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Neurologic autoimmune disorders affect people’s physical and mental health

seriously. Glial cells, as an important part of the nervous system, play a

vital role in the occurrence of neurologic autoimmune disorders. Glial cells

can be hyperactivated in the presence of autoantibodies or pathological

changes, to influence neurologic autoimmune disorders. This review is mainly

focused on the roles of glial cells in neurologic autoimmune disorders and the

influence of autoantibodies produced by autoimmune disorders on glial cells.

We speculate that the possibility of glial cells might be a novel way for the

investigation and therapy of neurologic autoimmune disorders.

KEYWORDS
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Introduction

Neurologic autoimmune disorders are caused by an adaptive immune response
directed against an antigen expressed within the nervous system, mainly involving
young and middle-aged people with high mortality and disability (Rubin et al.,
2018; Bhagavati, 2021). It is reported that environmental genetic susceptibility and

Abbreviations: MS, multiple sclerosis; GBS, Guillain–Barre syndrome; NMODS, neuromyelitis optica
spectrum disorders; CNS, central nervous system; PNS, peripheral nervous system; NMDAR,
N-methyl-D-aspartate receptor; AMPAR, α-amino-3-hydroxy-5-metnyl-4-isoxazolepropionic acid
receptor; GABABR, gamma-aminobutyric acid B receptor; VGKC, voltage-gated potassium channel;
mGluR1, metabotropic glutamate receptor 1; mGluR5, metabotropic glutamate receptor 5; MOG,
myelin oligodendrocyte glycoprotein; MBP, myelin basic protein; GM1, ganglioside M1; GM2,
ganglioside M2; GM3, ganglioside M3; GD1a, ganglioside D1a; GD1b, ganglioside D1b; GT1b,
ganglioside T1b; GQ1b, ganglioside Q1B; MAG, myelin-associated glycoprotein; AChR, acetylcholine
receptor; AQP4, aquaporin-4; BBB, blood brain barrier; OPCs, oligodendrocyte progenitor
cells; HSCs, hematopoietic stem cells; IFN-γ, cytokine interferon-γ; LPS, lipopolysaccharide;
IL-12, interleukin-12; IL-23, interleukin-23; Th1, type 1 T helper; Th17, type 17 T helper; IL-17,
interleukin-17; Th2, type 2 T helper; CSF, cerebrospinal fluid; AIDP, acute inflammatory demyelinating
polyneuropathy; ASAN, acute sensory axonal neuropathy; AMAN, acute motor axonal neuropathy;
AMSAN, acute motor and sensory axonal neuropathy; GalNAc-GD1a, N-acetylgalactosamine
GD1a; GM1b, Ganglioside M1B; IVIg, intravenous immunoglobulin; Nav, voltage-gated Na+; CDC,
complement-dependent cytotoxicity; ADCC, antibody-dependent cytotoxicity; GFAP, glial fibrillary
acidic protein; MOGAD, myelin oligodendrocyte glycoprotein antibody-related disease; MOG-Abs,
MOG antibodies; IL-10, interleukin-10; DRGs, dorsal root ganglions.
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various stress factors, including virus infection, childbirth,
overwork, trauma, emotional agitation, and vaccination
contribute to the development of neurologic autoimmune
disorders (Fujinami, 2001). To date, there are more than 30
known autoimmune diseases of the nervous system. The most
common of them are multiple sclerosis (MS) and Guillain–Barre
syndrome (GBS).

It has been known that the etiology of these neurologic
autoimmune disorders might have three potential mechanisms:
(1) the common autoimmune response to myelin antigens or
epitopes in the central nervous system (CNS) and peripheral
nervous system (PNS); (2) the high general susceptibility to
autoimmune diseases, for instance, autoimmune diseases
may be caused or exacerbated by immunomodulatory
therapy; and (3) the co-occurrence in both CNS and
PNS could be a coincidence (Kamm and Zettl, 2012).
Almost every structure of the CNS or PNS may become
the target of autoimmune attacks. However, the exact
causes of the neurologic autoimmune disorders remain
unclear.

Glial cells play a key role in brain physiology, metabolism,
development, and even nervous system diseases (Herculano-
Houzel, 2014). Glial cells are involved in neuroinflammation
and synaptic homeostasis, which are important for
maintaining the physiological function of the nervous
system. Recently, great attention has been paid to glial
cells in nervous system diseases, especially neurologic
autoimmune disorders (Brambilla, 2019; Voet et al., 2019).
Myelination of axons is formed by oligodendrocytes and
Schwann cells, which form an electrical insulator capable of
rapid signal transmission. The importance of oligodendrocytes
in the pathology of demyelinating diseases such as MS
has been recognized, because myelin loss directly affects
nerve transmission. Moreover, oligodendrocyte regulates
neuronal metabolic support, which attributes to neuronal
existence or death. In response to injury and inflammation,
microglia and astrocytes could be activated immediately,
or even overactive, which might be the potential reason
for the occurrence of neurologic autoimmune disorders
(Liddelow et al., 2020).

