AUTHOR=Zhang Yunwen , Chen Ruixiang , Hu Qimiao , Wang Jie , Nie Huimin , Yin Chengyu , Li Yuanyuan , Wei Huina , Liu Boyu , Tai Yan , Fang Junfan , Shao Xiaomei , Jin Xiaoqing , Fang Jianqiao , Liu Boyi TITLE=Electroacupuncture Ameliorates Mechanical Allodynia of a Rat Model of CRPS-I via Suppressing NLRP3 Inflammasome Activation in Spinal Cord Dorsal Horn Neurons JOURNAL=Frontiers in Cellular Neuroscience VOLUME=16 YEAR=2022 URL=https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2022.826777 DOI=10.3389/fncel.2022.826777 ISSN=1662-5102 ABSTRACT=
Complex regional pain syndrome type-I (CRPS-I) is a chronic neurological disorder that results in severe pain and affects patients' life quality. Conventional therapies usually lack effectiveness. Electroacupuncture (EA) is an effective physical therapy for relieving CRPS-I pain. However, the mechanism underlying EA-induced analgesia on CRPS-I still remain unknown. Spinal NLRP3 inflammasome was recently identified to contribute to pain and neuroinflammation in a rat model of CRPS-I by our group. Here, we aimed to study whether EA could inhibit spinal NLRP3 inflammasome activation, thus resulting in pain relief and attenuation of spinal neuroinflammation in the rat model of CRPS-I. We established the rat chronic post-ischemic pain (CPIP) model to mimic CRPS-I. CPIP rats developed remarkable mechanical allodynia that could be relieved by daily EA intervention. NLRP3 inflammasome was activated in spinal cord dorsal horn (SCDH) of CPIP rats, accompanied with over-production of pro-inflammatory cytokine IL-1β. Immunostaining revealed that the cellular distribution of NLRP3 was predominantly located in SCDH neurons. Pharmacological activation of NLRP3 inflammasome