

deficits in servicemen exposed to repeated low level blast (LLB) waves during military

heavy weapons training. In spite of significant clinical and preclinical TBI research,

current understanding of injury mechanisms and short- and long-term outcomes

is limited. Mathematical models of bTBI biomechanics and mechanobiology of

sensitive neuro-structures such as synapses may help in better understanding

of injury mechanisms and in the development of improved diagnostics and

neuroprotective strategies.

Methods and results: In this work, we formulated a model of a single synaptic

structure integrating the dynamics of the synaptic cell adhesion molecules (CAMs)

with the deformation mechanics of the synaptic cleft. The model can resolve time

scales ranging from milliseconds during the hyperacute phase of mechanical loading

to minutes-hours acute/chronic phase of injury progression/repair. The model was

used to simulate the synaptic injury responses caused by repeated blast loads.

Conclusion: Our simulations demonstrated the importance of the number of

exposures compared to the duration of recovery period between repeated loads on

the synaptic injury responses. The paper recognizes current limitations of the model

and identifies potential improvements.

KEYWORDS

traumatic brain injury, biomarkers, mechanobiology, neurobiology, synaptic damage,
mathematical modeling, injury and repair, repeated blast

1. Introduction

Repeated concussions, relatively common in contact sports, have been recognized as
serious medical events that can cause sustained cognitive and psychiatric changes, as well as
neurodegeneration (McKee et al., 2009; Prins et al., 2013; Greco et al., 2019; Zetterberg et al.,
2019; Kashyap et al., 2022). Recently, it has become evident that non-injurious sub-concussive
repeated head impacts, such as frequent heading in soccer, may result in acute and chronic
neurological effects (Ashton et al., 2020; Kakavas et al., 2021; McCunn et al., 2021; Sandmo
et al., 2022). Blast induced traumatic brain injury (bTBI) has been referred to as a hallmark
neurological signature in servicemen exposed to blast waves generated by improvised explosive
devices (IED) during recent military operations (Cernak, 2017; DePalma and Hoffman, 2018;
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Elder et al., 2019; Siedhoff et al., 2022). During training, military
personnel may be repeatedly exposed to LLB while using breaching
explosives to gain entry and firing of the heavy weapon systems
such as artillery, mortars, and shoulder mounted recoilless rifles. Just
as in the civilian sports, military medics observed neurocognitive
deficits in servicemen exposed to repeated low level blast (LLB) waves
during military heavy weapons training (Carr et al., 2015; Engel
et al., 2019; Modica et al., 2021). The neurological and neurocognitive
changes experienced by those who have sustained repeated LLB blast
exposures may have different cellular and anatomical underpinnings
compared to those with clinically-diagnosed concussion.

Following recommendations from the U.S. Congress, the U.S.
Department of Defense (DoD) is taking steps to understand and
mitigate any potentially harmful effects from the occupational blast
exposure. The goal of that program is to register the blast pressure
profiles, referred to as a “dose”, using wearable sensors on individual
serviceman during weapon training and to collect the medical data,
“response” at various times post-exposure. However, to date there are
no clear methods to correlate the dose and response parameters that
could be used for definite medical diagnostics.

Mathematical models of brain injury biomechanics (Gupta
and Przekwas, 2013; Garimella and Kraft, 2017; Garimella et al.,
2018), coupled to mechanobiology of injury sensitive neuroaxonal
structures (Przekwas et al., 2016) and neuro signaling pathways
could help in better understanding and quantitation of the dose-
response challenge. Reported mathematical models of brain-scale
blast-induced biomechanics can predict local brain tissue stress-
strain profiles (Gupta et al., 2017). However, in spite of large
volume of work on mathematical modeling of synaptic, axonal and
neuronal neurotransmission, metabolism and signaling pathways
very little has been reported on modeling synaptic mechanobiology
(Przekwas et al., 2016; Hall et al., 2021; Keating and Cullen, 2021;
Hoffe and Holahan, 2022; Procès et al., 2022). In the present
paper we introduce an initial formulation of a computational
model of a mechanobiological “response” of a neuronal synapse to
acute and repeated sub-concussive blast loads. We focused on the
mechanobiology of a synaptic cleft for its very sensitive structural
morphology and its extreme metabolic and neurophysiological
activity. Our goal is to develop a prototype mathematical model of
the acute and repeated mechanical injury of the synaptic cleft, linked
to the sub-acute/chronic synaptic biochemical responses and release
of biomarkers that could be detected in body fluids. This model

will be introduced as a part of the computational framework, CoBi-
Neuro, linking the dose represented by blast induced brain scale
biomechanics and the micro-mechanics of injury sensitive neuro-
structures and the response simulated by mechanobiology of these
structures, release of injury biomarkers, and their bio-distribution in
human body fluids, Figure 1.

Due to the anatomical and neurological complexity of the
human brain and wide range of spatial and temporal scales such
computational model inherently involves various approximations
and assumptions (Gupta et al., 2017). Development and validation
of such a model requires experimental data for the dose and the
response model components. Reliable experimental data of blast wave
loads on the human physical surrogate body/head can be collected
and used to validate the dose model. Moreover, the blast dose on
the US servicemen involved in weapon training can be computed
using the wearable pressure sensor and weapon blast signature data
(Przekwas et al., 2021). Acquisition of direct and objective data
for the development and validation of the human neuro-response
model is not feasible. Experimental data from animal models and
in-vitro devices such as brain-on-chip, could provide some of the
mechanobiological data but the translation to humans is debatable.
However, medical imaging and body fluid biomarkers data can
provide an indirect data for the development and validation of the
neuro-response model. In this work we use brain injury biomarkers
collected from the body fluids at various time points post-blast
exposure (Gupta et al., 2017) to develop a prototype neuro-response
model. Figure 1 schematically identifies major components of the
CoBi-Neuro repeated brain injury dose-response framework.