Nervous system autoantibodies mediate neurologic
autoimmune disorders. According to the distribution of
their target antigens, these nervous system autoantibodies
could be roughly divided into PNS antibodies and CNS
antibodies. In general, autoantibodies are stimulated by
inflammation in specific organs and tissues. In some cases,
cross-reactivity with microbial antigens could be detected.
In specific conditions, such as virus infection, exposure to
certain toxic chemicals, or neoplasms, antibodies targeting
organs and tissue would trigger pathogenic status, which is
always temporary when exposure is reduced or eliminated
(Geng et al., 2020), resulting in the progression of autoimmune
diseases. Autoantibodies, self-antigens, and other immune

factors form an immune complex in the CNS and PNS,
resulting in the dysfunction or destruction of neurons and glia
(Kleopa, 2011).

In line with the clinical manifestations, the
nervous system autoantibodies can be divided into:
(1) autoimmune encephalitis-related antibodies:
N-methyl-D-aspartate receptor (NMDAR), α-amino-
3-hydroxy-5-metnyl-4-isoxazolepropionic acid receptor
(AMPAR), gamma-aminobutyric acid B receptor (GABABR),
voltage-gated potassium channel (VGKC), glycine receptor,
metabotropic glutamate receptor 1 (mGluR1), metabotropic
glutamate receptor 5 (mGluR5); (2) neuromyelitis pedigree-
related antibodies: including myelin oligodendrocyte
glycoprotein (MOG), myelin basic protein (MBP); (3)
immune-mediated peripheral neuropathy-related antibodies:
ganglioside M1 (GM1), ganglioside M2 (GM2), ganglioside
M3 (GM3), ganglioside D1a (GD1a), ganglioside D1b
(GD1b), ganglioside T1b (GT1b), ganglioside Q1B (GQ1b),
myelin-associated glycoprotein (MAG), and thioester; and
(4) immune-mediated neuromuscular junction disease-
related antibodies: acetylcholine receptor (AChR) (Lalive,
2008; Zhang and Popovich, 2011; Gold et al., 2012;
Pollak et al., 2016; Dalmau et al., 2017; Karim and Jacob,
2018). These autoantibodies not only attack neurons
but also glial cells, leading to the imbalance of neural
networks, disturbance of homeostasis, and inflammation
hyperreaction, those further aggravate the destruction
of neurons. In addition, the autoantibodies produced by
autoimmunity or the autoantigens could recruit more glial
cells in response to autoimmune reactions, resulting in
neurologic autoimmune disorders in the nervous system.
Autoantibodies targeting the aquaporin-4 (AQP4) channel,
which is enriched on the surface of astrocytes and is involved
in maintaining the stability of the blood–brain barrier (BBB),
for example, cause neuromyelitis optica spectrum disorders
(NMODSs).

Taken together, glial cells, as an important part of the
nervous system, could be hyperactivated in the presence of
autoantibodies or pathological changes, affecting the occurrence
of neurologic autoimmune disorders. This review will focus
on the roles of glial cells in neurologic autoimmune disorders
and the influence of autoantibodies produced by autoimmune
disorders on glial cells.

Glial cells

As an important factor in the balance of the neural
network, glial cells play a role in maintaining the stability and
functional integrity of the nervous system (Casella et al., 2020;
Healy et al., 2020). The types of glial cells mainly include
astrocytes, oligodendrocytes, and microglia in the CNS. The
Schwann cells and satellite glia are presented in the PNS.
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Glial cells in the central nervous system

Astrocytes are the most widely distributed glial cells in
the CNS and have star-shaped cell bodies with numerous long
and branching processes, which are important for supporting
neurons through tight metabolic coupling (Ioannou et al.,
2019). The fine morphology of the processes of astrocytes
makes close contact with neuronal synapses, therefore, directly
affecting local neurotransmission. Most importantly, astrocytes
are critical for propagating inflammation, which contributes
to disease development. On the other side, in response to
immune reactions, as a crucial part of BBB, astrocytes prevent
the inflammatory cells from entering the CNS during disease
and injury (Heneka et al., 2018).

Oligodendrocytes are found throughout the gray and white
matter in the CNS. In the adult brain, the cell body of
oligodendrocytes is round or oval, with fewer protrusions
wrapped around the neuronal axons and are responsible for
the formation of myelin sheath in the CNS. Its function
is crucial for forming an insulating cover around the axon,
thus improving the transmission speed of electrical signals.
Myelinating oligodendrocytes originate from oligodendrocyte
progenitor cells (OPCs), which are maintained in the adult CNS.
The abilities of proliferation and differentiation from OPCs
into myelinating oligodendrocytes are critical for the progress
of neurologic autoimmune disorders, for instance, MS (Falcao
et al., 2018).

