
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
MINI REVIEW article
Front. Cell. Infect. Microbiol.
Sec. Virus and Host
Volume 15 - 2025 | doi: 10.3389/fcimb.2025.1573422
This article is part of the Research TopicImmunomodulatory Strategies for Managing Viral Infections: Host Immune response and therapeutic targetsView all articles
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Tripartite motif (TRIM) proteins, defined by their conserved RBCC domain architecture, play key roles in various cellular processes and virus-host interactions. In this review, we focus on Class VI TRIM proteins, including TRIM24, TRIM28, and TRIM33, highlighting the distinct functional attributes of their RING, B-BOX1, B-BOX2, COILED COIL, PHD, and BRD domains in viral infection. Through multiple sequence alignment, we delineate both the conserved and divergent features within this subclass, underscoring the uniqueness of Class VI TRIM protein. Additionally, we explore the post-translational modifications (PTMs) of Class VI TRIM proteins including their functional differences in modulating viral infection. Moreover, we examine the C-VI TRIM protein complexes and their significant contributions to the antiviral response. Furthermore, we discuss small molecule ligands targeting Class VI TRIM domains, with a focus on druggable structural motifs. Understanding the multi-domain features of TRIM proteins is crucial for developing effective antiviral strategies and the therapeutic modulation of their activity.
Keywords: TRIM 28, trim24/trim28/trim33 complex, RBCC domain, C VI TRIM PROTEINS, TRIM24, Trim33, virus
Received: 09 Feb 2025; Accepted: 16 Apr 2025.
Copyright: © 2025 Patrick, Lo and Su. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Wen-Chi Su, China Medical University (Taiwan), Taichung, Taiwan
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.