2. Materials and methods

2.1. Mechanobiology of synaptic injury:
Model description

We first present a novel mathematical framework to study
temporally multiscale synaptic damage mechanisms. In this work, we
use the term synapse as a short-hand for the chemical synapses in
the brain. Synapses are comprised of three main components. First,
a pre-synaptic membrane which contains a high concentration of
mitochondria and neurotransmitter vesicles. Second, synaptic cleft
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is the gap between two nerve cells across which neurotransmitters
diffuse after release from vesicles. Third, a post-synaptic membrane
that contains receptor sites to which neurotransmitters bind leading
to permeability change that produces the post-synaptic potential.

Motivated by models of immunological synapse assembly (Qi
et al., 2001), we postulate that the configuration of the synapse is
governed by the mechanical inter-membrane separation distance that
drives the system to the minimum free energy functional. We assume
that the pre- and post-synaptic membranes form two parallel rigid
planes, where the synaptic cleft size is moderated via cell adhesion
molecules (CAMs) complexes. CAMs populate the surface of the
pre- and post-synapse, bind to their counterparts on the opposite
membrane, and form a spring-damper-type network that structurally
supports the synapse structure (Przekwas et al., 2016). In fact, CAM
complex (re)formation, modulated by binding and dissociation of
individual CAMs, plays a pivotal role in the response of synapse to
a forced membrane separation (e.g., in blast-induced deformations).
The ability of the CAMs to form complexes following a separation
depends on their distance and the force acting on their inter-
molecular bond. In addition to CAM-CAM interactions, connection
of a CAM to the pre- or post-synaptic membrane may also play a
role in synaptic damage and recovery. For instance, a fast separation
of the synaptic membranes may lead to detachment of some CAMs
from their cytoplasmic anchor, effectively inhibiting their rebinding.

More than twenty different families of synaptic CAMs have
been identified with diverse adhesive behaviors, calcium sensitivities,
and functions (Bukalo and Dityatev, 2012). However, only three
representative families of CAM complexes are considered in
this work to reduce the model and parameter complexities: (1)
Neurexin:Neuroligin, (2) Synaptic CAMs (SynCAMs), and (3)
N-Cadherins (NCADs). Neurexins (pre-synaptic) and neuroligins
(post-synaptic) are CAMs that trans-synaptically interact to provide
connectivity between membranes and ensure proper synaptic
functions. In addition to providing mechanical support, neurexins
(NX) and neuroligins (NL) play crucial roles in neurotransmission
and differentiation of synapses, as well as maintaining NMDA and
AMPA receptor function (Heine et al., 2008). Pathologically, NX-
NL complexes (XL) are involved in amyloid β (Aβ) synaptotoxicity
in Alzheimer’s disease (Brito-Moreira et al., 2017). SynCAM1-4 are
immunoglobin proteins that constitute a family of CAMs central in
synaptogenesis (Fowler et al., 2017). In addition, although SynCAM1-
4 can form homophilic bonds, they preferentially assemble into
heterophilic complexes (Fogel et al., 2007). Lastly, NCADs are
a subgroup of the super-family of Ca2+-dependent CAMs that
homophilically bind together to form the NCAD:NCAD complex
and contribute to formation stability of the synapses (Arikkath and
Reichardt, 2008). The cytoplasmic end of cadherins form a strong
catch bond with catenins where force strengthens the bound state
(Buckley et al., 2014).

2.2. Mechanobiology of synaptic injury:
Model formulation

In this section, we present the mathematical model of the
dynamics of synaptic injury and recovery and binding/unbinding of
CAMs constrained in pre- and post-synaptic membranes. The model
is described by a set of ordinary differential equations (ODEs). In all
the formulations we assume that thermal noise is negligible compared

to other terms. In addition, we assume a uniform distribution of
synaptic CAMs on the membrane surfaces and neglect their diffusion.

Our model has been adapted from an immunological synapse
model (Qi et al., 2001) which accounts for intra-membrane
diffusion of both receptors and complexes. Such model becomes
multidimensional (at least 2D axisymmetric). It was feasible to
calibrate that model, lasting several minutes, using in vitro imaging
data. We decided to simplify the immune synapse model for two
reasons: (1) in the neuronal synapse there is a myriad of other
transmembrane proteins that would complicate the diffusion model,
and (2) at present there is lack of data for calibration of the diffusive
transport of adhesion molecules and their complexes. We have also
neglected interstitial fluid flow in the synaptic cleft during sudden
mechanical extension and slow recoil.