Microglia are the smallest glial cell type in the CNS.
The cell body of microglia is small and short rod-shaped.
The protrusions from the cell body are long and thin, and
there are many small spinous processes on the surface.
According to the function and status, microglia can be
defined as three types, process-bearing, highly ramified
myeloid cells, and tissue-resident macrophages (Greter
et al., 2015). In response to injury and disorders, microglia
are highly dynamic and activating (Nimmerjahn et al.,
2005). Particularly in synapses of neurons, microglia are
involved in complement-mediated synapse elimination,
which is critical for neuronal circuit development
(Schafer et al., 2012).

Interestingly, in the PNS, macrophages have similar
functions as microglia in the CNS, for instance, presentation
of antigens and cytokines production (Cao and He, 2013).
Microglia have been shown to be derived from the embryonic
yolk sac and migrate into the CNS (Ginhoux et al., 2010).
Macrophages have two different origins, one part is from
embryonic progenitors in the yolk sac and fetal liver, and
another part is derived from hematopoietic stem cells (HSCs) in
the bone marrow and blood monocytes (Crotti and Ransohoff,
2016). There is an overlap in the origin of microglia with that of
tissue macrophages.

During inflammatory demyelination, macrophages
from HSCs are thought to differentiate from two types

of monocytes, the inflammatory monocytes, and the
resident monocytes, and two groups exhibit important
migratory and functional differences between mice and
humans. Reports indicated that the inflammatory monocytes
are pro-inflammatory and involved in demyelination in
MS, whereas the resident group act as patrolling cells
(Fogg et al., 2006).

Glial cells in the peripheral nervous
system

Schwann cells form the myelin sheath around the axons of
neurons in the PNS. In the mature myelinated nerve axons,
Schwann cells surround the segments between two Ranvier
nodes of the nerve fibers, thus greatly accelerating the speed
of neurotransmission in peripheral nerves. Therefore, when the
myelin sheath of the PNS is damaged in neurologic autoimmune
disorders, it ultimately affects the function of Schwann cells and
axons. GBS is a rare neurologic autoimmune disease affecting
the Schwann cells in the PNS (McGonigal et al., 2022).

Satellite cells surround the neuronal bodies of ganglion
cells in the ganglia (such as sensory ganglia, sympathetic
ganglia, and parasympathetic ganglia) of the PNS. Satellite
cells have been found to play a variety of roles, including
controlling the microenvironment of the sympathetic ganglia.
They are considered to have similar functions to astrocytes
in the central nervous system, providing support, nutrition,
and protection for the surrounding neurons. In addition,
satellite cells express a variety of receptors (such as purinergic
receptors) that can interact with neuroactive substances
(Kuang and Rudnicki, 2008).

Neurologic autoimmune disorders
and glial cells

Multiple sclerosis

Multiple sclerosis is an autoimmune disease characterized
by chronic inflammation, demyelination, and gliosis in the
CNS. The most affected regions by MS in the CNS are the
periventricular area, subcortical area, optic nerve, spinal
cord, brainstem, and cerebellum (Filippi et al., 2018). The
pathogenesis of MS is involved in the aberrant immune
response directly against myelin antigen, such as the immune
attack against MBP, resulting in the loss of myelin sheath
in the white matter of the CNS. In the progress of MS,
glial cells play an important role in the pathogenesis of
MS autoimmunity (Figure 1). Pathological studies also
suggested that the process of multiple demyelination
in white matter is often accompanied by reactive gliosis
(van Wageningen et al., 2022).
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FIGURE 1

The pathogenesis of MS. Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation, demyelination, and gliosis in
the CNS. At the early stage of MS, microglia could be activated and proliferated, which act as antigen-presenting cells. M1 microglia are
differentiated by IFN-γ and LPS, secreting IL-12 and IL-23, promoting the differentiation of Th1 cells and Th 17 cells, leading to the aggravation
of the inflammatory response of MS. M2 microglia are activated by IL-4/IL-13 and play a role in anti-inflammation. Macrophages have similar
functions as microglia, including the presentation of antigens and cytokines production. M1 macrophages have the antigen-presenting ability
the same as M1 microglia, resulting in the demyelination of nerves in MS. M2 macrophages increases Th2 cell differentiation to protect
oligodendrocytes and neurons from damage. In MS, astrocytes can be activated, enhancing the permeability of BBB, and recruiting
lymphocytes into the CNS. Moreover, astrocytes participate in the formation of BBB and secret immune inhibitory factors, acting in an
anti-inflammatory role. The resting astrocytes inhibit the proliferation and promote apoptosis of Th1 cells and promote the secretion of
anti-inflammatory cytokines by Th2 cells. Oligodendrocytes form the myelin sheath of CNS axons, providing nutrition and protecting nerve
axons. At the early stage of MS, the regeneration and self-healing of nerve myelin sheath lesions are completed by the differentiation of OPCs
into mature oligodendrocytes, but the differentiation ability is finally lost in progressive MS.

