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Developmental and
activity-dependent modulation
of coupling distance between
release site and Ca2+ channel
Mitsuharu Midorikawa*

Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women’s
Medical University, Tokyo, Japan

Synapses are junctions between a presynaptic neuron and a postsynaptic cell

specialized for fast and precise information transfer. The presynaptic terminal

secretes neurotransmitters via exocytosis of synaptic vesicles. Exocytosis is

a tightly regulated reaction that occurs within a millisecond of the arrival of

an action potential. One crucial parameter in determining the characteristics

of the transmitter release kinetics is the coupling distance between the

release site and the Ca2+ channel. Still, the technical limitations have

hindered detailed analysis from addressing how the coupling distance is

regulated depending on the development or activity of the synapse. However,

recent technical advances in electrophysiology and imaging are unveiling

their different configurations in different conditions. Here, I will summarize

developmental- and activity-dependent changes in the coupling distances

revealed by recent studies.

KEYWORDS
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Introduction

The transmitter release from the presynaptic nerve terminal is triggered by an
influx of Ca2+ from the voltage-gated calcium channels (VGCCs). Because the Ca2+

needs to diffuse from the channel pore to vesicular Ca2+ sensors, the coupling distance
between VGCCs and Ca2+ sensors of releasable vesicles is a critical determinant of the
release probability of the synaptic vesicles (Meinrenken et al., 2002; Wadel et al., 2007;
Eggermann et al., 2011; Nakamura et al., 2015). The coupling distance is one of the key
factors in producing functional heterogeneity of different synapses on the presynaptic
side, which is also known to be modulated depending on development or synaptic
activity (Ohana and Sakmann, 1998; Meinrenken et al., 2002; Fedchyshyn and Wang,
2005; Kochubey et al., 2009; Nakamura et al., 2015; Midorikawa and Miyata, 2021). It is
one of the refinement processes at the synapse to establish an adaptive neural network.
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The developmental change has been investigated mainly
from unusually large presynaptic structures, such as the calyx of
Held (Borst and Sakmann, 1996; Fedchyshyn and Wang, 2005;
Nakamura et al., 2015) and the endbulb of Held (Oleskevich
et al., 2004; Zhuang et al., 2017, 2020) at the auditory pathway.
Technological advances have recently enabled recording from
lemniscal fiber terminals (LFTs) at the sensory thalamus
(Midorikawa and Miyata, 2021), providing another presynaptic
model to digest developmental change in the coupling distance.
The LFTs also provide an interesting model synapse to study
selective strengthening and elimination (Midorikawa, 2022),
but in this minireview, I will focus on the developmental
change in the coupling distance. Because the calyx of Held
terminal, endbulb of Held, and LFTs are all located in the
middle of sensory pathways, they are good model synapses
to investigate not only developmental but also experience-
dependent modulation of the coupling distance.

The developmental/experience-dependent modulation is
chronic changes that proceed over days. In addition to the
chronic modulations, synapses are amenable to changing their
function more acutely via acute intense activity, known as long-
term synaptic potentiation and depression. Hippocampal mossy
fiber bouton (hMFB) is a suitable model to investigate coupling
distance before and after the long-term potentiation (LTP)
since it is applicable for patch-clamp recording, and the LTP
can be induced by a pharmacological manipulation (Weisskopf
et al., 1994; Nicoll and Schmitz, 2005). Another form of acute
plasticity is the so-called homeostatic plasticity of the Drosophila
neuromuscular junction (NMJ) that occurs in response to
postsynaptic impairments and leads to a compensatory increase
of presynaptic transmitter release (Davis and Müller, 2015).

These studies have provided detailed information about
acute and chronic modulation of coupling distance in different
synapses. In this article, I would like to overview these various
forms of coupling distance modulations.

