
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Cell. Infect. Microbiol.
Sec. Clinical Microbiology
Volume 15 - 2025 | doi: 10.3389/fcimb.2025.1579880
This article is part of the Research Topic Pathogenic Mechanisms and New Technology-Based Diagnostics for Bacterial Infections View all 6 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The global emergence of multidrug-resistant (MDR) Klebsiella pneumoniae, particularly carbapenem-resistant K. pneumoniae (CRKP), presents a severe public health threat, limiting available treatment options. Tigecycline and eravacycline, have been considered a last-resort therapeutic against MDR Enterobacteriaceae. However, strains were resistant to these antibiotics increased recently. The tmexCD-toprJ, a plasmid-encoded resistance-nodulation-division (RND)-type efflux pump, has emerged as a critical factor conferring resistance to tigecycline and eravacycline. In this study, we reported the emergence of 11 CRKP isolates harboring tmexCD-toprJ, isolated from two lung transplant patients in a tertiary hospital in eastern China. Most of the isolates (82%) exhibited high-level resistance to tigecycline and eravacycline, along with other common antibiotics. Whole-genome sequencing (WGS) and phylogenetic analysis indicated these strains are not clonal, and resistance phenotypes were associated with the tmexCD-toprJ operon and other crucial resistance elements. We also found the tmexCD-toprJ operon was located on a conjugative plasmid, sharing high sequence similarity with the operon identified in Pseudomonas aeruginosa. Our results showed that the tmexCD-toprJ-harboring plasmid is efficiently transferable, which contributes to the dissemination of tigecycline and eravacycline resistance. At the same time, the plasmid can coexist with the blaKPC-2-carrying plasmid, which may cause multidrug resistance. The emergence of tmexCD-toprJ-positive CRKP in lung transplant patients highlights the potential for rapid nosocomial dissemination and reduced treatment efficacy of last-line antimicrobials. Our findings emphasize the need for enhanced genomic surveillance, infection control measures, and alternative therapeutic strategies to combat the spread of tmexCD-toprJ-mediated resistance in clinical settings.
Keywords: carbapenem-resistant Klebsiella pneumoniae (CRKP), Tigecycline (TGC), Eravacycline, tmexCD-toprJ, hypermucoviscous
Received: 26 Feb 2025; Accepted: 07 Apr 2025.
Copyright: © 2025 Gao, Bingjie, Li, Yu, Zhou, Zhou, Wu, Wan, Shen, Fu and Han. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Fangyou Yu, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
Ying Zhou, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.