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Satellite Glial Cells: Morphology,
functional heterogeneity, and
role in pain

Daria Andreeva, Lada Murashova, Nikita Burzak and

Vyacheslav Dyachuk*

Almazov Federal Medical Research Centre, Saint Petersburg, Russia

Neurons in the somatic, sympathetic, and parasympathetic ganglia are

surrounded by envelopes consisting of satellite glial cells (SGCs). Recently,

it has become clear that SGCs are highly altered after nerve injury, which

influences neuronal excitability and, consequently, the development and

maintenance of pain in di�erent animal models of chronic pain. However,

the exact mechanism underlying chronic pain is not fully understood yet

because it is assumed that SGCs in di�erent ganglia share many common

peculiarities, making the process complex. Here, we review recent data on

morphological and functional heterogeneity and changes in SGCs in various

pain conditions and their role in response to injury. More research is required

to decipher the role of SGCs in diseases, such as chronic pain, neuropathology,

and neurodegenerative diseases.
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Introduction

The nervous system consists of two main cell types: neurons and glial cells. Glial

cells have diverse functions in various physiological processes, including central nervous

system (CNS) and peripheral nervous system (PNS) development (Pfrieger and Barres,

1997; Ullian et al., 2001; Christopherson et al., 2005; Pascual et al., 2005; Zuchero and

Barres, 2015; Lago-Baldaia et al., 2020), pathogen recognition (Kofler and Wiley, 2011;

Kigerl et al., 2014), cytotoxicity (Banati et al., 1993; Benn et al., 2001), extracellular

matrix regulation (De Luca et al., 2020), lipid transport (Barber and Raben, 2019),

cell-to-cell communication (Koizumi et al., 2005; Paolicelli et al., 2019; Schiera et al.,

2019), and modulation of inflammation (Vallejo et al., 2010). Considering the great

variety of peripheral glial functions, various mechanisms might play a role in different

pain conditions, including the release of proinflammatory substances and neurotrophins

(Suzumura et al., 2006; Vallejo et al., 2010; Mitterreiter et al., 2017), sensitizing neurons

(Hossain et al., 2017).

The main types of glial cells in the CNS are astrocytes, microglia, oligodendrocytes,

and ependymal cells, glial cells in the PNS include myelinating and non-myelinating

Schwann cells, satellite glial cells (SGCs) and enteric glial cells. SGCs were functionally

compared with astrocytes since astrocytes and SGCs, the main homeostatic glial cells,

seem to share similar functions (Hanani and Verkhratsky, 2021). For many years,
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astrocytes have been a topic of great research interest

compared to SGCs. Thus, comparing SGCs to astrocytes might

be inaccurate and lead to imprecise impressions of SGCs

functions and communication with neurons. Over the past few

years, knowledge has been gained regarding the morphology,

molecular heterogeneity, and involvement of SGCs in different

pain conditions.

However, there is a lack of studies providing a

comprehensive view of the recent advancements in our

understanding of the SGCs. Therefore, this review aims to

summarize the latest information about SGCs biology to

advance our understanding of these glial cells.

Morphological characteristics of
satellite glial cells

The PNS is part of the nervous system that extends beyond

the brain and spinal cord. It consists of cranial and spinal nerves,

and plexuses of the autonomic nervous system. Cranial and

spinal nerve bodies are located within the brainstem nuclei or

in the dorsal root ganglia (DRG), while autonomic neurons

are organized in the sympathetic and parasympathetic ganglia.

As mentioned above, SGCs are one of the main types of glial

cells in the PNS, including Schwann and enteric glial cells

(Peripheral Glial Cells, 2013). SGCs are located in the sensory

and autonomic ganglia of the PNS and form a tight sheath

around the neuronal soma (Pannese, 1981). In some areas,

SGCs simply contact each other, whereas, in other areas, the

FIGURE 1

Schematic of a sensory (A) and sympathetic (B) neuron covered with an SGC envelope. SGC, satellite glial cell; JAM, junctional adhesion

molecule.

lamellar extensions of each SGC may intertwine and overlap

(Pannese, 2010).