Manuscript formatting

Headings

How voltage-gated calcium
channel-releasable vesicle coupling distance
affects the transmitter release kinetics

The coupling distance of VGCCs and release-ready synaptic
vesicles is a key factor in determining the fidelity of the synaptic
transmission. When an action potential (AP) arrives at the
presynaptic terminal, Ca2+ influx through VGCCs triggers
synaptic vesicle fusion and the release of transmitters stored
in the synaptic vesicles. Therefore, the spatio-temporal profile
of Ca2+ influx is the crucial determinant of the transmitter
release, which is strongly affected by the AP waveform and the
amount/distribution of functional Ca2+ channels. As for the

AP waveform, broader AP is usually associated with a larger
Ca2+ current because of the slower downstroke (Geiger and
Jonas, 2000), resulting in a larger transmitter release (Augustine,
1990; Borst and Sakmann, 1999). Since the spatio-temporal
profile of the Ca2+ is generally steep due to endogenous Ca2+

buffers (Nakamura et al., 2018), not only their numbers but
also the distribution of VGCCs relative to the release-ready
vesicles also plays a critical role in the efficacy of the transmitter
release. The synaptic response can be described by multiplying
a fixed number of the transmitter release site, mean release
probability, and quantal response size (Takahashi, 2015; Sakaba,
2018). VGCCs-releasable vesicle coupling distance is a major
determinant of the release probability among these parameters
(Meinrenken et al., 2002; Eggermann et al., 2011; Nakamura
et al., 2015).

Among central nervous system (CNS), some synapses have
“loose” couplings (Rozov et al., 2001; Fedchyshyn and Wang,
2005; Vyleta and Jonas, 2014; Kawaguchi and Sakaba, 2017),
while others have “tight” couplings (Bucurenciu et al., 2008;
Eggermann et al., 2011; Schmidt et al., 2013; Kawaguchi and
Sakaba, 2015). The different coupling distance results in a
distinct pattern of transmitter release in response to incoming
APs, which characterize various properties of CNS synapses.
In general, “tight” coupling synapses have higher release
probabilities than “loose” ones because they are exposed to a
higher concentration of Ca2+. Because a large fraction of the
readily releasable vesicles is depleted with the first AP, “tight”
coupling synapses often demonstrate short-term depression,
characterized by progressive weakening of transmitter release
upon repetitive stimulations (Zucker and Regehr, 2002; Regehr,
2012). On the other hand, at some synapses with a low initial
release probability due to “loose” coupling, repetitive stimuli
can result in a progressive strengthening of synaptic responses,
known as short-term facilitation (Zucker and Regehr, 2002;
Abbott and Regehr, 2004).

It should be noted that besides AP waveform, amount
of Ca2+ channels and the coupling distance of VGCCs and
release-ready vesicles as shown above, there still are other
factors that could affect synaptic vesicles’ release probability.
A major alternative possible factor is heterogeneous Ca2+-
sensitivity for transmitter release. Ca2+-sensors for the synaptic
vesicle fusion synchronized to APs at the CNS are mediated
mainly by Synaptotagmin-1, 2, or -9 (Südhof, 2013), but recent
accumulating results indicate the critical role of synaptotagmin-
7 on the asynchronous transmitter release (Bacaj et al., 2013; Luo
and Südhof, 2017). Synaptotagmin-7 is also proposed to play
a crucial role in short-term facilitation (Jackman et al., 2016;
Turecek et al., 2017).

Developmental change of the coupling
distance

In addition to the intrinsic differences among different
synapses, the coupling distance changes with development
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FIGURE 1

Schematic view of “loose” and “tight” coupling distance. The
distance from the voltage-gated calcium channels (VGCCs) (or
VGCC clusters) is different between “tight” (red) and “loose”
(blue) coupled vesicles. The release probability of “tight” coupled
vesicles is high because they are located close to the Ca2+

source, VGCCs, and hence exposed to a high concentration of
Ca2+. On the other hand, the release probability of “loose”
coupled vesicles is low because Ca2+ is diluted and buffered
before reaching its location. The coupling distance could
change from “loose” to “tight” depending on the development
and/or activity.

within the individual synapse. A number of studies have
shown that the coupling is typically “loose” during early
development, but the association becomes “tight” as synapses
mature (Ohana and Sakmann, 1998; Meinrenken et al., 2002;
Fedchyshyn and Wang, 2005; Figure 1). The coupling distance
between VGCCs and releasable vesicles has been examined
by investigating the sensitivity to a calcium chelator, e.g.,
EGTA (ethylene glycol tetraacetic acid), as a large amount of
intracellular EGTA predominantly blocks exocytosis of loosely
coupled vesicles (Adler et al., 1991; Borst and Sakmann, 1996).
At the LFTs, located in the whisker-sensory pathway, the
coupling distance is loose before the maturation (Midorikawa
and Miyata, 2021). The coupling distance becomes tight at
the beginning of the third postnatal week (∼P16), right after
the timing when active whisking of rodents begins (Figure 2).
Interestingly, the developmental tightening proceeds only at to-
be-strengthened LFTs, but not at to-be-eliminated LFTs, despite
synapsing onto the same postsynaptic neurons before the
maturation (Midorikawa and Miyata, 2021). The developmental
strengthening of the to-be-strengthened LFTs caused by the
tightening of the coupling distance is postulated as one of
the requirements to survive (Midorikawa, 2022). The study
indicates that the developmental tightening of the coupling
distance proceeds differently at distinct pathways.