Microglia
Microglia have the functions of phagocytosis, antigen

presentation, and cytokine production. At the early stage of
MS, microglia could be activated and proliferated, which act
as antigen-presenting cells. The activated microglia can be
observed in the white matter of brain tissue in patients with early
MS (Singh et al., 2013).

Studies show that microglia play a dual role in MS,
which can not only promote an inflammatory response that
aggravates tissue damage but also have neuroprotective and
repair effects. The activated microglia could be divided into
M1 and M2, which are attributed to their roles in MS,
respectively. Cytokine interferon-γ (IFN-γ), lipopolysaccharide
(LPS) induces microglia to differentiate into M1, which

secretes interleukin-12 (IL-12) and interleukin-23 (IL-23). IL-
12 is the main factor promoting the differentiation of type
1 T helper (Th1) cells; IL-23 promotes the type 17 T
helper (Th17) cell differentiation, leading to the production
of the inflammatory factor interleukin-17 (IL-17) secretion.
Thus, the M1 microglia aggravate the inflammatory response
of MS (Kong et al., 2016; Thompson and Tsirka, 2017).
Microglia can be stimulated by interleukin-4 (IL-4)/ interleukin-
13 (IL-13) to an M2 phenotype for the resolution of
inflammation and tissue repair. In MS, M2 microglia have
neuroprotective effects. The activation and proliferation of
M2 microglia can remove extracellular oxidized proteins,
phagocytic debris, and degenerated myelin sheath in brain
tissue, provide a relatively suitable microenvironment for
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neuronal repair, and help to mend the damaged nervous system
(Jackle et al., 2020).

Macrophages
Macrophages are as same important as microglia in the

pathogenesis of MS. M1 macrophages have the antigen-
presenting ability the same as M1 microglia, resulting
in the demyelination of nerves in MS. Moreover, M2
macrophages play an anti-inflammatory role with microglia
by increasing type 2 T helper (Th2) cell differentiation,
therefore, protecting oligodendrocytes and neurons from
damage (Cao and He, 2013).

Astrocytes
Astrocytes not only account for the majority of the

CNS in quantity but also play a critical role in immune
diseases of the CNS. Astrocytes can be activated by
inflammatory factors, ischemia, hypoxia, and other stimuli. The
permeability of BBB could be increased by activated astrocytes,
facilitating the passage of lymphocytes to participate in the
occurrence and development of lesions. Simultaneously,
activated astrocytes directly or indirectly activate and
recruit peripheral activated immune cells to the CNS by
secreting cytokines, which is an important factor in the
pathogenesis of MS (Farina et al., 2007; Aharoni et al., 2021).
It was reported that the blockade of astrocyte CD38 activity
suppressed pro-inflammatory transcriptional reprogramming,
leading to the decreased expressions of pro-inflammatory
transcriptional modules, which might contribute to CNS
pathology in MS.

Moreover, astrocytes are not only involved in the occurrence
of inflammation in the CNS but also act as important anti-
inflammatory cells. At rest, as a maintainer of the stability of
the CNS, astrocytes participate in the formation of BBB with
vascular endothelial cells through its rich foot process structure,
but also play a role in the biological barrier through the
secretion of immune inhibitory factors. Studies have reported
that normal resting astrocytes may inhibit the proliferation and
promote apoptosis of T cells by expressing B7-H1 (Lipp et al.,
2007). The proliferation of antigen-specific Th1 cells could be
inhibited by astrocytes, which promote the secretion of anti-
inflammatory cytokines by Th2 cells as well, thus inhibiting the
development of inflammation (Liddelow et al., 2020). Therefore,
the roles of astrocytes in the pathogenesis of MS still need further
research.

Oligodendrocytes
Oligodendrocytes form the myelin sheath of CNS

axons, providing nutrition and protecting nerve axons.
As demonstrated, the pathological basis of MS is chronic
inflammatory demyelination and neuronal degeneration of
the CNS. At the early stage of MS, demyelinating lesions
formed sclerotic plaques and had the function of nerve

myelin regeneration and self-healing. However, with the
development of MS, the functions of regeneration weaken and
lose, eventually, the degeneration of nerve axons and neurons
leads to brain parenchyma atrophy and severe disability (Brown
et al., 2013). It is noted that the regeneration and self-healing
of nerve myelin sheath at the early stage of MS lesions are
completed by the differentiation of OPCs into mature glial
cells (Meijer et al., 2022). Although OPCs always exist in the
CNS, this differentiation ability in the lesions is finally lost in
progressive MS (Ghorbani et al., 2022).