The sensory ganglia, being DRG, trigeminal ganglia and

other ganglia associated with cranial nerves, contain sensory

neurons, SGCs, Schwann cells and other non-neuronal cells such

as endothelial cells and immune cells (Haberberger et al., 2019;

Vermeiren et al., 2020). SGCs in the sensory ganglia are laminar

cells, usually a sheath of several SGCs that surround each

neuron (Figure 1). The number of SGCs that make up the sheath

increases in proportion to the surrounding neurons’ volume

(Hanani, 2005). Additionally, the envelope volume increases

in proportion to the volume and surface area of the neuron.

The distance of the extracellular space between the sheath and

plasma membrane of the neuron is 20 nm, which allows DRG

neurons and their SGC sheets to form a single anatomical

and functional unit (Pannese, 1981). The patches of connective

tissue separated these individual units. However, some sensory

neurons occupy the same place in the connective tissue and are

therefore divided by two or three neurons, which are primarily

in newborn or young animals (Pannese et al., 1991).

In the sympathetic ganglia, SGCs are one of the three

main cell types, with the other two being sympathetic ganglion

neurons and small highly fluorescent (SIF) cells (Hanani, 2010).

The SIF cells of the sympathetic ganglia are divided into

several groups, each surrounded by an SGC sheath. The SGCs

of the sympathetic ganglia had the same basic structure as

the sensory ganglia, except that the sympathetic ganglia also

received synapses (Figure 2). Therefore, the SGC envelope of the

sympathetic neurons must extend further to cover the axonal
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FIGURE 2

Possible mechanism underlying activation and cross-activation in SGCs and neurons while pain. SGC, satellite glial cell; Kir4.1, potassium

channel; GLT1, glutamate transporter; P2X7R, P2X purinoceptor 7; P2Y12, purinergic receptor; NK1, Neurokinin 1; RAMP1, Receptor activity

modifying protein 1; IL1-β, interleukin-1 beta; IK-IR, Interleukin-1 receptor; TNF-α, tumor necrosis factor-alpha; TNFaRS, tumor necrosis factor

receptor; CGRP, Calcitonin gene-related peptide; SP, Substance P.

ganglia near the soma. Similar to the sheath area near the glial

nucleus, axonal hillocks are thicker than those in the rest of the

surrounding neurons (Hanani, 2010).

Much less knowledge has been gained about SGCs in

the parasympathetic ganglia due to their location, which

makes it difficult to access the ganglion. However, the general

organization of the SGCs envelope is very similar to that in

the sympathetic ganglia in guinea pig urinary bladder (Gabella,

1990), guinea pig trachea (Bałuk et al., 1985), guinea pig

pancreas (Liu et al., 1997), mouse pulmonary vein ganglia (Bałuk

and Gabella, 1987), mouse salivary duct ganglia (Pomeroy et al.,

1996), cat pancreatic ganglia (Sha et al., 1996), human choroidal

ganglia (May et al., 2004), and human cardiac ganglia (Pauziene

and Pauza, 2003).

In all types of ganglia, SGCs have adhesive, tight, and gap

junctions (Pannese et al., 1977, 1994; Sakuma et al., 2001; Liu

et al., 2014). Molecules with a mass of up to 1 kDa can be

transported through these gap junctions (Hanani et al., 2002;

Pannese et al., 2003; Huang et al., 2006). This suggests that

SGCs function in a synaptic context, thereby influencing the

synaptic transmission.

Despite more than 50 years of studying SGCs morphology,

our knowledge in this area is still limited. It is assumed that SGCs

in different ganglia share many common peculiarities, therefore,

more research dedicated to its complexity is needed.

Heterogeneity of satellite glial cells

Sensory neurons in the DRG are extremely diverse

depending on their size, expression, and signaling activity

(Körner and Lampert, 2022). Because each neuron has a sheath
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consisting of SGCs, the diversity of neurons is accompanied by a

variety of SGCs consisting of this sheath.