The shortening of presynaptic AP wavelength is thought
to represent a possible general mechanism underlying the
developmental decrease of the release probability among
different CNS synapses (Bolshakov and Siegelbaum, 1995;
Pouzat and Hestrin, 1997; Taschenberger and Von Gersdorff,
2000; Midorikawa and Miyata, 2021). On the other hand,
it has been reported that the amplitude of Ca2+ current
enlarges to the mature level before the AP waveform maturation
(shortening) (Taschenberger et al., 2002; Nakamura et al., 2015;

FIGURE 2

Developmental and chronic/phasic activity-dependent
tightening of the coupling distance. (A) The coupling distance
was examined by ethylene glycol tetraacetic acid (EGTA)
sensitivity. Different amount of EGTA was injected into the
presynaptic terminals through the patch-pipette, and the
amount of transmitter release was detected by the capacitance
measurement technique. (B) At lemniscal fiber terminal (LFT),
the coupling distance showed developmental tightening, which
can be seen by reduced sensitivity of 1Cm after maturation
(compare black and red traces). The developmental tightening
was impaired when the animal was grown up in a
sensory-deprived condition (green traces). (C) At hippocampal
mossy fiber bouton (hMFB), chemical-induced LTP caused
tightening of the coupling distance, which was indicated by the
reduction of the EGTA sensitivity in an LTP condition. All traces
are adapted from Midorikawa and Sakaba (2017) and Midorikawa
and Miyata (2021).

Midorikawa and Miyata, 2021). At the calyx of Held, it is also
shown that the number of VGCCs per cluster and the cluster
area increase with development simultaneously (Nakamura
et al., 2015). Developmental AP shortening decreases release
probability while increasing the VGCCs, and/or the tighter
coupling exhibit an antagonistic effect. Another comparison
study between “weak” (low release probability) granule cell
synapse and “strong” (high release probability) stellate cell
synapse demonstrated that weaker granule cell synapse
exhibited threefold more VGCCs than stronger stellate cell
synapse, while the coupling distance was fivefold longer (Rebola
et al., 2019). These studies indicate that the AP waveform, the
number of VGCCs, and the coupling distance comprehensively
regulate the developmental modulation of the transmitter
release probability.
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Because the coupling distance is crucial to determine the
synaptic transmission property, extensive studies have been
performed to investigate the regulatory mechanisms. For the
coupling between VGCCs and release-ready synaptic vesicles, it
has been shown that several vital proteins such as CAST/ELKS
(Dong et al., 2018), neurexins (Missler et al., 2003; Luo et al.,
2020), RIMs (Kiyonaka et al., 2007; Han et al., 2015), RIM-
binding proteins (Acuna et al., 2015; Grauel et al., 2016; Butola
et al., 2021), and (M)Unc13s (Böhme et al., 2016; Reddy-Alla
et al., 2017; Kusch et al., 2018) have been proposed. Super
molecular complexes consist of these proteins that differ from
synapse to synapse, resulting in various synaptic transmission
properties. Also, the expression and transportation of these
proteins change with development, which could be postulated to
underly a maturational tightening of the coupling distance. An
interesting finding has been reported from studies of Drosophila
NMJ, where Unc13A and -B are simultaneously present at
mature presynaptic boutons, but those two isoforms arrive at
different timing during synaptic development (Böhme et al.,
2016). Unc13B, which mediates loose coupling, comes first
and functions during the initial synapse assembly process.
Unc13A, which mediates tight coupling, arrives later and
mediates the vast majority of AP-evoked release at the mature
synapse. Activity-dependent accumulations of the Unc13s are
also observed (Böhme et al., 2016), which may shed light on the
mechanism of activity-dependent coupling distance modulation
in the future. Interestingly, (M)Unc13 proteins themselves
might affect the coupling distance shift during maturation
by recruiting Ca2+ channels to the active zone as shown
at mammalian parallel fiber to Purkinje Cell synapse (Kusch
et al., 2018), consistent with a direct interaction of VGCCs
to Munc13s (Calloway et al., 2015). The presence of multiple
isoforms of Munc13s and their loose redundancy on the
transmitter release kinetics have also been reported at the calyx
of Held synapse (Chen et al., 2013), at which developmental
tightening of the coupling distance occurs (Nakamura et al.,
2015).

