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SOCIAL COGNITION AND THEORY OF MIND

Social cognition refers to interpretation of socially relevant signals to understand intentions, mental
and emotional states of others. These signals may be verbal, or transmitted through prosody, gaze
and expressions of the face and body (Adolphs, 2001; Grandjean et al., 2005; Beer and Ochsner,
2006; Frith and Frith, 2012; Pavlova, 2012). Theory of mind (ToM) is an important concept in social
cognition, meaning inference and representation of others’ beliefs and intentions, (Frith and Frith,
2005). Lesion and imaging studies have contributed to improve knowledge of the correlates of social
cognition in the cerebral cortex, that mainly involve the orbitofrontal and anterior cingular cortices
as well as the temporo-parietal junction (Happe et al., 1996; Anderson et al., 1999; Gallagher et al.,
2000; Bird et al., 2004; Samson et al., 2004; Baird et al., 2006; Shamay-Tsoory et al., 2009; Barbey
et al., 2014). More recently, behavioral data in patients with affection of the cerebellum and brain
imaging studies have suggested cerebellar involvement in social cognition.

SOCIO-COGNITIVE DEFICITS IN PATIENTS WITH FOCAL
CEREBELLAR LESIONS

Lesion data on specifically altered social cognition after cerebellar damage is still sparse and
heterogeneous. Patients with left lateral but not medial cerebellar tumors including Crus I exhibited
deficits in perceiving human motion (Sokolov et al., 2010; Figure 1B). On the other hand, in 15
patients tested 1–5 weeks after cerebellar stroke, no significant overall impairments were found in
perception of emotions from prosody and photographs of faces (Adamaszek et al., 2014). However,
sub-analyses revealed difficulties in selecting the facial expression matching a specific emotion,
naming the emotional expression of prosody that may or may not correspond to the semantic
content, andmatching faces to prosody with similar emotional expression. Furthermore, absent late
positive event-related potential on electroencephalography (EEG) during processing of emotional
face expressions in patients with cerebellar stroke indicated the network for interpretation of
emotional information may be altered after cerebellar damage (Adamaszek et al., 2015). A patient
with massive bilateral ponto-cerebellar ischemia was impaired on the Reading the Mind in the Eyes
Test (RMET), along with other ToM deficits (Roldan Gerschcovich et al., 2011). A larger scale study
on 57 patients with various types of cerebellar damage (degeneration, hemorrhage, ischemia, and
tumors; confined to the cerebellum in 26 patients) reported deficient performance on the RMET
and impaired emotional regulation (Hoche et al., 2016).

EVIDENCE FROM CEREBELLAR DEGENERATION

Some evidence on cerebellar involvement in social cognition has been found in patients with
spinocerebellar ataxia (SCA), although the diffuse (also extracerebellar) affection limits inference
on topography. Altered recognition of complex facial emotions related to social interaction
(such as flirtatiousness or arrogance) but largely preserved basic emotion discrimination (such as
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FIGURE 1 | Interaction between the lateral posterior cerebellum and the superior temporal sulcus in social cognition. (A) During visual perception of body motion, the

right superior temporal sulcus (upper panel, blue oval) and the left lateral cerebellar lobule Crus I (lower panel, orange oval) show functional and effective connectivity.

Adapted from Sokolov et al. (2012), with permission from Elsevier. (B) When corresponding regions in the left lateral posterior cerebellar cortex are affected by tumors,

patients exhibit significant deficits in perception of body motion. Adapted from Sokolov et al. (2010), with permission from Oxford University Press. (C) In adolescents

with autism spectrum disorders, theory of mind capacities correlate with the strength of effective connectivity between the cerebellar lobule Crus I and the superior

temporal sulcus. Adapted from Jack and Morris (2014), with permission from Elsevier.

happiness or sadness) were found in 20 patients with various
SCA types (D’Agata et al., 2011). A patient with cerebellar
atrophy exhibited deficient RMET performance (Parente et al.,
2013). Absence of deficits in mental state attribution but altered
attribution of emotions to a character of a short story were
reported in eight patients with SCA types 1, 2, and 7 (Sokolovsky
et al., 2010), with the opposite picture in 15 patients with SCA
3 and 6 (Garrard et al., 2008). This dissociation could reflect
distinct pathophysiology in SCA subtypes. ToM deterioration
was found with SCA progression (Moriarty et al., 2016). Deficient
representation of mental states was also seen in six patients with
superficial siderosis, a condition with diffuse hemosiderin depots
in superficial layers throughout the brain, but mainly affecting
the brainstem and cerebellum (van Harskamp et al., 2005). When
interpreting a social situation in a short story, both SCA and
superficial siderosis patients tend to employ explicit physical
explanations instead of more implicit social abstraction, with
social abstraction being the function that most frequently elicits
cerebellar activation in healthy subjects (Van Overwalle et al.,
2014).

