AUTHOR=Lee Hey-Kyoung , Kirkwood Alfredo TITLE=Mechanisms of Homeostatic Synaptic Plasticity in vivo JOURNAL=Frontiers in Cellular Neuroscience VOLUME=13 YEAR=2019 URL=https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2019.00520 DOI=10.3389/fncel.2019.00520 ISSN=1662-5102 ABSTRACT=
Synapses undergo rapid activity-dependent plasticity to store information, which when left uncompensated can lead to destabilization of neural function. It has been well documented that homeostatic changes, which operate at a slower time scale, are required to maintain stability of neural networks. While there are many mechanisms that can endow homeostatic control, sliding threshold and synaptic scaling are unique in that they operate by providing homeostatic control of synaptic strength. The former mechanism operates by adjusting the threshold for synaptic plasticity, while the latter mechanism directly alters the gain of synapses. Both modes of homeostatic synaptic plasticity have been studied across various preparations from reduced