AUTHOR=Bollmann Lars , Koser David E., Shahapure Rajesh , Gautier Hélène O., Holzapfel Gerhard A., Scarcelli Giuliano , Gather Malte C., Ulbricht Elke , Franze Kristian TITLE=Microglia mechanics: immune activation alters traction forces and durotaxis JOURNAL=Frontiers in Cellular Neuroscience VOLUME=9 YEAR=2015 URL=https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2015.00363 DOI=10.3389/fncel.2015.00363 ISSN=1662-5102 ABSTRACT=

Microglial cells are key players in the primary immune response of the central nervous system. They are highly active and motile cells that chemically and mechanically interact with their environment. While the impact of chemical signaling on microglia function has been studied in much detail, the current understanding of mechanical signaling is very limited. When cultured on compliant substrates, primary microglial cells adapted their spread area, morphology, and actin cytoskeleton to the stiffness of their environment. Traction force microscopy revealed that forces exerted by microglia increase with substrate stiffness until reaching a plateau at a shear modulus of ~5 kPa. When cultured on substrates incorporating stiffness gradients, microglia preferentially migrated toward stiffer regions, a process termed durotaxis. Lipopolysaccharide-induced immune-activation of microglia led to changes in traction forces, increased migration velocities and an amplification of durotaxis. We finally developed a mathematical model connecting traction forces with the durotactic behavior of migrating microglial cells. Our results demonstrate that microglia are susceptible to mechanical signals, which could be important during central nervous system development and pathologies. Stiffness gradients in tissue surrounding neural implants such as electrodes, for example, could mechanically attract microglial cells, thus facilitating foreign body reactions detrimental to electrode functioning.