Neurexin-Neuroligin Reactions: The kinetics of NX, NL, and their
complex XL are expressed using the reaction equations

dCNX

dt
= − kon,XL·CNX ·CNL + koff ,XL

(
fXL
)
·CXL

−kNX
rupCNX + kNX

syn , (1)

dCNL

dt
= − kon,XL·CNX · CNL + koff ,XL

(
fXL
)
·CXL

−kNL
rupCNL + kNL

syn, and (2)

dCXL

dt
= + kon,XL·CNX ·CNL − koff ,XL

(
fXL
)

·CXL − (1− PXL) kbreak,XLCXL︸ ︷︷ ︸
downregulation

, (3)

where CNX , CNL, and CXL are surface concentrations of NX, NL, and
XL, respectively. The unbinding rate koff ,XL varies with force acting
on the intermolecular bond (Bell, 1978)

koff ,XL = k0
off ,XL·e

fXL
f0,XL , (4)

where k0
off ,XL is the baseline unbinding rate, fXL is the total force

generated in XLs during synapse separation. Total force is normalized
by a reference force f0,XLwhich we define as

f0,XL = NXL
KBT
xXL

(5)

where NXL the total number bound XLs, KB and T are Boltzmann’s
constant and temperature, respectively, and xXL is the distance
between potential energies of the intact and broken states
(Ahmadzadeh et al., 2015). The binding rate is assumed to follow a
Gaussian distribution centered around optimal cleft distance (z0)

kon,XL = k0
on,XL·e

−
(z−z0)

2

2σ2 , (6)

with baseline k0
on,XL and distribution width σ. Furthermore,

a portion of XL complexes may detach from their cytoplasmic
connections during the insult. There are two potential
parametrizations for this CAM-membrane detachment: pulling
rate dependent and rupture force dependent. In this work, we
use the pulling rate as the determining factor for the CAM
detachment from membrane assuming that the detachment only
occurs during the insult (separation of the cleft). We must note that
rate dependent surface detachment are widely studied in adhesive
viscoelastic material research (Violano et al., 2021). This detachment
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is represented by the “down-regulation” term in Eq. (3), where PXL is
defined as

PXL = e
−

s(t)
vbreak,XL . (7)

In this formulation, pulling rate, s(t), is normalized by a factor
vbreak,XL. We assume that this down-regulation only affects the CAM
complexes since the individual unbound CAMs can move with their
base membrane during the insult. During a slow pulling process,
the down-regulation term will vanish (PXL ≈ 1), while during a
fast pulling, this term becomes dominant (PXL ≈ 0). Moreover,
we assume that the NX and NL are produced (kNX

syn and kNL
syn) and

degraded (kNX
rup and kNL

rup) at a constant rate. Therefore, the damage
induced by the fast pulling can be remedied via natural turnover
of NX and NL over time. However, we will refer to this damage as
irreversible with regards to the timescale of our analysis here. We
must note that the stoichiometry of NL is 2:2 (Comoletti et al., 2008),
however, their dimer concentrations are considered in this work.

SynCAM Compartment (the complex is SynC12): SynCAM1
preferentially binds SynCAM2 to form a complex (Fogel et al., 2010),
hence we use SynC12 for their complex. However, for simplicity we
assume that SynCAM1 and SynCAM2 have the same properties and
concentrations. Therefore, the kinetics of SynCAM and associated
complex SynC12 can be written as

dCSynC

dt
= − kon,SynC·C2

SynC + koff ,SynC
(
fSynC12

)
·CSynC12

−kSynC
rup CSynC + kSynC

syn , (8)

dCSynC12

dt

= + kon,SynC·C2
SynC − koff ,SynC

(
fSynC12

)
·CSynC12

−
(
1− PSynC12

)
kbreak,SynC12CSynC12. (9)

Similar to Neurexin-Neuroligin compartment, CSynC and CSynC12
are surface concentrations of SynCAM and SynC12, respectively.
Moreover, the corresponding unbinding rate, binding rate, and
down-regulation factor are defined as

koff ,SynC = k0
off ,SynC·e

fSynC
f0,SynC12 , (10)

kon,SynC = k0
on,SynC·e

−
(z−z0)

2

2σ2 , and (11)

PSynC12 = e
−

s(t)
vbreak,SynC , (12)

where fSynC is the total force in SynC12 CAMs, k0
off ,SynC and k0

on,SynC
are respectively the baseline unbinding and binding rates, and
vbreak,SynC is a pulling-rate normalization factor. Furthermore, a
reference force is defined as

f0,SynC12 = NSynC12
KBT

xSynC12
(13)

where NSynC12 and xSynC12 are similar to their counterparts in Eq. (5).
NCAD Compartment: NCADs homophilically bind together to

form the NCAD:NCAD complex. The cytoplasmic end of cadherins
form a strong catch bond with catenins where force strengthens the
bound state (Buckley et al., 2014). Thus, we ignore the detachment

(down-regulation) term for NCAD and NCAD:NCAD kinetics

dCNCAD

dt

= − kon,NCAD·C2
NCAD + koff ,NCAD

(
fNCAD:NCAD

)
·

CNCAD:NCAD − kNCAD
rup CNCAD + kNCAD

syn , (14)

dCNCAD:NCAD

dt
= + kon,NCAD·C2

NCAD

−koff ,NCAD
(
fNCAD:NCAD

)
·CNCAD:NCAD. (15)

The concentration of unbound NCADs on the pre- and post-
synaptic membranes are assumed to be equal and represented by
CNCAD. Similar to the other CAMs, the binding and unbinding rates
are

koff ,NCAD = k0
off ,NCAD·e

fNCAD:NCAD
f0,NCAD , kon,NCAD = k0

on,NCAD·e
−
(z−z0)

2

2σ2

(16)
where fNCAD:NCAD is the total force in NCAD:NCAD complexes,
k0

off ,NCAD and k0
on,NCAD are respectively the baseline unbinding

and binding rates.
Mechanics of Synaptic Adhesion: Following (Qi et al., 2001), the

free energy functional corresponding to CAM complex deformations
can be written as penalties associated with bond deformation

