AUTHOR=Spaiardi Paolo , Marcotti Walter , Masetto Sergio , Johnson Stuart L. TITLE=Signal transmission in mature mammalian vestibular hair cells JOURNAL=Frontiers in Cellular Neuroscience VOLUME=16 YEAR=2022 URL=https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2022.806913 DOI=10.3389/fncel.2022.806913 ISSN=1662-5102 ABSTRACT=
The maintenance of balance and gaze relies on the faithful and rapid signaling of head movements to the brain. In mammals, vestibular organs contain two types of sensory hair cells, type-I and type-II, which convert the head motion-induced movement of their hair bundles into a graded receptor potential that drives action potential activity in their afferent fibers. While signal transmission in both hair cell types involves Ca2+-dependent quantal release of glutamate at ribbon synapses, type-I cells appear to also exhibit a non-quantal mechanism that is believed to increase transmission speed. However, the reliance of mature type-I hair cells on non-quantal transmission remains unknown. Here we investigated synaptic transmission in mammalian utricular hair cells using patch-clamp recording of Ca2+ currents and changes in membrane capacitance (Δ