Clinical diagnosis and therapy
The pathology and the course of MS are sophisticated,

suggesting that its clinical diagnosis and therapy might
require targeting multiple biological processes. Although MS is
generally considered to be triggered by autoimmune-mediated
attacks of CNS myelin sheath, the anti-inflammatory treatments
could not completely alleviate and prevent the development
of MS, which is shown to be more and extensive axonal
demyelination and degeneration (Trapp et al., 1998).

In response to neurologic autoimmune disorders, glial cells
might be involved and subsequently connected to numerous
biomarkers, which are critical and useful for diagnosis
and therapy. In patients with MS, several myelin proteins
including MBP and MOG have been detected and explored
in cerebrospinal fluid (CSF) and serum, which are potential
biomarkers for diagnosis.

Lenaldekar, an effective inhibitor of activated T cell
proliferation, has been suggested to be a novel therapeutic
approach for patients with MS. Moreover, in an experimental
autoimmune encephalomyelitis (EAE) rodent model of MS,
Lenaldekar treatment inhibited relapse severity, indicating a
perspective application (Cusick et al., 2012). However, it is noted
that no available animal model recapitulates the complicated
and divergent pathogenesis of MS currently.

From the pathology of MS, preventing demyelination
and promoting the regeneration of myelin sheath represent
another potential therapeutic strategy for the treatment of
MS. It is found that oligodendrocytes also produce nerve
growth factor, neuregulin, glial-derived neurotrophic factor,
and transforming growth factor (Acosta et al., 2013). These
factors bind to corresponding receptors on neurons and
glial cells and then affect the development and survival of
neurons, astrocytes, and even oligodendrocytes themselves.
In a word, oligodendrocytes play an important role in the
progression and repair of MS disease (Zuchero and Barres,
2015). The enhancement of oligodendrocyte differentiation
could be a way to help the regeneration of the myelin
sheath (Rittchen et al., 2015); although many OPCs are in
lesions sites at the early stage of MS, only rare maturing
progenitors are found in chronic MS lesions, indicating that
the differentiation capacity of OPCs is impaired in MS lesions
(Kuhlmann et al., 2008).
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Guillain–Barre syndrome

Guillain–Barre syndrome is an acute immune-mediated
polyneuropathy. Its pathophysiology can be divided into
acute inflammatory demyelinating polyneuropathy (AIDP),
acute sensory axonal neuropathy (ASAN), acute motor
axonal neuropathy (AMAN), and acute motor and sensory
axonal neuropathy (AMSAN). The main pathophysiological
mechanism is complement-mediated nerve injury caused by
antibody–antigen interaction in peripheral nerves. The anti-
ganglioside antibody is the most common autoantibody in
the development of GBS. GBS is induced by some immune
trigger factors, most of which are precursory infections caused
by pathogens, such as Campylobacter jejuni, Haemophilus
influenzae, Mycoplasma pneumoniae, or Cytomegalovirus, and
the current epidemic SARS-CoV-2 is also one of the infectious
factors causing GBS (Kaida, 2019).

Schwann cells
In the PNS, axons are myelinated by Schwann cells.

Gangliosides, a family of glycosphingolipids containing sialic
acid, ensure the rapid transmission of myelinated axons by nerve
fibers in the nervous system by regulating the caliber of axons
and organizing ion channels in the Ranvier node and prevent
axon regeneration after injury. The anti-ganglioside antibody
can simulate this inhibitory effect on nerve repair (Lopez and
Baez, 2018). Gangliosides GM1, GD1a, or GD1b are highly
enriched at or near the Ranvier nodes (Kaida and Kusunoki,
2009) in axons myelinated by Schwann cells.

In human AMAN and AMSAN, early pathological
features include the expansion of the Ranvier nodes, the
deposition of complement products, and the complement
system playing a central role in the immune response to
eliminate invasive pathogens (Ramaglia et al., 2008). Therefore,
in immune-mediated neuropathy associated with GM1, GD1a,
or GD1b autoantibodies, complement-mediated Ranvier nodes
destruction and activation of peripheral Schwann cells may be
the common mechanism of these anti-ganglioside antibody-
mediated neuropathies, explaining the continuous spectrum of
AMAN, AMSAN, and ASAN (Susuki et al., 2012).

Other glia cells
Virus infection is also one of the main causes of GBS,

and the effects of Zika virus and SARS-CoV-2 on glial cells in
GBS are mainly discussed here. Some studies have shown that
the Zika virus can replicate in microglia and cause cytopathy,
resulting in a high degree of immune activation of microglia
to resist pathogens in tissues. At the same time, it will also
destroy normal tissues and cause neuropathy (Martinez Viedma
and Pickett, 2018). Similarly, SARS-CoV-2 can also invade
astrocytes, macrophages, and microglia in the CNS and induce
the inflammatory response and increase the production of
inflammatory mediators, including IL-1β and IL-2 (Raony et al.,

2020). In addition, SARS-CoV-2 induces the expression of
inflammatory cytokines in glial cells in vitro, such as IL-6, IL-12,
IL-15, and TNF-α (Wu et al., 2020).