Overall, the clinical evidence is still far from being convincing
or complete. Most importantly, it remains uncertain whether
cerebellar damage in humans causes substantial, specific and
persistent impairment in social cognition. In terms of specificity,
although executive functions are closely associated with ToM
(Aboulafia-Brakha et al., 2011), connectivity analyses suggest
most cerebellar modules activated during social cognition may
be involved in specific socio-cognitive rather than executive
networks (Van Overwalle et al., 2015a). Brain imaging may
therefore shed some light on functional organization of potential
cerebro-cerebellar networks for social cognition.

CEREBELLAR ACTIVATION AND
CONNECTIVITY PATTERNS IN SOCIAL
COGNITION

A meta-analysis of over 350 functional magnetic resonance
imaging (fMRI) studies reported consistent cerebellar activations
during different tasks on social cognition, including observation
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of human motion, mentalizing about intentions in social
interactions, inference on personality traits and abstraction
(Van Overwalle et al., 2014). The left lateral cerebellum was
activated (Gobbini et al., 2007; Jack et al., 2011; Sokolov et al.,
2012) and communicated with the right posterior superior
temporal sulcus (STS; Jack et al., 2011; Sokolov et al., 2012;
Jack and Pelphrey, 2015) during observation of others’ actions
and social interactions represented by geometric shapes. Similar
patterns of cerebellar activation were reported when watching
a movie (Nguyen et al., 2017). Indeed, a functional and
structural loop appears to connect the cerebellar lobule Crus
I with the STS (Sokolov et al., 2012, 2014; Figure 1A). Meta-
analytic connectivity data in healthy subjects also indicated
that interactions between Crus I and temporo-parietal junction
(TPJ) may be of importance for social cognition (Van Overwalle
et al., 2015b). A study in 103 children with subacute traumatic
brain injury showed that reduced gray matter volumes in the
cerebellum, STS and TPJ are related to poorer cognitive ToM
function (Ryan et al., 2017). Neuropsychiatric conditions with
altered social cognition often involve cerebellar affection and
brain imaging in these patients is therefore thought to provide
additional insights on cerebellar interplay with the network for
social cognition.

NEUROPSYCHIATRY: SOCIAL COGNITION
AND CEREBELLAR CONNECTIVITY

In adults with autism spectrum disorders (ASD), reduced eye
contact was related to the volumes of bilateral Crus I and
cerebellar vermis (Laidi et al., 2015). ASD individuals exhibited
lower resting-state functional connectivity between the left
cerebellar lobule Crus II and right TPJ adjacent to the STS
(Igelstrom et al., 2017), and altered information flow from
the left dentate nucleus to right cortical regions involved in
social cognition (Olivito et al., 2017). Furthermore, alterations of
effective connectivity between the STS and the cerebellar lobule
Crus I were linked to social impairment in patients with ASD
(Jack and Morris, 2014; Jack et al., 2017; Figure 1C).

In schizophrenia, the evidence is less numerous and
converging. Lower right cerebellar activity was found during
mental state attribution (Andreasen et al., 2008), but stronger
albeit delayed activity was seen in the left cerebellum when
observing social-like interactions between geometric shapes
(Pedersen et al., 2012). Inference on approachability from faces
led to stronger activation in bilateral posterior cerebellum and
left TPJ in adults with schizotypal personality disorder as
compared to those with ASD and controls (Stanfield et al.,
2017). Disrupted microstructure of cerebro-cerebellar pathways
(Kanaan et al., 2009) and of intracerebellar white matter,
particularly in lobule Crus II (Kim et al., 2014) has also been
shown in schizophrenia. Analyses of cerebro-cerebellar resting-
state functional connectivity in schizophrenia are somewhat
incongruent (Guo et al., 2015; Shinn et al., 2015) and specific
cerebro-cerebellar communication during social cognition has
not been reported. The available data may agree with the
view on schizophrenia as pathophysiologically and clinically

heterogeneous disease (Ross et al., 2006), and underline the need
for further research.

INTEGRATING COGNITIVE WITH
CELLULAR NEUROSCIENCE

In summary, converging evidence from behavioral studies
in patients with cerebellar damage and neuroimaging in
typically developing individuals and those with neuropsychiatric
conditions suggests the posterior lateral cerebellar lobules Crus
I and II may be involved in the social cognition networks.
Correlations between cerebellar activation or connectivity and
social impairment provide further insights. However, intrinsic
limitations of both lesion studies and brain imaging call for
translational research assessing causality and specificity.

