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Ischemic stroke (IS) accounts for more than 80% of strokes and is one of

the leading causes of death and disability in the world. Due to the narrow

time window for treatment and the frequent occurrence of severe bleeding,

patients benefit less from early intravenous thrombolytic drug therapy.

Therefore, there is an urgent need to explore the molecular mechanisms

poststroke to drive the development of new therapeutic approaches.

Immunogenic cell death (ICD) is a type of regulatory cell death (RCD) that

is sufficient to activate the adaptive immune response of immunocompetent

hosts. Although there is growing evidence that ICD regulation of immune

responses and immune responses plays an important role in the development

of IS, the role of ICD in the pathogenesis of IS has rarely been explored.

In this study, we systematically evaluated ICD-related genes in IS. The

expression profiles of ICD-related genes in IS and normal control samples

were systematically explored. We conducted consensus clustering, immune

infiltration analysis, and functional enrichment analysis of IS samples using

ICD differentially expressed genes. The results showed that IS patients could

be classified into two clusters and that the immune infiltration profile was

altered in different clusters. In addition, we performed machine learning to

screen nine signature genes that can be used to predict the occurrence of

disease. We also constructed nomogram models based on the nine risk genes

(CASP1, CASP8, ENTPD1, FOXP3, HSP90AA1, IFNA1, IL1R1, MYD88, and NT5E)
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and explored the immune infiltration correlation, gene-miRNA, and gene-

TF regulatory network of the nine risk genes. Our study may provide a

valuable reference for further elucidation of the pathogenesis of IS and provide

directions for drug screening, personalized therapy, and immunotherapy for

IS.

KEYWORDS

immunogenic cell death, immune infiltration, ischemic stroke, machine learning,
immunotherapy

Introduction

One of the leading causes of death and disability in the
world is stroke, with ischemic stroke accounting for more
than 80% of cases. With the aging and urbanization of
society, the prevalence of unhealthy lifestyles, and exposure to
cardiovascular risk factors, the burden of ischemic stroke is
rapidly increasing (Hasan et al., 2018). Ischemic stroke (IS)
can be a multifactorial disease resulting from the interacting
effects of multiple environmental and inherited risk factors
(Chehaibi et al., 2016). Despite continued research into IS,
early intravenous thrombolytic drug therapy is still a preferred
modality, but patients benefit less because of the narrow time
window for treatment and the frequent occurrence of severe
bleeding (Alexandrov, 2010; de Los Ríos la Rosa et al., 2012). As
early diagnosis and treatment of IS face great challenges, there is
an urgent need to explore the molecular mechanisms poststroke
to drive the development of new therapeutic approaches.

In recent years, several studies have shown that the immune
response plays a crucial role in the development of stroke
and that neurological function and prognosis can be improved
through the regulation of the immune microenvironment of
the central nervous system (Javidi and Magnus, 2019; Jayaraj
et al., 2019; Krishnan and Lawrence, 2019). Immunogenic
cell death (ICD), a type of regulatory cell death (RCD)
recommended by the Nomenclature Committee on Cell Death
(NCCA), is sufficient to activate the adaptive immune response
of immunocompetent hosts (Galluzzi et al., 2018). Damage-
associated molecular patterns (DAMPs), including released
high mobility group 1 (HMGB1) protein, secreted adenosine
triphosphate (ATP) and surface-exposed calreticulin (CRT), are
the main immunogenic features of ICD (Krysko et al., 2012).
Similarly, cerebral tissue ischemia resulting from IS-induced
blockage of cerebral blood flow rapidly causes the release of
signaling molecules, including brain-derived antigens, DAMPs,
cytokines, and chemokines, from damaged brain tissue into
the body circulation (Liu et al., 2021). Therefore, ICD may
play an important role in the occurrence and progression of
IS. Numerous studies have shown that ICD is significantly
involved in the pathogenesis of a variety of diseases, especially
in tumor immunity (Kroemer et al., 2022). Recently, a new gene

signature in intracranial aneurysms (IAs) has been established
through immunogenic cell death-related regulators, which
provides a basis for optimizing risk monitoring and clinical
decision-making and developing new therapeutic strategies
for IA patients (Turhon et al., 2022). However, there is
growing evidence that ICDs regulate immune responses and that
immune responses serve important roles in the development
of IS. However, the role of ICD in the pathogenesis of IS
has rarely been explored. Therefore, an in-depth study of
the different immune profiles between normal tissues and IS
specimens, as well as the different subtypes of IS, will help
to elucidate the changes that occur in ICD and its associated
genes. Meanwhile, establishing ICD-related signatures will help
to improve personalized treatment for patients.