In conclusion, autoimmunity is the key to the
pathophysiology of GBS. Glial cells present bacterial or
viral particles to lymphocytes in the PNS, and the resulting
immune response is accompanied by molecular simulation
between pathogen epitopes and host gangliosides, such as
N-acetylgalactosamine GD1a (GalNAc-GD1a), GD1a, GM1,
ganglioside M1B (GM1b), and myelin proteins can lead to acute
nerve injury and thus cause GBS (Mohammadi et al., 2020).

Clinical diagnosis and therapy
The progressive development of GBS is acute and serious,

affecting the myelin sheath and the related axons. These
damaged structures release biomarkers into the CSF. The
candidate biomarkers for the diagnosis of GBS include MBP,
axonal damage markers (neurofilaments, tau, anti-ganglioside
antibodies), glial markers (S100B), and immunological markers
(chemokines and complement factors) (Brettschneider et al.,
2009). The applied potency of biomarkers in GBS is depending
on several aspects: (1) the relevance to act as a surrogate for
the disease development; (2) the practical results of prognostic
accuracy; and (3) the potential to be predictors.

Intravenous immunoglobulin (IVIg) and plasma exchange
have increasingly been used for the treatment of GBS (Yuki and
Hartung, 2012). In addition, anti-GM1 IgG antibodies cause
complement-mediated disruption of clusters of voltage-gated
Na+ (Nav) channels at Ranvier nodes in peripheral motor nerve
fibers of GBS animal models (Susuki et al., 2007). Application
of complement inhibitors might reduce the formation of the
membrane attack complex, prevent the disruption of sodium
channel clusters, and lessen nerve injury in AMAN (Phongsisay
et al., 2008).

Neuromyelitis optica spectrum
disorders

Neuromyelitis optica spectrum disorders are destructive
inflammatory diseases of the CNS induced by autoantibodies,
often causing demyelination of the CNS, mainly affecting
the spinal cord, optic nerve, and brainstem. The typical
manifestations are recurrent optic neuritis, longitudinal
generalized myelitis, brainstem, diencephalon, and brain
syndrome (Valencia-Sanchez and Wingerchuk, 2021). For
many years, optic neuromyelitis has been considered a
type of MS. Until 2004, researchers found that the main
pathogenic autoantibody of NMODS in patients with optic
neuromyelitis was AQP4 immunoglobulin G (AQP4-IgG)
targeting AQP4 on the foot process membrane of astrocytes.
For this reason, the disease is also known as CNS autoimmune
astrocyte disease.
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Astrocytes
AQP4 immunoglobulin G is a specific biomarker that

can distinguish patients with NMODS from patients with
MS. In addition, some patients with NMODS are AQP4-
IgG seronegative. Therefore, the latest diagnostic criteria
divide NMODS into AQP4-IgG seropositive and AQP4-IgG
seronegative diseases (Paul et al., 2021). AQP4 is most strongly
expressed in the CNS, mainly in astrocytes of brain, spinal cord,
and optic nerve, especially on the pia mater and ependymal
surface in contact with CSF (Rash et al., 1998). But it also
exists in the epithelial cells of kidney (collecting duct), stomach
(parietal cells), airway, gland, and skeletal muscle. It has been
found that AQP4 is related to nerve excitation, astrocyte
migration, and neuroinflammation, and the related contents
have been summarized (Verkman, 2012).

In mice and in vitro experiments, the combination of AQP4-
IgG and AQP4 activates complement-dependent cytotoxicity
(CDC) and antibody-dependent cytotoxicity (ADCC) when
killer cells are present. CDC may be the main mechanism of
optic neuromyelitis. Some studies have also shown that the
combination of AQP4-IgG and AQP4 can inhibit the aquaporin
action or internalization of AQP4, because the loss of AQP4
expression in astrocytes can be observed in the early stage of
NMODS (Carnero Contentti and Correale, 2021).

Other cells
After AQP4-IgG enters the CNS, it first causes astrocyte

damage through CDC. A series of inflammatory reactions will
then occur, leading to the infiltration of inflammatory cells,
such as granulocytes, eosinophils, and lymphocytes, followed
by the infiltration of macrophages and microglia. It can be
detected that there is a high concentration of granulocyte
colony-stimulating factors (Papadopoulos and Verkman, 2012)
in the CNS at the time of the lesion. A large number of
activated macrophages causes axonal damage by phagocytizing
myelin and secreting pro-inflammatory cytokines, free radicals,
glutamate, and metalloproteinases, resulting in a large number
of deaths of oligodendrocytes, and finally leading to neuronal
demyelination and necrosis (Hendriks et al., 2005).