Studies using electron microscopy have demonstrated at

least two morphological types of SGC (Siemionow et al., 2006;

Nascimento et al., 2008): the first type (∼50–60% of the

population) is the most typical SGC, forming a sheath around

the neuron with a very thin layer of cytoplasm and invaginating

a lot inside the neuron. The second type consists of SGCs that

are associated with an axon.

Modern molecular biology methods enable the isolation

of cell subtypes based on analysis of their expression. Thus,

RNA-seq analysis shows that SGCs exhibit a great variety

in their molecular nature (Avraham et al., 2020; Tasdemir-

Yilmaz et al., 2020; van Weperen et al., 2021; Mapps et al.,

2022). The expression analysis of SGCs isolated from different

locations showed specifically expressed various proteins. For

example, SGCs of the cochlear ganglion share common markers

(GATA 2, NPY, and Epha3) with other glial cells (Tasdemir-

Yilmaz et al., 2020). Another study demonstrated a difference

in protein expression of SGCs in the sensory and sympathetic

ganglia (Mapps et al., 2022). The sensory subpopulation of SGCs

is enriched in steroid biosynthesis and exclusively expresses

Brevican core protein (Bcan), a member of the lectican

family (Mapps et al., 2022). In addition, in both the DRG

and sympathetic ganglia, there are three common types of

SGCs: subpopulations enriched (1) for cytokine and interleukin

signaling, (2) for ECM and cell adhesion pathways, and (3) for

classical immediate early genes (Avraham et al., 2020; Tasdemir-

Yilmaz et al., 2020; van Weperen et al., 2021; Mapps et al.,

2022) also identified a specific SGCs subpopulation after injury

enriched with (Prada et al., 2011) transcriptional factor, which

regulates gliosecretion in astrocytes (Prada et al., 2011).

Thus, it is possible to distinguish several SGCs

populations both within and outside the same ganglion:

three populations that occur in each ganglion: SGCs expressing

(1) proinflammatory molecules, (2) ECM and cell adhesion

molecules, and (3) early genes, as well as a population that

differs from ganglion to ganglion: (4) sympathetic SGCs and

(5) sensory SGCs. Further study of the parasympathetic and

other sympathetic and sensory ganglia SGCs will improve our

understanding of the variety in morphological and molecular

properties of SGCs, which is sufficient to understand their

function in normal and pathological conditions, such as chronic

pain, neuropathology, and neurodegenerative diseases.

Participation of satellite glial cells in
pain conditions

Pain is an unpleasant sensory experience associated

with injury and/or damage. Pain is mainly mediated by

nociceptors, the body of which lies in the DRG or trigeminal

ganglia (Treede et al., 2019). Nociceptors are a unique

neuronal population characterized by a high threshold of

activation and unencapsulated nerve endings (Mertens et al.,

2015). Nociceptive receptors are multimodal, non-myelinated,

or lightly myelinated primary afferent nerve fibers. Their

transmission is mainly mediated by glutamate, which modulates

postsynaptic ionotropic receptors, which in turn can be

modulated by the co-expression of substance P and calcitonin

gene-related peptide (CGRP) (Zieglgänsberger, 2019). Pain

plays a key role in the healing process, and consequently, in

survival. People unable to experience pain rarely survive into

adulthood, inevitably hurt themselves, and thus, decrease their

life expectancy (Verpoorten et al., 2006).

Historically, pain has been divided into two main categories,

representing the clinical aspects of pain syndrome (Bennett,

2006). Neuropathic pain is mainly caused by peripheral nerve

injury, which leads to hyperalgesia due to enhanced sensory

neuron excitability and reduced neuronal excitation threshold

(Campbell and Meyer, 2006; Colloca et al., 2017). Inflammatory

pain is usually considered to be an acute condition linked to

nociceptor excitation and strong neuroimmune interactions that

occur in response to tissue damage (Kidd and Urban, 2001).