In this study, we systematically evaluated ICD-related
genes in IS. We explored the expression profiles of ICD-
related genes in IS and normal control samples. We also
performed consensus clustering, immunoinfiltration analysis,
and functional enrichment analysis of IS samples using
ICD differentially expressed genes. In addition, we screened
nine risk signature genes using machine learning algorithms
that can be used to predict the occurrence of disease
and constructed nomogram models. Moreover, the immune
infiltration correlation, gene-miRNA, and gene-TF regulatory
network of the nine risk genes were explored. Our study
could potentially lay the foundation for the development of
individualized treatment and immunomodulatory therapeutic
regimens for IS.

Materials and methods

Datasets

The gene expression omnibus (GEO) database1 was used
to obtain gene expression profiling datasets of the IS-
related peripheral blood samples. Dataset GSE58294 (GPL570
platform), including 23 control samples and 69 IS samples, was

1 http://www.ncbi.nlm.nih.gov/geo
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used as a training set. Dataset GSE16561 (GPL6883 platform),
including 24 control samples and 39 IS samples, was used as
a validation set.

Differentially expressed genes analysis

The R package “Limma” was used to detect differentially
expressed genes (DEGs) between normal samples and IS
samples. A p-value < 0.05 was considered to be statistically
significant.

Immune cell infiltration profile

The CIBERSORT algorithm was used to assess the content
of 22 immune cells in each sample. P < 0.05 for sample immune
infiltration was considered accurate and was used for further
data analysis. Then, we compared the fraction of immune cells
between different groups through the Wilcoxon test.

Consensus clustering

Based on DEGs, “ConsensusClusterPlus” was used to
perform an unsupervised clustering analysis of IS patients. The
cumulative distribution function (CDF) curve, consensus score,
and consensus matrix were used to determine the optimal
number of subtypes k.

Gene set variation analysis

The “c2.cp.kegg.symbols” file and the “c5.go.symbols” file
were downloaded from the MSigDB database and used to study
the changes in the biological signaling pathways. The R packages
“GSVA” and “Limma” were used to analyze the altered pathways
and biological functions between different clusters.

Machine learning algorithms

Least absolute shrinkage and selection operator and support
Vector machine recursive feature elimination (SVM-RFE) was
used to filter important diagnostic variables based on ICD-
related DEGs between IS patients and controls. We determined
the intersection of the signature genes screened by the two
algorithms and generated receiver operating characteristic
(ROC) curves separately to determine the predictive value of
these signature genes in the training set. The area under the
curve (AUC) was calculated using the R package “pROC.”
Meanwhile, the predictive power of these signature genes was
verified in the validation set. In addition, we also constructed

a nomogram with the R package “rms” based on these
signature genes.

Gene ontology and Kyoto
encyclopedia of genes and genomes
analysis

To explore the differential signaling pathways and
potential functions of signature genes, we conducted gene
ontology (GO) and Kyoto encyclopedia of genes and genomes
(KEGG) enrichment analyses of these genes by using the R
package “clusterProfiler,” and a q-value < 0.05 was considered
significant.

Correlation of immune-infiltrating cells
with signature genes

The correlation coefficient between the expression of ICD-
related genes and the immune-infiltrating cells was calculated to
explore the relationship between immune-infiltrating cells and
signature genes by using Spearman’s rank correlation analysis.
The R package “ggplot” was used to plot the Lollipop plots.

Construction of regulatory networks

NetworkAnalyst2 was used to construct the miRNA
diagnostic biomarker and transcription factor (TF)-diagnostic
biomarker regulatory networks based on signature genes (Xia
et al., 2015).

Statistical analysis

Bioinformatics analyses and R packages were all conducted
by R software (version 4.2.0). The means between two groups of
normally distributed variables were compared using unpaired
Student’s t-tests. Data that were not normally distributed were
compared by the Wilcoxon test. ∗P < 0.05, ∗∗P < 0.01, and
∗∗∗P < 0.001 were regarded as significant.