F =
∑

i

λi

2
Ci (t)

(
z (t)− z0,i

)2
, i ∈ {XL, SynC12,NCAD : NCAD}

(17)
where λi is the curvature of binding energy well for ith complex, and
z(t) and z0,i are the synaptic cleft and optimal complex heights (all
equal to z0 here), respectively. Assuming a constant λi, total force as
a function of CAM complex deformation and concentration is

f =
∑

i

fi, =
∑

i

λiCi (t)
(
z (t)− z0,i

)
. (18)

Finally, the time evolution of synaptic cleft distance z(t) is
described by a time-dependent equation, as a functional derivative
of the free energy, input displacement and s(t),

dz
dt
= −M

δF
δz
+ s (t) , (19)

where M is a phenomenological constant for membrane response
to free energy. The synaptic response to an insult is modeled as a
two-step process: (1) a fast injury marked by a forced separation
of pre- and post-synaptic membranes induced by tension and shear
[s (t) = 0], and (2) synaptic release [s (t) = 0] characterized a
relatively slow recovery of the synapse where the synaptic CAMS
form bounds and pull the membranes together. The configuration
of the synaptic cleft and associated CAM complexes are shown
in Figure 2A. The full implementation of ODEs are provided in
Supplementary material A.

2.3. Biomarker kinetics model description

In this section, we demonstrate the utility of our model in
simulating the release and distribution of injury biomarkers in
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FIGURE 1

Schematic representation of major components of the Dose-Response modeling framework for blast induced synaptic brain injury and biomarkers
kinetics. The Dose module computes blast induced brain macro-biomechanics and the hyper-acute micro-mechanics of synaptic adhesion molecules.
The Response module simulates kinetics of synaptic cell adhesion molecules, synaptic damage/repair, release of synaptic biomarkers into CNS fluids and
their whole-body kinetics (BxK).

FIGURE 2

Panel (A) the schematic representation of a neuronal synapse with four representative families of CAMs. Aß release and kinetics is used to drive the
biomarker kinetics model. Panel (B) the APP cleavage pathways in brain ISF diverge in to amylogenic and non-amylogenic braches, depending on the
activity of sBACE (ß-secretase) and ADAM10 (α-secretase), respectively. Here, a simple four-compartment model is used to simulate transport of Aß
peptides in the body. Temporal kinetics of synaptic injury biomarkers can be monitored in body fluids (plasma, CSF, saliva, . . .).

human body fluids. Several families of synaptic CAMs share common
effectors with neurodegenerative diseases such as Alzheimer’s disease
(AD). For instance, Presenilin-1 (PS1), the catalytic subunit of γ-
secretase (a main component of Amyloid ß production), regulates
the processing of neurexins (Saura et al., 2011). Moreover, animal
studies have shown elevated amyloid precursor protein (APP) levels
(Edwards et al., 2017) following exposure to repeated mild TBI.
Interestingly, increasing evidence suggest that APP itself is a CAM
(Sosa et al., 2017). Motivated by such observations, we incorporate

our mechanobiology model in a biomarker kinetics framework. In
this work, we use Aß42 production as an illustrative example. To
describe the release and distribution of Aß42 in the body, we use
a 4-compartment model adapted from Madrasi et al. (2021), where
Aß42 is produced in brain interstitial fluid (ISF) and peripheral
compartments. Moreover, we neglect the oligomerization process in
the brain ISF. Figure 2B shows the schematic of APP processing
pathways, Aß42 generation, release, transport and bio-distribution in
the body (section “2.3. Biomarker kinetics model description”).
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To link the mechanobiology model to the biomarker release
model, we define a phenomenological function quantifying the
long-term synaptic dysfunction based on the perturbation of CAM
complex concentrations from their homeostatic baseline

SD(t) = w1
CXL (t)− C0

XL
C0

XL
+ w2

CSynC12 (t)− C0
SynC12

C0
SynC12

+w3
CNCAD:NCAD (t)− C0

NCAD:NCAD
C0

NCAD:NCAD
, (20)

where w1, w2, and w3 are the weights associated with each CAM
complex and C0

i are the initial (equilibrium) concentrations. We
assume that the synaptic dysfunction linearly elevates the APP
synthesis rate in the brain ISF, i.e.,

KBISF,synth = K0
BISF,synth + KSDSD (t) , (21)

where K0
BISF,synth is the baseline rate and KSD is a constant. The full

description of ODEs and parameters for Aß42 release and production
are provided in Supplementary material B.

2.4. Parameter selection and global
sensitivity analysis

The parameters of the mechanobiology model are adopted or
inferred from the available data literature. Table 1 summarizes the
parameters, their nominal value, their description, the reference used
for parameters, and the experiment used in the reference.

We use a Sobol sensitivity analysis technique to measure the
contribution of each parameter and its interactions with other
parameters to the output variance. Excluding z0 and equilibrium
concentrations (C0

i ) from the sensitivity analysis, a total of 18
parameters were used in the sensitivity analysis. To incorporate the
inherent large uncertainty in the biological model parameters, each
parameter is varied from 0.01 to 100 times the nominal value with

TABLE 1 List of parameters in the mechanobiology model.

