
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Cell. Infect. Microbiol.
Sec. Antibiotic Resistance and New Antimicrobial drugs
Volume 15 - 2025 | doi: 10.3389/fcimb.2025.1559865
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Introduction: The rapid emergence of multidrug-resistant bacterial species poses a critical threat by reducing the efficacy of antibiotics and complicating infection treatment. Bacteriocins, such as klebicin KvarM, have emerged as promising alternatives to traditional antibiotics due to their targeted antimicrobial activity. In this study, we evaluated the therapeutic potential of Eudragit-coated klebicin KvarM in a mouse model of Klebsiella pneumoniae intestinal colonization, assessing both its antimicrobial effectiveness and impact on commensal gut microbiota. Methods: Antimicrobial activity of KvarM in comparison to conventional antibiotic therapy with ciprofloxacin was tested in murine models for K. pneumoniae gastrointestinal (GI) tract infection. The haemolysin gene (khe) was chosen as the qualitative marker for Klebsiella genus identification, and 16S rRNA gene sequencing of V1-V2 hypervariable region was performed for analyses of gut microbiota. Results: Our results demonstrated that KvarM was highly effective in reducing K. pneumoniae colonization, showing the same efficacy as ciprofloxacin. Following K. pneumoniae inoculation, administration of KvarM resulted in a significant reduction in bacterial load indicating a 99% effectiveness. Furthermore, microbiome analysis of the gut microbiota revealed that KvarM therapy showed no significant changes in microbial composition compared with commensal microbiota composition, whereas administration of ciprofloxacin led to a significant decrease in microbial diversity.Discussion: These findings demonstrate that klebicin KvarM therapy is highly effective for treating intestinal K. pneumoniae infections and it does not significantly affect the integrity of the gut microbiota.
Keywords: Klebsiella pneumoniae, bacteriocin, Klebicin, microbiome, Murine models
Received: 13 Jan 2025; Accepted: 27 Feb 2025.
Copyright: © 2025 Karaliute, Tilinde, Ramonaite, Lukosevicius, Nikitina, Bernatoniene, Kuliaviene, Valantiene, Petrauskas, Zigmantaite, Misiunas, Denkovskiene, Razanskiene, Gleba, Kupcinskas and Skieceviciene. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Indre Karaliute, Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
Jurgita Skieceviciene, Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.