Results

Expression landscape of ICD-related
genes

In a previous large-scale meta-analysis, Garg et al. (2016)
summarized 34 ICD-related genes. We explored the expression

2 http://www.networkanalyst.ca
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FIGURE 1

Expression profile of immunogenic cell death (ICD)-related genes in IS. (A,B) Heatmap and boxplots showing the expression of 18 differentially
expressed ICD-related genes. (C) The relative positions of the 18 differentially expressed ICD-related genes on the chromosome. (D) The
correlation circle plot shows the degree of correlation of the 18 differentially expressed ICD-related genes. (E) Correlation heatmap showing
correlation coefficients for 18 differentially expressed ICD-related genes. Red and green represent positive and negative correlations,
respectively. The correlation coefficient is displayed as the area of the pie chart. *P < 0.05, **P < 0.01, ***P < 0.001.

patterns of 34 ICD genes in IS samples and healthy control
samples, and the results showed that most ICD genes were
highly expressed in IS samples, including CASP1, CASP8,
ENTPD1, IFNA1, IFNGR1, IL10, IL17RA, IL1R1, LY96,
MYD88, PIK3CA, and TLR4, while CD4, CXCR3, FOXP3,
HSP90AA1, NT5E, and PRF1 were expressed at low levels
in IS samples (Figures 1A,B). Meanwhile, the chromosome
positions of the 34 ICD genes were visualized (Figure 1C).
Next, a correlation analysis of these differentially expressed ICD
genes was performed to explore the interactions between them
(Figures 1D,E).

Identification of ICD clusters based on
ICD-related DEGs

Based on 18 ICD-related DEGs, we divided IS samples
into two clusters (C1 and C2). We set the value of k to
1–9 and found that the consensus index of the CDF curve
fluctuates the least and that the consensus score is relatively large
when k = 2 (Figures 2A–D). Moreover, principal component
analysis (PCA) results showed that the 18 DEGs can completely
distinguish between the two clusters (Figure 2E).
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FIGURE 2

Identification of the immunogenic cell death (ICD) clusters based on ICD-related differentially expressed genes (DEGs). (A) Consensus
clustering matrix when k is 2. (B) Representative cumulative distribution function (CDF) curve. (C) Representative CDF delta area curve.
(D) Consensus clustering score when k is 2–9. (E) Visualization of the distribution of the two clusters by principal component analysis (PCA).

Identification of immune
microenvironment and biological
function characteristics in different
ICD clusters

We analyzed the difference in 18 DEGs between different
ICD clusters and found that CASP8, ENTPD1, IFNGR1,

IL17RA, IL1R1, and TLR4 were upregulated in Cluster 2,
while CXCR3 and NT53 were upregulated in Cluster 1
(Figures 3A,B). To further explore the differences in the
immune microenvironment features between the different
ICD clusters, the differences in infiltrating immune cells and
their immune functions were analyzed. Our results showed
that Cluster 2 had relatively low levels of CD8+ T cells,
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FIGURE 3

Identification of immune infiltration and biological function characteristics in different immunogenic cell death (ICD) clusters. (A) Heatmap
showing the expression profile of 18 ICD-related differentially expressed genes (DEGs) between two ICD clusters. (B) Boxplots showing
differences in the expression of 18 ICD-related DEGs between the two ICD clusters. (C) Relative abundance of 22 infiltrating immune cells
between the two ICD clusters. (D) Boxplots showing differences in immune infiltration between the two ICD clusters. (E) Gene set variation
analysis (GSVA) results of gene ontology (GO) gene sets between two ICD clusters were plotted in a bar plot. (F) GSVA results of Kyoto
encyclopedia of genes and genomes (KEGG) gene sets between two ICD clusters were plotted in a bar plot. *P < 0.05, **P < 0.01, ***P < 0.001.

follicular helper T cells, activated memory CD4+ T cells,
eosinophils, and gamma delta T cells and relatively high levels
of M0 macrophages and neutrophils (Figures 3C,D). Next,
we conducted GSVA based on GO and KEGG gene sets.
The GO results showed that AMP metabolic processes and
GMP metabolic processes were upregulated in Cluster 2, while
positive regulation of protein acetylation and CXC chemokine
binding were downregulated in Cluster 2 (Figure 3E). The
KEGG results showed that DNA replication and primary
immunodeficiency were upregulated in Cluster 2, while the

WNT signaling pathway, pantothenate, and COA biosynthesis
were downregulated in Cluster 2 (Figure 3F).