Parameter Nominal value Unit Description Note Relevant
references

z0 0.02 µm Optimal cleft size Gabbiani and Cox, 2010

C0
i NX/NL 140 molec/µm2 Equilibrium concentrations of CAMs Quantum dot experiments

Solution-based experiments
Saint-Michel et al., 2009

(NL:NX)
Perret et al., 2002

(NCAD)
Fogel et al., 2010

(SynCAM)

SynCAM 20

NCAD 200

krup (All CAMs) NX/NL 3.09× 10−6 1/s Degradation, synthesis rate of proteins Inferred from steady state
concentrations and half lives

Cohen et al., 2013

SynCAM 3.09× 10−6

NCAD 3.50× 10−6

k0
off NX/NL 0.015 1/s Equilibrium unbinding rate Quantum dot experiments

Solution-based experiments
Saint-Michel et al., 2009

(NL:NX)
Perret et al., 2002

(NCAD)
Fogel et al., 2010

(SynCAM)

SynCAM 0.015

NCAD 0.45

k0
D NX/NL 50 µm2/molec Equilibrium dissociation constant, used to

compute binding rates

SynCAM 200

NCAD 0.9

f0 NX/NL 4,000 pN Force associated with persistence length
(x0) summed for total number of CAMs

Atomic force microscope
cantilevers
Flow-chamber analysis

Perret et al., 2002;
Mikulska et al., 2014

SynCAM 500

NCAD 4,000

kbreak XL and SynC12s 10 1/s Parameters controlling detachment of
CAMs from cells due to strain

Assumed

vbreak 1 µm/s Assumed

σ 0.013 µm Width distribution of binding constant Assumed Qi et al., 2001

λCAMs 1250 pN.molec/ µm Stiffness of CAMs Assumed

M 10−8 µm2/s Phenomenological constant for synapse
response to free energy changes

Assumed Qi et al., 2001
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a log-uniform distribution. The area-under-curve (AUC) of synaptic
dysfunction following an acute insult, with w1 = w2 = w3 = 1
is used for this analysis. To implement the Sobol method, a Saltelli’s
(Saltelli et al., 2010) sampling scheme was used with a total of 38,912
model evaluations. The sample generation and calculation of total
Sobol index was performed via open-source Python’s SALib (Herman
and Usher, 2017).

3. Results

3.1. Acute response to LLB exposure and
global sensitivity analysis

An acute exposure to LLB is simulated via a forced separation of
pre- and post-synaptic membranes with a pulling rate of 0.01 µm/ms,
cleft size 0.02 µm and duration of 0.5 ms, i.e., equivalent to a strain
rate of 500 1/s (s = 0.01µm/ms

0.02µm 500 1/s), which of the same order
of magnitude as computed in finite element models of blast-induced
brain injury (Panzer et al., 2012). Once the injury duration is over,
the synapse is released and allowed to slowly recover via rebinding of
CAMs.

Figure 3 shows the synaptic response to an acute injury,
characterized by a fast separation of membranes followed by a
slow recovery. Synaptic cleft recovers its original size after a few
minutes. In addition, the model shows a sharp increase in the total
force generated in CAMs followed by a slow decrease, similar to a
viscoelastic response. In the physiological conditions the adhesion
molecules linking the pre- and post-synaptic terminals will be under
an initial tension force. Our model, derived from the immune synapse
model, assumes that the force is relative to the initial state.

Figure 4 shows the CAM responses to the insult. The XL
complexes almost return back to their normal levels minutes after
injury (Figure 4A). However, a closer examination shows that the
insult causes a slight, yet sustained, loss of CAM complexes. This
loss is more pronounced in SynCAM12 complexes. In both XL and
SynC12 cases, the loss will be remedied by the replenishment of lost
proteins via the natural synthesis and degradation process over days-
months after the insult (Supplementary material C). As discussed in
the “2. Materials and methods” section, the NCADs create a strong
catch bond with catenins at their cytoplasmic end. Therefore, they
will not detach from the membranes and are able to fully rebind
within minutes after the injury.

Importantly, the mechanobiology model of synaptic damage and
recovery captures responses multiple timescales: (1) the <1 ms of
injury, (2) minutes of partial recovery mediated by rebinding of
dissociated proteins, and (3) days-months of full recovery facilitated
by the natural synthesis of CAMs.

To further evaluate the model behavior, we varied the synaptic
membrane pulling rate (s) across three orders of magnitude leading
to strain rates 50–500–5,000 1/s while keeping the insult duration
constant. Figure 5 shows the results of this parametric study. A strain
rate of 50 1/s leads to a relatively small 0.5 nm cleft separation.
However, even with a small separation, our model predicts a degree
of CAM loss as seen on panels Figures 5C–E. As the strain rate
is increased 10- and 100-fold, the synaptic cleft separation elevates
to 5 and 50 nm, respectively. This separation leads to a significant
drop in the concentrations of CAM complexes and delays their
recovery (via rebinding) time. The long-term loss of SynCAM12
complexes is 4.4, 7.0, and 7.1% for smallest, medium, and largest

strain rates, respectively, suggesting that our model and parameters
produce a saturated CAM loss response as a function of strain rates.
Interestingly, the total force complexes display a multipeak behavior
when strain rate is increased to 5,000 1/s (Figure 5B). The first peak,
consistent with smaller strain rates, pertains to the fast CAM complex
stretch during the insult. During the recovery phase of the synapse,
the CAMs rebind and pull the membranes together, where we
have assumed a Gaussian function for this cleft distance-dependent
rebinding with a 13 nm spread (Eq. 6). The lower-level strain rates (50
and 500 1/s) do not move the synaptic cleft outside of the Gaussian
spread, whereas the strain rate of 5,000 1/s causes the rebinding to
reduce to almost zero. At zero rebinding, the only driver for recovery
is the energy stored in the remaining CAM complexes. However, once
the synapse recovers the rebinding accelerates following the Gaussian
curve while the CAM complexes are still stretched. This leads to a
secondary peak in the force shown on Figure 5B. We must note that
a 50 nm cleft separation will likely lead to an irrecoverable damage to
synapses which is out of the scope of the current model. Nevertheless,
this parametric study demonstrates an extreme model behavior which
may be seen in mild-strong strain rates (500–5,000 1/s).

