AUTHOR=Egger Veronica , Diamond Jeffrey S. TITLE=A17 Amacrine Cells and Olfactory Granule Cells: Parallel Processors of Early Sensory Information JOURNAL=Frontiers in Cellular Neuroscience VOLUME=14 YEAR=2020 URL=https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2020.600537 DOI=10.3389/fncel.2020.600537 ISSN=1662-5102 ABSTRACT=
Neurons typically receive synaptic input in their dendritic arbor, integrate inputs in their soma, and send output action potentials through their axon, following Cajal’s law of dynamic polarization. Two notable exceptions are retinal amacrine cells and olfactory granule cells (GCs), which flout Cajal’s edict by providing synaptic output from the same dendrites that collect synaptic input. Amacrine cells, a diverse cell class comprising >60 subtypes, employ various dendritic input/output strategies, but A17 amacrine cells (A17s) in particular share further interesting functional characteristics with GCs: both receive excitatory synaptic input from neurons in the primary glutamatergic pathway and return immediate, reciprocal feedback