Identification of the gene clusters
based on the DEGs of ICD clusters

To further validate the ICD clusters, we screened for DEGs
between Cluster 1 and Cluster 2 and found 108 DEGs in total
(Figure 4A). Based on the 108 DEGs, we divided the IS patients
into different genomic subtypes (Cluster A and Cluster B)
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FIGURE 4

Identification of the gene clusters based on the differentially expressed genes (DEGs) of immunogenic cell death (ICD) clusters. (A) Heatmap
showing the DEGs between ICD clusters. (B) Consensus clustering based on 108 DEGs and the consensus clustering matrix when k is 2.
(C) Representative cumulative distribution function (CDF) curve. (D) Representative CDF delta area curve. (E) Consensus clustering score when k
is 2–9. (F) Visualization of the distribution of the two gene clusters by principal component analysis (PCA).

by using consensus clustering. We observed that the optimal
grouping was obtained when k = 2, and the consensus score had
a maximum value (Figures 4B–E). Moreover, the PCA showed
that the 108 DEGs can completely distinguish between the two
clusters (Figure 4F). These results suggested that two different
clusters exist in IS patients.

Identification of immune
microenvironment and biological
function characteristics in different
gene clusters

We first explored the different expression profiles of 34 ICD-
related genes between Cluster A and Cluster B (Figures 5A,B).
The results of infiltrating immune cells showed that there
were more differential immune cells between different genetic
groupings. Cluster B was characterized by low levels of naive
CD4+ T cells, follicular helper T cells, activated memory CD4+
T cells, gamma delta T cells, M2 macrophages, eosinophils,
and resting mast cells and high levels of monocytes, M0

macrophages, and neutrophils (Figures 5C,D). These results
suggest that gene clusters may be able to characterize IS patients
better than ICD clusters. Next, we conducted GSVA between
different gene clusters. We found that pathways involved
in mitochondrial protein processing, cytoplasmic translation,
primary immunodeficiency, and the cell cycle were upregulated
in Cluster B, while pathways involved in the immune response,
such as myeloid activation and leukocyte degranulation, were
upregulated in Cluster B (Figures 5E,F).

Construction and validation of the
LASSO model and SVM model

We established a LASSO and SVM model to select candidate
ICD genes from the 18 ICD-related DEGs to predict the
occurrence of IS. The LASSO model results showed that 13 genes
were related to the occurrence of IS (Figures 6A,B). Meanwhile,
the feature vectors generated by SVM were removed using a
support vector machine (SVM) to find the best variables and
identify 13 ICD variable genes (Figure 6C). Finally, we took
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FIGURE 5

Identification of immune infiltration and biological function characteristics in different gene clusters. (A) Heatmap showing the expression profile
of 34 immunogenic cell death (ICD)-related differentially expressed genes (DEGs) between two gene clusters. (B) Boxplots showing differences
in the expression of 34 ICD-related DEGs between the two gene clusters. (C) Relative abundance of 22 infiltrating immune cells between the
two gene clusters. (D) Boxplots showing differences in immune infiltration between the two gene clusters. (E) Gene set variation analysis (GSVA)
results of gene ontology (GO) gene sets between two gene clusters were plotted in a bar plot. (F) GSVA results of Kyoto encyclopedia of genes
and genomes (KEGG) gene sets between two gene clusters were plotted in a bar plot. *P < 0.05, **P < 0.01, ***P < 0.001.

the intersection of the genes obtained from the two machine
learning models and left nine signature genes, including
CASP1, CASP8, ENTPD1, FOXP3, HSP90AA1, IFNA1, IL1R1,
MYD88, and NT5E, for subsequent analysis (Figure 6D). We
conducted GO and KEGG enrichment analyses based on the
nine signature genes. The KEGG results showed that these
genes were enriched in necroptosis, Th17 cell differentiation,
the IL-17 signaling pathway, the NF-kappa B signaling pathway,

and other pathways (Figure 6E). The GO results showed that
these genes are mainly involved in the positive regulation
of cytokine production, regulation of inflammatory response,
positive regulation of interleukin-1 beta production, tumor
necrosis factor receptor superfamily binding, and apoptotic
signaling pathway (Figure 6F).