Oligodendrocytes and patients with AQP4
immunoglobulin G negative

Aquaporin-4 is the first target antigen of autoimmune
diseases of the CNS to be identified, but not all patients with
NMODS have serum AQP4-IgG. The study found that 10–
27% of patients with NMO had negative serum AQP4-IgG,
but a large proportion (42%) of these patients with negative
serum AQP4-IgG could detect MOG antibodies, especially in
patients with recurrent optic neuritis (Hamid et al., 2017).
MOG is a myelin protein located in the outermost layer of
myelin sheath. Pathological studies of MOG-related diseases
showed that there were well-defined areas of myelin loss in the
lesion, and astrocytes and axons were relatively less damaged.

The perivascular inflammatory infiltration was mainly CD4+

T cells and some B cells, and the deposition of complement
could also be found. Due to different pathophysiology, serum
biomarkers, clinical and radiological manifestations, and disease
outcomes, MOG-related diseases are now regarded as unique
disease entities (Paul et al., 2021).

In conclusion, the injury of astrocytes is the pathological
basis of optic neuromyelitis, and then the infiltration of
inflammatory cells and macrophages further leads to the
necrosis of oligodendrocytes and finally the demyelination of
neurons. This shows that demyelination is not the pathological
feature of optic neuromyelitis, but a secondary phenomenon of
astrocyte injury.

Clinical diagnosis and therapy
It has been demonstrated that up to several thousand times

higher levels of glial fibrillary acidic protein (GFAP) could
be detected in the CSF of patients suffering from NMODS
compared to patients with MS (Takano et al., 2010). Therefore,
except for AQP4-IgG, CSF GFAP could be a biomarker for
examining astrocyte injury in patients.

Myelin oligodendrocyte glycoprotein
antibody-related diseases

Oligodendrocytes
Myelin oligodendrocyte glycoprotein is a highly conserved

protein. It is only slightly expressed on the cell body of
oligodendrocytes and the outer surface of the myelin sheath in
the CNS (accounting for 0.05% of the total myelin protein). The
exact role of MOG in the CNS remains unclear. By observing
the extracellular domain of MOG, the researchers found that
MOG exists in the form of dimer in natural or aqueous solution,
so they speculated that MOG is an affinity adhesion receptor
(Clements et al., 2003). In addition, MOG may also have the
functions of stabilizing microtubules, activating complements,
and participating in the transmission of information between
cells (Johns and Bernard, 1999).

Myelin oligodendrocyte glycoprotein antibody-related
disease (MOGAD) is a kind of autoimmune disease recently
found (Dubey et al., 2019; Xie et al., 2022). The pathological
manifestation of MOGAD is the demyelination of the
CNS. Studies have shown that the most common clinical
manifestation of MOGAD is optic neuromyelitis, in which
AQP4-IgG serum negative optic neuromyelitis is the most
common phenotype (Inan et al., 2020). Other clinical
phenotypes include acute demyelinating encephalomyelitis
and cortical encephalitis. Although there are overlapping
clinical phenotypes between MOGAD, MS, and NMOSD, a
large number of experiments and data show that MOGAD is a
heterogeneous disease with characteristic clinical and imaging
features (Shahriari et al., 2021).
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The specific role of MOG antibodies (MOG-Abs) in the
pathogenesis of MOGAD has not been clarified. At present,
it is considered that most of the MOG-Abs are IgG I
subtypes. By analyzing the complement activation in patients
with MOGAD and healthy people, the researchers found that
the proteins related to the classical complement activation
pathway and alternative complement activation pathway
increased significantly in patients with MOGAD (Keller et al.,
2021), suggesting that complement activation is a prominent
feature of MOGAD. The massive production of complement
proteins will further activate CDC, resulting in extensive
damage to oligodendrocytes in the CNS, which is manifested
as neuronal demyelination. In addition to activating the
complement pathway, denatured MOG protein can also activate
T cell immunity (Ambrosius et al., 2020). The infiltration of
inflammatory cells, the production of inflammatory factors,
and the activation of macrophages will further aggravate the
damaged myelinated axons by oligodendrocytes of the CNS.

In conclusion, oligodendrocyte injury leading to neuronal
axon demyelination is the pathological basis and feature of
MOGAD. The pathogenesis of MOGAD has not been fully
clarified. It has been confirmed that the complement system
will be activated at the onset, resulting in oligodendrocyte
damage. At the same time, microglia and/or macrophages will
also be activated to phagocytize myelin fragments and secrete
inflammatory factors. The roles of other glial cells in the
pathogenesis of MOGAD need further study.