Activity-dependent modulation of the coupling
distance

The synapse formation can be roughly divided into three
phases, initial axon targeting and contact with a target cell
dendrite, organization of synapse structures to build the
canonical synaptic construct shared by all synapses, and
specification of synapse properties to confer unique features on
each synapse (Südhof, 2017). Although the formation of long-
distance axon tracts is restricted mainly to development and
activity-independent, local branching of an axon is affected by
neuronal activity (Uesaka et al., 2005, 2007). The following step,
synapse formation, is a balancing process between formation
and elimination. This phase is known to be activity-dependent
and has been well studied in several brain regions (LeVay
et al., 1980; Kano and Watanabe, 2019; Hooks and Chen, 2020;

Midorikawa, 2022). The final step of synapse maturation is a
specification of the synapse properties, which are largely affected
by the neuronal activity to establish an adaptive neural network
against the outer environment.

At the LFTs, continuous deprivation of sensory inputs
from just before the onset of the active whisking prevents the
developmental tightening of the coupling distance (Midorikawa
and Miyata, 2021), which indicates that the process is
experience-dependent (Figure 2). In this case, days of
deprivation are required to impair the maturation process,
suggesting that the tightening of the coupling distance is
dependent on chronic activation of the pathway. On the other
hand, the developmental shortening of the AP waveform is
not affected by sensory deprivation at the LFTs (Midorikawa
and Miyata, 2021). Therefore, at the LFTs developed without
sensory experience, the shortened AP and the impaired coupling
distance may result in unreliable synaptic transmission, leading
to impaired sensory processing. In contrast to the unaffected AP
waveform by sensory deprivation at LFTs, richer sensory inputs
could induce shortenings of the AP waveform at other synapses.
AP waveforms of specific neurons in the amygdala, cochlear
nucleus, and cerebellum have been shown to be shortened
by fear extinction, noise exposure, and enriched environment,
respectively (Senn et al., 2014; Ngodup et al., 2015; Eshra
et al., 2019). In these cases, tightening of the coupling distance
or/and enlargement of the Ca2+ current can be postulated
as compensatory mechanisms to maintain or facilitate reliable
synaptic transmission.

Unlike LFTs, the kinetics of the transmitter release is
not affected by the sensory deprivation at the calyx of Held
synapse (Oleskevich et al., 2004), suggesting that developmental
tightening of the coupling distance is not dependent on the
hearing experience at this synapse. Interestingly at the endbulb
synapse, which is located at the hearing pathway one synapse
before the calyx of Held synapse, release probability is increased
via hearing deprivation during the development (Oleskevich
et al., 2004). Here, the increase in the release probability is
not due to the tightening of the coupling distance but to the
enhancement of the Ca2+ current (Zhuang et al., 2020).

These studies indicate that the activity-dependent
developmental modulation of the release probability could
work either in a Hebbian plasticity mode (inactive synapse
becomes weak, i.e., LFT) or homeostatic plasticity mode
(inactive synapse becomes strong, i.e., endbulb of Held).

Besides the chronic activity-dependent modulation of the
coupling distance and/or transmitter release kinetics, as shown
above, more phasic activity also could change the kinetics of
transmitter release by the coupling distance modulation. One
such kind of presynaptic plasticity is the homeostatic plasticity
of the Drosophila NMJ, which induces a compensatory increase
of presynaptic transmitter release in response to postsynaptic
receptor blockade (Davis and Müller, 2015). Here, it has
been shown that the enhanced transmitter release following
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the homeostatic plasticity had increased sensitivity to Ca2+