Recent studies have identified the effects of neuropathic pain

on SGCs (Ohara et al., 2008; Siemionow et al., 2009; Zhang

et al., 2009; Ji et al., 2013; Yoon et al., 2013; Lee and Kim,

2020; Yuan et al., 2020). After nerve injury, SGCs may play an

important role in the transmission of spinal cord injury signals

(Ji et al., 2013). Studies have shown that gap junctions between

glial cells may play an important role in neuropathic pain (Yoon

et al., 2013). After nerve injury, the number of gap junctions

between SGCs increases significantly (Ohara et al., 2008) but

gradually returns to normal levels after a period of time. In

models of neuropathic conditions, the number of activated SGCs

connected with SGCs of other neurons is increased (Hanani

et al., 2002; Lee and Kim, 2020; Yuan et al., 2020), while

under physiological conditions, only a few neurons share a

common sheath.

SGC activation is traditionally associated with increasing

levels of glial fibrillary acidic protein (GFAP) (Siemionow et al.,

2009; Zhang et al., 2009) and many other molecular properties.

SGCs activation caused by increased GFAP expression leads to

enhanced glial cohesion, whereas blocking gap junctions induces

analgesia (Warwick and Hanani, 2013).

In the DRG, a large number of ions exist between cells

to maintain the stability of cell potential, and satellite glia in

the ganglion play an essential role in potassium ion buffering

(Tang et al., 2010). Intracellular potassium homeostasis

maintains neuronal excitability, which increases when the

extracellular potassium concentration increases (Bellot-Saez

et al., 2017). SGCs express the inwardly rectifying potassium

channel Kir4.1, which buffers potassium concentrations in

the ganglia (Tang et al., 2010). Studies have shown that

Kir4.1 expression is downregulated upon nerve injury,

and siRNA silencing of Kir4.1 induces spontaneous and
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evoked facial pain-like behaviors in freely moving rats

(Ohara et al., 2008).

Glutamate is an important excitatory neurotransmitter in

the CNS and PNS. Excessive glutamate can lead to increased

neuronal excitation, which can lead to pain (Pereira and Goudet,

2019). The PNS does not contain glutamate-degrading enzymes;

therefore, glutamate removal relies on high-affinity glutamate

transporters on SGCs. SGCs take up extracellular glutamate and

maintain homeostasis of extracellular glutamate (Fonseca et al.,

2005; Chiang et al., 2007, 2008). The glutamate transporter,

GLT-1, is involved in the transport of glutamate into glial

cells (Maeda et al., 2008; Zhao et al., 2018). Following nerve

injury, decreasing of Kir4.1 channel and sequential an increase

of extracellular K+ can downregulate GLT-1 (Vit et al., 2008),

accumulating glutamate, which increases the excitability of the

postsynaptic neurons (Sung et al., 2003). Studies have shown

that, in the pathological pain model, the glutamate content in

the cell bodies of sensory neurons is increased (Kung et al., 2013;

Cho et al., 2021). Additionally, SGCs also express glutamate-

aspartate receptors and glutamine synthetase, so glutamate can

be taken up outside the cell and converted into glutamine

inside the cell. Glutamate uptake by SGCs can maintain normal

extracellular glutamate levels, thereby maintaining neuronal

excitability (Ohara et al., 2009).

