AUTHOR=Spellicy Samantha E. , Scheulin Kelly M. , Baker Emily W. , Jurgielewicz Brian J. , Kinder Holly A. , Waters Elizabeth S. , Grimes Janet A. , Stice Steven L. , West Franklin D. TITLE=Semi-Automated Cell and Tissue Analyses Reveal Regionally Specific Morphological Alterations of Immune and Neural Cells in a Porcine Middle Cerebral Artery Occlusion Model of Stroke JOURNAL=Frontiers in Cellular Neuroscience VOLUME=14 YEAR=2021 URL=https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2020.600441 DOI=10.3389/fncel.2020.600441 ISSN=1662-5102 ABSTRACT=
Histopathological analysis of cellular changes in the stroked brain provides critical information pertaining to inflammation, cell death, glial scarring, and other dynamic injury and recovery responses. However, commonly used manual approaches are hindered by limitations in speed, accuracy, bias, and the breadth of morphological information that can be obtained. Here, a semi-automated high-content imaging (HCI) and CellProfiler histological analysis method was developed and used in a Yucatan miniature pig permanent middle cerebral artery occlusion (pMCAO) model of ischemic stroke to overcome these limitations. Evaluation of 19 morphological parameters in IBA1+ microglia/macrophages, GFAP+ astrocytes, NeuN+ neuronal, FactorVIII+ vascular endothelial, and DCX+ neuroblast cell areas was conducted on porcine brain tissue 4 weeks post pMCAO. Out of 19 morphological parameters assessed in the stroke perilesional and ipsilateral hemisphere regions (38 parameters), a significant change in