AUTHOR=Purohit Deepti , Finkel Dina A. , Malfa Ana , Liao Yanling , Ivanova Larisa , Kleinman George M. , Hu Furong , Shah Shetal , Thompson Carl , Joseph Etlinger , Wolin Michael S. , Cairo Mitchell S. , La Gamma Edmund F. , Vinukonda Govindaiah TITLE=Human Cord Blood Derived Unrestricted Somatic Stem Cells Restore Aquaporin Channel Expression, Reduce Inflammation and Inhibit the Development of Hydrocephalus After Experimentally Induced Perinatal Intraventricular Hemorrhage JOURNAL=Frontiers in Cellular Neuroscience VOLUME=15 YEAR=2021 URL=https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2021.633185 DOI=10.3389/fncel.2021.633185 ISSN=1662-5102 ABSTRACT=
Intraventricular hemorrhage (IVH) is a severe complication of preterm birth associated with cerebral palsy, intellectual disability, and commonly, accumulation of cerebrospinal fluid (CSF). Histologically, IVH leads to subependymal gliosis, fibrosis, and disruption of the ependymal wall. Importantly, expression of aquaporin channels 1 and 4 (AQP1 and AQP4) regulating respectively, secretion and absorption of cerebrospinal fluids is altered with IVH and are associated with development of post hemorrhagic hydrocephalus. Human cord blood derived unrestricted somatic stem cells (USSCs), which we previously demonstrated to reduce the magnitude of hydrocephalus, as having anti-inflammatory, and beneficial behavioral effects, were injected into the cerebral ventricles of rabbit pups 18 h after glycerol-induced IVH. USSC treated IVH pups showed a reduction in ventricular size when compared to control pups at 7 and 14 days (both,