After nerve injury, a large number of inflammatory cells at

the injury site aggregate and release inflammatory transmitters,

which induce chemical signals to generate electrical signals

and transmit them to the DRG or trigeminal ganglion. Studies

have shown that Adenosine triphosphate (ATP) is one of the

main signal transmitters involved in communication between

neurons and satellite glial cells (Hanani, 2012). While ATP

cannot pass through the membrane, it is released by vesicles

or channels such as P2X7R or P2Y12. When nerve impulses

reach the DRG, SGCs and neurons release a large quantity

of ATP, thereby increasing intracellular calcium concentration

(Weick et al., 2003; Zhang et al., 2007; Suadicani et al., 2010;

Villa et al., 2010). Activation of the purinergic receptor P2Y12R

increases calcium influx into SGCs, which in turn increases cell

excitability (Ceruti et al., 2008; Takeda et al., 2009; Katagiri et al.,

2012). On the other hand, P2X7R is selectively expressed in

SGCs and is involved in the modulation of nociceptive signals

in the DRGs (North, 2002; Liu and Salter, 2005; Nakatsuka

and Jianguo, 2006; Chen et al., 2008). For instance, P2X7R

in SGCs promotes the release of proinflammatory cytokines

including tumor necrosis factor-alpha (TNF-α), interleukin-1

beta, and interleukin-6 (IL-6) (Arulkumaran et al., 2011). In

HIV treatment-induced neuropathic models, SGCs demonstrate

increased GFAP expression and P2Y212 receptor activation

(Zhou et al., 2019).

Transient receptor potential (TRP) channels are a group

of ion channels that mediates sensory transduction. TRP type

A1 (TRPA1) modulates calcium homeostasis in astrocytes

(Shigetomi et al., 2011, 2013). A recent study revealed that

inflammation and nerve injury enhance the expression of

TRPA1 in neurons and SGCs, disrupting intracellular calcium

signaling and leading to pain generation (Shin et al., 2020).

After nerve injury, electrical signals are transmitted into the

ganglia, resulting in the massive release of neurotransmitters,

as well as neural and immune factors such as glutamate, ATP,

substance P, CGRP, brain-derived neurotrophic factor, IL-6,

and CCL2 (Scholz and Woolf, 2007; Ren and Dubner, 2008;

Milligan and Watkins, 2009). These mediators increase the

sensitivity of postsynaptic neurons and activate satellite glia

around the neurons. Peripherally released immune factors such

as proinflammatory cytokines (e.g., IL-6) may also activate

central glial cells (Schöbitz et al., 1992; Vallières and Rivest,

1997). Peripheral IL-6 can be transported to the CNS through

the circulation, increasing COX-2 activity and PGE2 release in

cerebral vascular endothelial cells, resulting in a central immune

response (Schöbitz et al., 1992; Vallières and Rivest, 1997).

Glial cell activation and neuron-glia interactions play

key roles in chronic pain. Accumulated data associate pain

syndromes with various states of glial activation, occurring

in SGCs as well as: glial response through upregulation of

glial markers (i.e., GFAP), activation of ATP and glutamate

transporters, and expression of glial mediators (e.g., cytokines,

chemokines, growth factors). In this review, we report on

recent developments in the involvement of SGCs in pathological

conditions; however, our understanding is far from complete.

Acute and chronic pain conditions

Acute and chronic pain are another category for pain.

An acute pain condition has a brief onset and lasts <3

months, whereas chronic pain lasts longer than normal healing

process. Acute pain characterizes a variety of inflammatory

mediators expression (ATP, bradykinin, sodium, potassium,

histamine and serotonin and others (Feizerfan and Sheh,

2015). These substances interact with cells surrounding injured

cells, leading to depolarization and systemic inflammation,

inducing up-regulation of P substances, activation TRP vanilloid

receptors (TRPV) and, thus, to hyperalgesia (Pe et al., 2010).

Repetitive stimulation may result a prolonged inflammation

and release of different cytokines (such as IL-6, TNF-α

and others), up-regulation of voltage-gated sodium channels,

phosphorilation of protein kinases A and C. As described above

SGCs involve in both acute and chronic conditions through

different cellular mechanisms.

Conclusion

Here, we describe the latest evidence on SGCs morphology,

heterogeneity, and its role in various pain conditions.
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Despite the apparent importance of SGCs in normal and

pathological conditions, our knowledge of their cell biology

is still incomplete. Understanding SGCs biology might be

indispensable to improving our understanding of chronic pain

and other neurodegenerative diseases.
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