Figure 6 shows the resulting parameter sensitivities ranked based
on the total-order Sobol index. The most sensitive parameters are
M and σ. Parameter M corresponds to the overall response of
synapse and to a large degree controls the synaptic recovery time
course. Similarly, parameter σ is the spread if the Gaussian used
for the binding rates, shared across all CAMs. These parameters are
followed by the parameters controlling the unbinding of SynCAM
and XL complexes. Due to lack of insult-induced long-term (∼days
to months) loss of NCADs, its associated parameters rank lower
compared to their XL and SynCAM counterparts. The least sensitive
parameters based on this analysis are parameters defining the natural
turnover of CAMs.

3.2. Synaptic damage due to exposure to
repeated LLBs

In this section, we extend the acute response model to simulate
exposure to repeated LLBs. We consider six identical insults (pulling
rate of 0.01 µm/ms and duration of 0.5 ms) in two exposure scenarios,
Case 1: insults every 10 min, and Case 2: insults every 30 min.
Figure 7 shows the results of exposure to repeated blasts. The loss of
XL and SynCAM complexes has markedly increased due to repeated
injuries with a 2.6 and 35% loss in XLs and SynCAMs, respectively,
10 min after the last insult for both cases. These losses remain almost
constant in the timescale of hours after the insults. Similar to the acute
response, slow recovery of detached CAMs is due to their long half-
lives and slow synthesis rates (Cohen et al., 2013). In contrast, the loss
of NCADs is 0.25% after 10 min which drops to 0.08% after 20 min.
The NCAD response is largely modulated by rebinding of homophilic
CAMs.

3.3. Biomarker release and distribution
following exposure to LLBs

Next, we show illustrative results of the biomarker release kinetics
following repeated blast exposure. Our APP processing model
simulates generation of both the amylogenic (sAPPβ, Aβ40, Aβ42)
and non-amylogenic (sAPPα, p3) peptides that may be detected in
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FIGURE 3

Panel (A) the synaptic cleft distance marked by a fast injury (∼ms) and slow recovery (∼minutes). Panel (B) the total force generated in CAMs marked by a
a viscoelastic-type response. The astrics (∗) and (∗∗) delineate different modes of force generated by CAMs.

FIGURE 4

Molecular response to an acute insult. Panel (A) shows the XL and its constitutive CAMs response. The initial concentrations are almost fully recovered
minutes after the insult. Panel (B) shows the SynCAM response. A clear loss of SynCAM12 complexes are predicted as a result of the injury. This loss will
be remedied days-months via natural degradation and synthesis of SynCAMs. Conversely, the loss of NCADs minutes after the insult panel (C) due to lack
of the pulling rate dependent down-regulation.

body fluids. Here we only report results for generation of APP and
Aß42 peptides and their kinetics in plasma for which human data have
been recently reported (Boutté et al., 2021, 2022). We set w1 = 1,
w2 = 0.1, and w3 = 0 in the synaptic dysfunction model [Eq.
(20)]. In addition, we assumed that KSD = 10 = K0

BISF,synth. The
rest of the parameters for this model were taken from Madrasi et al.
(2021). The biomarker release and kinetics are simulated for 21 days
following the exposure to single or repetitive blasts. Three scenarios
were simulated in this section: (1) single mild insult (pulling rate of
0.01 µm/ms and duration of 0.5 ms), (2) six repeated mild insults,
and (3) six repeated moderate insults (pulling rate of 0.04 µm/ms and
duration of 1.0 ms). Figure 8A shows the synaptic dysfunction for
the three cases. The spikes in this figure correspond to dynamics of
short-term response of CAMs (shown in Figure 7) that are followed
by a slower decline in synaptic dysfunction over following days.
Figure 8B shows the concentration of APP in the brain ISF which
increase 40, 370, and 800% for simulated exposures. Biomarker Aß42

follows the dynamics of APP with a noticeable delay, reaching a
maximum around 1–1.4 days following the exposure (Figure 8C).
The demarcation line at 2.5 above the physiological level has been
to demonstrate the potential “window” for biomarker collection,
with approximately 2 days post-mild blast exposure and 5 days for

moderate exposure. The model will have to be calibrated, but the
reported human data show similar time windows for plasma Aβ

(Boutté et al., 2021). Lastly, our model predicts that a single mild
insult cannot induce enough damage for a detectable brain injury.