Next, we conducted an ROC analysis to evaluate the
accuracy of each diagnostic gene, and the AUC value of the

Frontiers in Cellular Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fncel.2022.1094500
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-16-1094500 December 13, 2022 Time: 15:11 # 9

Cai et al. 10.3389/fncel.2022.1094500

FIGURE 6

Construction and validation of the least absolute shrinkage and selection operator (LASSO) model and support vector machine (SVM) model.
(A) The LASSO coefficient profiles of differentially expressed genes (DEGs) in ischemic stroke (IS) samples. (B) Partial likelihood deviance for the
LASSO coefficient profiles. Thirteen genes were selected at the value (lambda.min). (C) The root mean square error (RMSE) was calculated from
15-fold CV and verified the results of support Vector machine recursive feature elimination (SVM-RFE). The highlighted point indicates the
lowest error rate, and the corresponding genes at this point are the best signature genes selected by SVM. (D) Venn diagram demonstrating nine
immunogenic cell death (ICD)-related signature genes shared by the LASSO and SVM algorithms. (E) Bubble plot of Kyoto encyclopedia of
genes and genomes (KEGG) analysis results based on the nine signature genes. (F) Bubble plot of gene ontology (GO) analysis results based on
the nine signature genes.

ROC curve was also calculated. Our results showed that all
nine genes had relatively high predictive values in the training
set (GSE58294), especially CASP1 and ENTPD1 (Figure 7A).
Meanwhile, we performed validation in another dataset and
obtained similar results (Figure 7B). Meanwhile, we explored
the expression levels of nine signature genes in the GSE16561
dataset (Supplementary Figures 1A,B).

Construction of the nomogram model

To better predict the risk of patient incidence, we
constructed a nomogram based on the nine diagnostic genes
(Figure 8A). Each gene in the nomogram is projected upward
to a point, and the sum of the scores of the three variables is
transformed into an individual’s disease risk, in which a high
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FIGURE 7

Exploration of the diagnostic value of the nine signature genes. (A) Receiver operating characteristic (ROC) curves showing the diagnostic value
of nine signature genes in the GSE58294 dataset. (B) ROC curves showing the diagnostic value of nine signature genes verified by the GSE16561
dataset.

overall score corresponds to a higher disease risk. The results
of the calibration curve indicated that the predictive ability of
the nomogram model was accurate (Figure 8B). The clinical
impact curve also showed the significant predictive power of the
nomogram model (Figure 8C). In addition, the red line in the
decision curve analysis (DCA) curve from 0 to 1 is consistently
higher than the gray and black lines, suggesting that the decision
based on the nomogram model may benefit pediatric asthma
patients (Figure 8D).

Immune infiltration correlation analysis
and construction of regulatory
networks

Next, we performed a correlation analysis between gene
expression and immune cell infiltration levels for the first

three diagnostic genes in the training set and validation set.
The results showed that the expression of these genes was
associated with the level of infiltration in multiple immune
cells, which suggests that these key diagnostic genes are likely
to be involved in immune regulation in the pathogenesis of IS
(Figures 9A,B). In addition, we constructed the gene-miRNA
and gene-TF regulatory networks: we show the networks of the
top three genes in Figure 10. The results suggest that there
are numerous miRNAs and TFs involved in the regulation of
these diagnostic genes, which provides us with directions for
subsequent therapeutic targeting of these genes.

Discussion

Ischemic stroke, as a serious disease with a high incidence
and mortality rate, often leads to lifelong disability in adults
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FIGURE 8

Construction of the nomogram model. (A) The ordinary nomogram for the joint diagnosis of ischemic stroke (IS) based on CASP1, CASP8,
ENTPD1, FOXP3, HSP90AA1, IFNA1, IL1R1, MYD88, and NT5E. (B) Calibration curve for nomogram validation. (C) Clinical impact of the
nomogram model as assessed by the clinical impact curve. (D) Decision curve analysis based on the nomogram model.

and places substantial stress and burdens on the patient’s family
and society. For a long time, researchers have been working to
improve the early preclinical diagnosis and treatment of IS. Cell
death is divided into regulated cell death (RCD) and accidental
cell death (ACD) (Galluzzi et al., 2018). RCD, such as apoptosis,
necrosis, autophagy, ferroptosis, copper-induced cell death and
immunogenic cell death, can be regulated by pharmacological
or genetic interventions, which have been extensively studied
in many diseases and have contributed to the development of
many therapeutic approaches (Lai et al., 2018; Sun et al., 2018).
However, few studies have examined the role of ICD in non-
infectious, non-malignant diseases, such as stroke (Kroemer
et al., 2022). In our study, multiple machine learning algorithms
were used to explore the role of ICD-related genes in IS. For
the first time, we analyzed ICD expression profiles, performed

clustering analysis, analyzed immune infiltration, screened for
prognostic signature genes, and built IS risk models.

