
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Cell. Infect. Microbiol.
Sec. Antibiotic Resistance and New Antimicrobial drugs
Volume 15 - 2025 | doi: 10.3389/fcimb.2025.1551240
This article is part of the Research Topic Deciphering Antimicrobial Resistance: Genetic Insights and Perspectives View all articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Bacterial resistance to aminoglycoside antimicrobials is becoming increasingly severe due to their use as commonly prescribed antibiotics. The discovery of new molecular mechanisms of aminoglycoside resistance is critical for the effective treatment of bacterial infections. Methods: Bacteria in goose feces were isolated by plate streaking. The identification and characterization of a novel resistance gene from the bacterial genome involved various techniques, including molecular cloning, drug susceptibility testing, protein expression and purification, and enzyme kinetic analysis. Additionally, whole-genome sequencing and phylogenetic studies were performed. Results: Brucella intermedia DW0551, isolated from goose feces, was resistant to 35 antibiotics, and the minimum inhibitory concentration (MIC) was particularly high for most aminoglycoside antibiotics. The novel aminoglycoside resistance gene aac(6')-Iaq encoded by B. intermedia DW0551 conferred resistance to netilmicin, sisomicin, amikacin, kanamycin, gentamicin, tobramycin, and ribostamycin. The amino acid sequence of AAC(6')-Iaq shared the highest identity (52.63%) with the functionally characterized aminoglycoside acetyltransferase AAC(6')-If. AAC(6')-Iaq contained all the conserved sites of the acetyltransferase family NAT_SF. The enzyme exhibited strong affinity and catalytic activity toward netilmicin and sisomicin. The mobile genetic element (MGE) was not found in the flanking regions of the aac(6')-Iaq and aac(6')-Iaq-like genes. Conclusion: In this work, a novel aminoglycoside acetyltransferase gene, designated aac(6')-Iaq, which conferred resistance to a variety of aminoglycoside antimicrobials, was identified in an animal Brucella intermedia isolate. Identification of new antibiotic resistance mechanisms in bacteria isolated from animals could aid in the treatment of animal and human infectious diseases caused by related bacterial species.
Keywords: Brucella intermedia, Resistance mechanism, Aminoglycoside acetyltransferase, aac(6')-Iaq, Kinetic parameter
Received: 25 Dec 2024; Accepted: 18 Feb 2025.
Copyright: © 2025 Lin, Xu, Huang, Liu, Lu, Zhu, Bao and Pan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Wanna Xu, Army 73rd group Military Hospital, Xiamen, Fujian Province, China
Chaoqun Liu, Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang Province, China
Mei Zhu, Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, 310013, Jiangsu Province, China
Qiyu Bao, Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang Province, China
Wei Pan, The People’s Hospital of Yuhuan, Yuhuan, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.