AUTHOR=Sato Chihiro , Kitajima Ken TITLE=Impact of structural aberrancy of polysialic acid and its synthetic enzyme ST8SIA2 in schizophrenia JOURNAL=Frontiers in Cellular Neuroscience VOLUME=7 YEAR=2013 URL=https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2013.00061 DOI=10.3389/fncel.2013.00061 ISSN=1662-5102 ABSTRACT=
Psychiatric disorders are a group of human diseases that impair higher cognitive functions. Whole-genomic analyses have recently identified susceptibility genes for several psychiatric disorders, including schizophrenia. Among the genes reported to be involved in psychiatric disorders, a gene encoding a polysialyltransferase involved in the biosynthesis of polysialic acid (polySia or PSA) on cell surfaces has attracted attention for its potential role in emotion, learning, memory, circadian rhythm, and behaviors. PolySia is a unique polymer that spatio-temporally modifies neural cell adhesion molecule (NCAM) and is predominantly found in embryonic brains, although it persists in areas of the adult brain where neural plasticity, remodeling of neural connections, or neural generation is ongoing, such as the hippocampus, subventricular zone (SVZ), thalamus, prefrontal cortex, and amygdala. PolySia is thought to be involved in the regulation of cell-cell interactions; however, recent evidence suggests that it is also involved in the functional regulation of ion channels and neurologically active molecules, such as Brain-derived neurotrophic factor (BDNF), FGF2, and dopamine (DA) that are deeply involved in psychiatric disorders. In this review, the possible involvement of polysialyltransferase (ST8SIA2/ST8SiaII/STX/Siat8B) and its enzymatic product, polySia, in schizophrenia is discussed.