4. Discussion

Billions of neurons in the human brain connected to one another
by trillions of synapses are continuously subjected to mechanical
forces communicated via adhesion molecules, cell membranes,
extracellular and intracellular matrix. This endogenous physiological
neuro-mechanobiology affects CNS cellular neurotransmission,
metabolism and plasticity. However, external mechanical forces may
cause synaptic structural damage and initiate a cascade of mechanical
and biochemical deleterious and recovery responses. Mathematical
models of synaptic mechanobiology supported by laboratory in vitro
and in vivo experiments may help in better understanding of brain
injury, diagnostics and protection. Mathematical modeling of CNS
synaptic mechanobiology is challenging due to the immense number
of brain synapses and heterogeneity of their morphologies as well as
extreme range of spatial and temporal scales involved in brain injury
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FIGURE 5

The effect the strain rate on the synaptic cell adhesion molecules (CAM) mechanics and concentrations. Panel (A) shows the cleft size before, during and
after the insult. Panel (B) shows the total force applied on the intermolecular bonds. Panels (C–E) show the normalized CAM complex concentrations for
NX:NL, SynCAM12, and NCAD:NCAD, respectively.

responses (Procès et al., 2022). Structural mechanics of CAMs can
be simulated at various scales using molecular and coarse-grained
dynamics models, spring-mass-damper models or finite element
type models. However, the spatial and time-step limitations make
them impractical for longer duration (seconds to hours) simulation
periods.

In this work, we formulated a dynamic model of a single synaptic
structure using a network of ligand-receptor binding kinetics of
synaptic CAMs and quasi-equilibrium energy-displacement model.
The model can resolve time scales ranging from milliseconds
during the hyperacute phase of mechanical loading to minutes-
hours acute/chronic phase of injury progression/repair. Such synaptic

FIGURE 6

Global sensitivity analysis results ranked according to their total-order
Sobol index (ST).

mechanobiology model can be coupled with other models such
as biomarker kinetics (BxK), neurotransmission, neuroimmune
responses, and synaptic plasticity. Here we demonstrated a link
between the synaptic mechanobiology model and a minimal model
of synaptic processing of amyloid precursor protein and generation
and kinetics of related amyloid biomarkers that can be detected
in CSF and plasma.

First, we established our model’s capability in simulating the
synaptic response to an acute injury characterized by a single
separation of synapse over a 0.5 ms, almost equivalent to the positive
phase duration of low-level blast waves. As a response to acute
injury, our model predicted a viscoelastic-type behavior in which the
synaptic cleft and force slowly restore their baseline values 8 min
after the insult (Figure 3). During the synaptic cleft separation,
initially a sharp spike is seen in the total forces generated in CAMs
[marked by (∗) in Figure 3B]. The sudden rise in force is due to
the stretch of bound CAMs and their associated stiffnesses which
resist the cleft separation. Conversely, the large generated force
sharply increases the CAM complex unbinding rates which leads
to their rapid dissociation, reduction in their concentrations, and
eventually a decrease in force. The spike is then followed by a
less steep reduction in force [marked by (∗∗) in Figure 3B] which
is the result of competition between unbinding due to remaining
intermolecular force and distance-dependent rebinding of detached
CAMs. The CAM forces vanish when the synapse cleft recovers
its initial dimensions. However, since a significant loss is observed
in SynC12 concentrations, a full recovery of synapse is not yet
achieved (Figure 4B). In this work, SynC12 have a relatively higher
dissociation constant and detachment parameter (kbreak), and thus,
a greater portion of bound SynC12 are irreversibly detached from
the membranes. The recovery of SynC12 requires natural turnover
of unbound SynCAM1/2. Conversely, we assumed that NCAD do
not detach from their cytoplasmic ends. Therefore, there is enough
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FIGURE 7

Molecular response to exposure to repeated LLBs. Panels (A–C) show the response to six insults every 10 min. Panels (D–F) show the response to six
insults every 30 min.

FIGURE 8

Panel (A) shows the synaptic dysfunction. Panel (B) shows the elevation in APP following the exposure to LLBs. Panel (C) shows the plasma
concentrations of Aß42 following exposure to repeated insults.

unbound NCAD on both sides of synapse to recover their baseline
values within minutes after the acute insult.

To understand the effect of model parameters on the simulation
results, a global sensitivity analysis was performed (Figure 6). The
analysis results indicated that M (a constant modulating the synapse
response to free energy changes) and σ (width distribution of binding
constants) are the most sensitive parameters. We must note that M
is a parameter for the synapse structure, and σ is shared between
different CAM families. Among CAM specific parameters, SynCAM
parameters are generally more sensitive and NCAD parameters are
less sensitive. This is expected since the model output is considered
long-term synaptic dysfunction, while NCAD complexes recover
their initial concentrations minutes after the insult.

Next, we extended our model to simulate the synaptic response
to multiple LLBs within a timeframe comparable to military weapon
training scenarios. Exposure to repeated LLBs noticeably increases
the long-term effects of damage. This is particularly evident in
Figure 7 where after each insult, the XL and SynC12 concentrations
progressively fall. Decreasing the frequency of exposures from every
10 min to every 30 min, however, did not have a significant effect

on the long-term effects. Therefore, our model predicts that in a
weapon training setting where shots are fired minutes apart, the
number of exposures rather than their firing interval could be the
determining factor in long-term effects of synaptic injury. We must
note that while cumulative effects of exposure to repeated blasts on
brain tissue integrity have been established (Trotter et al., 2015), the
relationship between blast exposure frequency and brain pathology
is currently unclear (Heyburn et al., 2021). Long-term recovery of
CAMs and their complexes are largely modulated by the natural
turnover of SynCAMs, NX, and NL. Cohen et al. (Cohen et al.,
2013) reported half-lives of 2.56 and 2.63 days for SYNCAM1/2
and NX/NL, respectively. Accordingly, the loss of these CAMs
is eventually recovered via their natural turn-over process after
∼3 months and ∼9 months for XL/NL and SynCAMs, respectively.
We must note that this recovery time is predicted in absence
of intrinsic homeostatic compensatory mechanisms which might
expedite the CAM recoveries.