We obtained 18 differentially expressed genes by differential
analysis of samples from the IS patient group and normal
control samples, and the coexpression analysis of these
genes revealed many synergistic effects between them,
especially HSP90AA1 and LY96 and ENTPD1 and IL1R1.
Our clustering analysis showed that based on these differentially
expressed genes, we could classify IS patients into two
clusters. The immunoinfiltration profile of these two clusters
was fully analyzed.

Neutrophils are among the first immune cells to be recruited
to the ischemic brain, and it has been reported that increased
levels of peripheral blood neutrophil-to-lymphocyte ratio (NLR)
at the time of admission represent an independent risk factor
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FIGURE 9

Correlation analysis of immune infiltration and signature genes expression. (A) Correlation of the top three signature genes expressions with
immune infiltration was analyzed in the GSM58294 dataset. Those marked in red indicate statistically significant. (B) Correlation of the top three
signature genes expressions with immune infiltration was analyzed in the GSM16561 dataset. Those marked in red indicate statistically
significant.

for deterioration in neurological function and high rates of
mortality (Iadecola et al., 2020). Mast cells contain granules with
vasoactive agents and proteases that have been implicated in the
destruction of the blood brain barrier (BBB) and extravasation
of neutrophils in cerebral ischemia, and the deficiency of
mast cells or pharmacological inhibition of mast cells exerts
a neuroprotective effect (Strbian et al., 2006; Lindsberg et al.,
2010). It has been reported that the secretion of protective
remodeling factors by M2 macrophages can promote neuronal
network recovery through tissue (including neuronal) and

vascular remodeling (Kanazawa et al., 2017). In addition,
increased monocytes might be related to IS volume and poor
outcome, whereas suppression of the recruitment of monocytes
significantly reduces post-IS brain oedema (Park et al., 2020;
Qiu et al., 2021). In our study, Cluster B displayed significantly
elevated levels of neutrophils and monocytes and lower levels of
M2 macrophages and resting mast cells, which indicated that the
patients in Cluster B might have poor prognosis. In addition, we
could administer different immunotherapies according to the
level of immune infiltration in these patients.
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FIGURE 10

Construction of regulatory networks. (A) The gene-miRNA regulatory networks of the top three genes. (B) The gene-TF regulatory networks of
the top three genes.

As machine learning research continues to progress,
machine learning algorithms are being proven to better
characterize the complex and unpredictable nature of human
physiology, and the use of this technology in the medical field
continues to produce exciting results (Heo et al., 2019). In our
study, we filtered the signature genes by using LASSO and
SVM algorithms, and nine signature genes were obtained by
combining the results of both algorithms. The nine signature
genes offer relatively good diagnostic value in both the training
and validation sets, and in addition, a nomogram containing
nine genes can combine nine signature genes to better diagnose
the occurrence of IS.

CASP1 plays an important role in the classical pathway
of pyroptosis, a cell death pathway involved in the pathology
of acute cerebral ischemia, and studies have shown that
inhibition of CASP1 activation in IS can rescue infarct volume,
promote motor recovery, and improve behavioral outcomes
in mouse stroke models (Li et al., 2020; Ma et al., 2020).
Wong et al. (2019) found that IL-1R1 mediates the deleterious
effects of IL-1 in ischemic stroke brain and that targeting cell-
specific IL-1R1 in the brain may confer beneficial therapeutic
effects for stroke and other cerebrovascular diseases. Clinical
studies with large samples have shown that elevated caspase-8
levels are associated with an increased incidence of ischemic
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stroke (Muhammad et al., 2018). These studies involving
these signature genes showed to some extent that the results
of our screening are reliable. In addition, further analysis
of these signature genes, including exploring their immune
correlation and their interaction network with miRNAs, TFs,
and other regulatory factors, could provide us with directions for
subsequent targeting and immunotherapy of IS. In the future,
we will continue to explore their potential mechanisms of action
in IS through molecular biology experiments.

In conclusion, our study provides the first comprehensive
analysis of the role of ICD-related genes in IS. In this study,
we demonstrated consensus clustering analysis and machine
learning analysis based on ICD-related genes and their roles in
immune infiltration and diagnosis of IS. Our study may provide
a valuable reference for further elucidation of the pathogenesis
of IS and provide directions for drug screening, personalized
therapy, and immunotherapy for IS.
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