This is where the increasingly pursued “from bedside to
bench and back to bedside” approach comes into play. Besides
its unrivaled potential for fundamental discovery, the causality
afforded by cellular neuroscience is very helpful to evaluate
hypotheses. With its rather regular and well-known architecture
and connectivity, the cerebellum represents a particularly useful
blueprint for translational efforts in neuroscience. Insights
on cellular mechanisms are indispensable for valid models
of large-scale networks and pathophysiology, and vice versa.
In a cerebellum previously conceptualized as rather uniform,
rodent electrophysiology has already unveiled different rules
for synaptic plasticity (Wadiche and Jahr, 2005; Zhou et al.,
2014; Suvrathan et al., 2016), and recently demonstrated some
granule cells encode non-sensorimotor predictions and their
unexpected violations (Wagner et al., 2017). These data offered
novel perspectives on how the cerebellum may be equipped to
contribute to diverse cognitive processes, but assessing higher
cognition in animals and particularly rodents with a truly
translational potential poses a significant challenge. Nonetheless,
initial promising steps have been undertaken over the past year.

PROMISING TRANSLATIONAL
APPROACHES

Patients with schizophrenia exhibit impaired interval timing
performances and reduced EEG delta frequency in the medial
frontal cortex. In Long-Evans rats, delta band coherence was
found between deep cerebellar nuclei and contralateral medial
frontal cortex, and muscimol-mediated inactivation of their deep
cerebellar nuclei neurons altered interval timing performance.
Most importantly, in rats with pharmacologically inactivated
medial frontal dopamine receptors D1, delta range optogenetic
stimulation on thalamic terminals of deep cerebellar nuclei
axons specifically improved interval timing and function of the
medial frontal cortex (Parker et al., 2017). Another translational
study directly looked at social behavior: children with ASD
as well as healthy adults who underwent transcranial direct
current stimulation over the right cerebellar lobule Crus I
exhibited increased functional connectivity between right Crus
I and contralateral inferior parietal cortex. Similar alterations
in structural connectivity were found in mice with Purkinje
cell dysfunction due to a tuberous sclerosis complex mutation,
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showing ASD-like behavior. In normal mice, chemogenetic
inhibition of right Crus I Purkinje cells resulted in both increased
parietal single cell firing rates (potentially through disinhibition
of excitatory deep cerebellar nuclei efference) as a measure
of cerebello-parietal connectivity and reduced preference for
social novelty as a marker of social behavior, not explained
by sensorimotor or visual deficits. Furthermore, chemogenetic
activation of right Crus I Purkinje cells in the mutant mice
reduced left parietal firing rates and specifically improved social
interaction (Stoodley et al., 2017). These data suggest cerebro-
cerebellar connectivity and resulting pro-social behavior may be
restored through stimulation of Crus I.

MECHANISMS FOR CEREBELLAR
CONTRIBUTION TO SOCIAL COGNITION

Translational research of this kind, bridging different species
andmodalities may substantially contribute to understanding the
mechanisms and eloquence of cerebellar regions’ involvement in
social cognition. As to the mechanisms, because of the similar
cytoarchitecture across the cerebellum, it has been repeatedly
suggested its operations for motor control and coordination may
also apply to cognition (Wolpert et al., 1998; Ito, 2008; Sokolov
et al., 2017). These operations are believed to involve outcome
prediction based on forward models and signaling deviations
from these outcomes (prediction errors) to the cerebral cortex,
a hypothesis supported by recent electrophysiology data on
non-sensorimotor expectations in rodents (Wagner et al., 2017)
and concepts of ASD as a prediction deficit with prominent
cerebellar pathology (Sinha et al., 2014). As anticipation,
adaptation and learning appear indispensable for successful
social behavior, extending these core cerebellar functional roles
from sensorimotor models to those of social perception and
behavior would seem reasonable, although several issues remain
to be carefully considered and explored (Sokolov et al., 2017).

CONCLUSIONS AND OUTLOOK

Taken together, preliminary but converging lesion and imaging
data suggest social cognition may recruit loops connecting the

lateral cerebellar lobules Crus I and II with medial frontal
and temporo-parietal areas. Conclusions on eloquence of the
cerebellum for social cognition would benefit from sufficiently
powered studies in patients with rather homogeneous lesion
size, topography and etiology at defined time-points after disease
onset. In addition, consideration of ecological validity appears
helpful when assessing impact on everyday social function
(Henry et al., 2015).

Of note, the relative lack of convincing lesion data may
also be accounted for by compensatory mechanisms. As
hypothesized for other functions (Andreasen et al., 1998;
Schmahmann, 1998), prediction and anticipation afforded by
the cerebellum may facilitate speedy, adaptive social cognition
and behavior—yet, the remainder of the network may be
able to sufficiently compensate for acquired cerebellar lesions
(Sokolov et al., 2017). This compensatory potential may be
limited in congenital or early developmental damage to the
cerebellum, including neuropsychiatric disease and concussion
(Wang et al., 2014; Ryan et al., 2017), or concomitant changes
in affect and emotional control potentially interfering with
social behavior, such as in the cerebellar cognitive and affective
syndrome (Schmahmann and Sherman, 1998), for which a
scale has been recently introduced (Hoche et al., 2017).
Translational approaches will further deepen our understanding
of functional and compensatory mechanisms, as well as
causality with respect to cerebellar involvement in social
cognition.
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