chelator EGTA, indicating that more loosely coupled vesicles
are triggered for release under such a condition (Wentzel et al.,
2018). Another presynaptic plasticity induced by phasic activity
is the LTP of the neuron implicated in learning and memory.
Although early studies of long-term synaptic plasticity described
a potentiation of postsynaptic signal transduction mechanisms,
it is now apparent that there is a vast array of presynaptic
mechanisms for LTP (Yang and Calakos, 2013). Arguably best-
characterized locus of the presynaptic LTP is the hippocampal
mossy fiber synapse, where presynaptic plasticity was first found
(Zalutsky and Nicoll, 1990). Several lines of studies, including
quantal analysis of EPSCs (Malinow and Tsien, 1990), paired-
pulse ratio analysis (Zalutsky and Nicoll, 1990), and monitoring
progressive irreversible blockade of NMDA receptor-mediated
EPSCs (Weisskopf and Nicoll, 1995) indicate that the LTP of this
synapse is caused by an increase in release probability. Here, LTP
depends on elevated cAMP levels, protein kinase A activation,
and the phosphorylation of presynaptic substrates (Huang et al.,
1994; Weisskopf et al., 1994). Because of its large size, hMFB
is one of the few presynaptic structures amenable to direct
patch-clamp recording (Geiger and Jonas, 2000; Hallermann
et al., 2003; Vyleta and Jonas, 2014; Midorikawa and Sakaba,
2017). Direct infusion of cAMP into hMFBs through the
patch pipette increased the release probability, accompanied
by a reduced EGTA sensitivity, suggesting a tightening of the
coupling distance (Midorikawa and Sakaba, 2017; Figure 2).
Further study using super-resolution microscopy revealed that
the cAMP-induced tighter coupling was caused by the physical
expansion of VGCC clusters (Fukaya et al., 2021). It has
been shown that the mobility of Ca2+ channels is high with
presynaptic terminals (Schneider et al., 2015), and active zones
recruit Ca2+ channels via active zone scaffolding proteins such
as RIM, RIM-binding proteins, and Neurexins (Kaeser et al.,
2011; Liu et al., 2011; Acuna et al., 2015; Han et al., 2015; Luo
et al., 2020). Tightening of the coupling distance accompanied
with LTP at the hMFB may be caused by the recruitment of
VGCCs to active zones by scaffolding factors (Lübbert et al.,
2019; Held et al., 2020).

Conclusion and future direction
As overviewed here, the coupling distance between VGCCs

and release-ready vesicles is one of the key regulatory principles
for determining synaptic behavior. It varies remarkably among
different types of synapses, and even within the individual
synapse, the coupling distance can be modulated by the
chronic (e.g., development, experience-dependent) or phasic
(e.g., LTP) activity of the synapse. Recently, the coupling
distance has been estimated based on the kinetics of transmitter
release measured via electrophysiology, electron microscopy,
and model simulation (Budisantoso et al., 2012; Vyleta and
Jonas, 2014; Nakamura et al., 2015; Böhme et al., 2016; Rebola
et al., 2019). The studies have suggested various coupling

distances and distribution patterns of VGCCs and release sites
at different synapses under different conditions. Furthermore,
the recent evolution of super-resolution microscopy enables
us to visualize VGCCs and release site markers, such as
Munc13 (Sakamoto et al., 2018), simultaneously to directly
measure the coupling distance (Fukaya et al., 2021). The
technical advances are shedding light on variable coupling
distances among different synapses and their phasic and chronic
plasticity.

It is interesting to ask what is shared and what is different
between developmental and activity-dependent modulation
of coupling distance. The initial triggering signal might be
different since basal synaptogenesis mechanisms, and functional
maturation of at least a subset of synapses are activity-
independent (Verhage et al., 2000; Sando et al., 2017; Sigler et al.,
2017). However, the signaling cascade might be converged and
shared to some degree.

The ideal experiment will be to visualize the exocytosis
of a single synaptic vesicle with Ca2+ influx from VGCCs.
Simultaneous measurement of exocytosis of individual synaptic
vesicle together with Ca2+ influx (Midorikawa et al., 2007;
Midorikawa and Sakaba, 2015) or an active zone marker
(Midorikawa et al., 2007; Zenisek, 2008; Joselevitch and Zenisek,
2020) has been performed using total internal reflection
fluorescence microscopy, but the diffraction-limited spatial
resolution (∼ 200 nm in) is far from sufficient to argue
the coupling distance, which is typically in the range of
tens to a hundred nanometers. The rapid expansion of live
imaging techniques equipped with spatial resolution above the
diffraction limit and fast temporal resolution will identify the
coupling distance of various synapses in a different state, which
will be fruitful for our understanding of the adaptive refinement
of the presynaptic transmitter release machinery in the future.
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