Finally, we illustrated the utility of our model in quantifying
biomarker release and kinetics after exposure to repeated blasts
(Figure 8). In this work, we only accounted for the amylogenic
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pathway shown in Figure 2. However, the non-amylogenic
pathway could be useful for diagnostic, prophylactic, or therapeutic
investigations of APP-affecting enzymes such as ADAM10 (Appel
et al., 2021). Our results highlighted that the dynamics of biomarker
(Aß42) following LLBs are demonstrably slower than the synaptic
responses. This is particularly depicted in brain interstitial APP
and plasma Aß42 peaking at around 1 and 2 days after the
exposure, respectively. Moreover, our model predicts that the
plasma biomarkers remain elevated for months after the initial
exposure. Our findings of increased Aß42 in plasma 3–5 days
post-blast exposure compare relatively well to recently reported
human plasma Aß42 and Aß40 levels 1-, 2- and 3-days post-weapon
blast exposure in military sniper training (Thangavelu et al., 2020;
Boutté et al., 2021). We are collecting related human blast dose
biomarker response data for more quantitative model validation.
Several experimental studies have shown that the elevated of soluble
Aß42 in TBI might induce oligomerization and aggregation leading
to accelerated neurocognitive disease progression (e.g., Alzheimer’s
disease) (Roberts et al., 1994; Washington et al., 2014). Taken
together, these results underscore the importance computational
models that delineate neuro-response and their link to clinical
biomarker markers in LLB exposure.

In this work we have only considered mechanobiology of a
single synapse in response to single and repeated blast injury. In
the human CNS there are several other cellular and molecular
adhesion structures susceptible to external loads including the axons,
astrocytes, blood-brain barrier as well as extracellular matrix and
intracellular cytoskeletal networks. The present “minimal” model
of synaptic mechanobiology can be improved by accounting not
only for tension loads but also shear loads. The model should be
parametrized to account for variable morphology and composition
of CAMs in excitatory and inhibitory synapses. Moreover, the present
model is largely focused on the mechanics and kinetics CAM-CAM
interactions. The mechanics of CAM connections to their respective
synaptic membranes, however, is less understood. For instance,
neuroligins and neurexins both have relatively short intracellular
domains that potentially bind to several PDZ-domain scaffolding
proteins (Meyer et al., 2004). This lack of mechanistic understanding
of the proteins inside the cell motivated us to use a phenomenological
pulling rate dependent down-regulation term for the detachment
of SynCAMs and NX and NL from their synaptic membrane. This
term is particularly crucial in understanding the recovery phase
and biomarker kinetics. Further improvements could couple the
present synapse model with reduced order mechanical models of the
connected pre-synaptic axon segment and post-synaptic dendritic
spine models e.g., spring-damper-mass models accounting for the
elastic and damping effects of the extracellular matrix. The present
mechanobiology model could be also adapted for modeling CAM
effects between the axon and myelin junctions next to nodes of
Ranvier and the adhesion dynamics between intraconal microtubule
network and the microtubule-associated Tau proteins.

The present model needs to be calibrated and validated on
experimental data collected from in vitro imaging of neuro-axonal
structures and generation of injury related biomarkers. At present,
we have linked the synaptic mechanobiology model with simple
model of amyloid beta (Aß42) responses. More advanced models
of generations of soluble synaptic biomarkers exist that could be
incorporated in the present framework and validated on experimental
data. Furthermore, several experimental and clinical studies have
highlighted the neuro-immune responses such as neuroinflammation

and microglial priming in repeated TBI (Kokiko-Cochran and
Godbout, 2018). Accordingly, minimal or extended models of
cytokine-mediate microglial activation from resting to pro- and
anti-inflammatory phenotypes could be integrated in the presented
framework to investigate neuroinflammation (Donat et al., 2017;
Amato and Arnold, 2021).

5. Conclusion

Synaptic injury mechanisms are largely unknown and have only
recently begun to attract interest of neuroscientists partially because
of experimental challenges at such small length and timescales.
Whether the synaptic injury is a primary result of the mechanical
loads or a secondary effect of axonal injury remains to be determined.
Most likely both mechanisms occur at the same time at different
locations in the brain and induce mutual secondary effects (Jamjoom
et al., 2021). This paper presented a novel reduced order model
of synaptic mechanobiology caused by an acute and repeated blast
brain injury. The model integrates the adhesion dynamics of the
synaptic CAMs with the deformation mechanics of the synaptic
cleft. Depending on the blast load level it predicts the reversible
CAM adhesion recovery after lower level and slower rate loads
and irreversible disconnect of some CAMs caused by bigger and
faster rate loads. The model has been used to simulate the synaptic
injury responses caused by repeated blast loads. It demonstrated
the relevance of the duration of recovery period between repeated
loads on the synaptic injury responses. In this work, we have
linked the synaptic mechanobiology model with a minimal model of
biomarker (Aβ42) kinetics. The model can be extended to simulate
not only tension but also shear loads on both excitatory and
inhibitory synapses, account for ECM effects and link to a synaptic
neurotransmission model. Most importantly, the model needs to be
further calibrated and validated on in vitro experimental data.
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