Peripheral neuropathy

Peripheral neuropathy is a kind of disease with the structure
and dysfunction of motor sensation and autonomic nerve.
Immune-mediated peripheral neuropathy is a neurological
injury and dysfunction caused by the synergistic effect
of humoral and cellular immunity. It has been found
that the common mechanisms of several immune-mediated
neurological diseases are as follows: (1) the body produces
autoantibodies against myelin or protein in the Ranvier nodes;
(2) the activated T cells can secrete chemokines and proteases,
leading to the destruction of the blood–nerve barrier (Kieseier
et al., 2018); and (3) macrophages break through the damaged
blood–nerve barrier and destroy the nerve myelin sheath. The
well-accepted hypothesis is the autoantibodies of nerve cell
membrane and myelin. For example, injection of GM1 antibody
into rabbits can cause a reversible intracellular block of the
sciatic nerve (Pollard and Armati, 2011).

Schwann cells
Schwann cells are the main glial cells in the PNS, which

are divided into myelinated Schwann cells and unmyelinated
Schwann cells (Armati and Mathey, 2014). Schwann cells
express many receptors, which recognize risk factors and

activate local immune response by providing antigens and
secreting cytokines and chemokines, attracting immune cells to
the injury site. In order to avoid inflammatory overreaction,
Schwann cells can also produce anti-inflammatory cytokine
interleukin-10 (IL-10), which can inhibit the inflammatory
response (Ydens et al., 2013).

Satellite cells
Satellite cells envelop sensory neurons in the ganglia,

which suggest the communication between satellite cells and
neurons through gap junctions without synaptic structures.
Gap junctional coupling among satellite cells was found to be
increased in pain models (Tracey, 2021). Interestingly, pain is
a serious and common problem in patients suffering from MS,
although the underlying mechanism is still unclear (Stenager
et al., 1991). Even while MS has always been thought of as
a CNS disease, research suggested that PNS may possibly be
involved (Teixeira et al., 2020). Satellite cells activate and act
through gap junctional coupling with neurons in the dorsal
root ganglions (DRGs) in the peripheral component of pain
syndrome in experimental MS animal models (Warwick et al.,
2014). Further electrophysiological evidence also demonstrates
that the membrane hyperexcitability of sensory neurons of DRG
was found in animal models of MS, providing more clues for
the sensitization of PNS in MS, but the mechanism and the roles
of satellite cells in MS still need further investigations (Yousuf
et al., 2019).

Perspectives and conclusion

Although adaptive immunity to myelin antigens is essential
in the pathogenesis of neurologic autoimmune disorders, innate
immune mechanisms are likely involved in the initiation and
perpetuation stages. Gut microbiota is closely related to the
innate immune (Berer et al., 2011). Dysbiotic microbiota
increases gut permeability and produces pro-inflammatory
cytokines, stimulating inflammatory T cells, especially of the
Th17 subtype, which is the same as that of myelin-destructive
T cells. Therefore, T cells with cross-reactivity to myelin could
become involved (Wekerle et al., 2013). In turn, circulating
endotoxin may activate microglia, causing myelin sheath
damage (Bergner et al., 2019). Therefore, the next question to
ask is if there is a link between gut microbiota and neurologic
autoimmune disorders (Zhang et al., 2020)? Studies in MS
animal models suggest that the overactivated T cells are in
line with the development of MS, which seems to require
the presence of gut microbiota. It is reported that probiotic
administration suppressed peripheral inflammatory responses
in patients with MS (Tankou et al., 2018). Although a direct role
for the gut immune system still needs to confirm, these clues
for communication between gut microbiota and neurologic
autoimmune disorders through glial cells suggest that the
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environmental factors might also be involved but needs further
investigation (Hanninen, 2017).

To sum up, glial cells, as an important part of the
nervous system, play an important role in the occurrence and
development of autoimmune diseases in the nervous system.
Glial cells are over-activated in the presence of autoantibody
or pathology, altering the internal environment of neurons,
releasing cytokines, and causing excessive synaptic pruning
and extinction, resulting in neuroautoimmune diseases. In
this process, autoantibodies are one of the important links.
The autoantibodies produced by the body due to infection,
environmental change, or virus invasion are often the cause of
neurologic autoimmune disorders, and the injury of glial cells
is also an important way to cause the disease. However, there
are few studies on autoantibodies acting on glial cells, which
need to be further explored and found. Second, the research
on glial cells for neuroautoimmune diseases also suggests that
we can treat such diseases through glial cells. For example, the
use of anti AQP4 antibody can reduce the damage of astrocytes
to neurons, to control the NMODS disease. We speculate the
possibility of glial cells as a new direction for the study of
neurologic autoimmune disorders, which provides a new idea
for the potential clinical diagnosis and treatment.
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