
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Cell. Infect. Microbiol.
Sec. Clinical Infectious Diseases
Volume 15 - 2025 | doi: 10.3389/fcimb.2025.1584189
This article is part of the Research Topic Deciphering Host-Pathogen Interactions in Tuberculosis: Implications for Diagnostics and Therapeutics View all 5 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Mycobacterial infections represent a major cause of morbidity and mortality in HIV-infected individuals. This study evaluated diagnostic techniques for mycobacterial identification and compared clinicopathological features between HIVpositive and HIV-negative patients.We analyzed 88 tissue samples (with 41 matched blood and 28 sputum samples) using histopathology (HE and acid-fast staining), bacterial culture, MTB-PCR (sputum/biopsy), PCR-reverse dot blot hybridization (RDBH), and metagenomic pathogen detection technology (MetaPath™). Logistic regression analyses were performed to identify factors affecting detection rates.Results: Mycobacterial infection was detected in 95.5% (84/88) of patients. Among HIV-positive patients (n=63), 46% (29/63) had Mycobacterium tuberculosis (MTB) infections, and 44% (28/63) had non-tuberculous mycobacteria (NTM) infections, significantly higher than the 20% (5/25) NTM rate in HIV-negative patients. Univariate analysis identified HIV-positive status (p=0.009), lymph node involvement (p=0.020), and positive MetaPath™ results (p=0.002) as significant predictors of detection, while multivariate analysis confirmed these as independent factors (p=0.036; p=0.042; p=0.006). Lymph nodes were the most common infection site in HIV-positive patients (42.9%, 27/63), while lung tissue predominated in HIV-negative patients (48%, 12/25).MetaPath™ demonstrated superior sensitivity and specificity for detecting both MTB and NTM. Biopsy samples provided higher diagnostic accuracy than sputum or blood for lung and lymph node infections, but not for brain. In HIV-positive patients, NTM infections showed significantly more granuloma formation (p=0.032) and foam cells (p=0.005), but less necrosis (p=0.0005) compared to MTB infections. No significant differences were observed in HIV-negative patients.Conclusions: MetaPath™ is a highly effective diagnostic tool for mycobacterial infections, particularly in tissue biopsies. HIV-positive status, lymph node involvement, and MetaPath™ positivity independently predict mycobacterial detection. HIVpositive patients exhibit distinct clinicopathological features, emphasizing the need for tailored diagnostic and therapeutic approaches based on immune status.
Keywords: Mycobacterium tuberculosis, Non-tuberculous mycobacteria, HIV, granulomas, Necrosis
Received: 26 Feb 2025; Accepted: 04 Apr 2025.
Copyright: © 2025 Li, Chen, Zhang, Chen, Zhou, Liu, Zhou, Xiao, Yang, Qi, Han, Liu, Zhao, Zhou, Chen and Sun. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Lei Sun, Beijing Ditan Hospital, Capital Medical University, Beijing, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.