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Background: Bloodstream infections (BSIs) caused by Acinetobacter baumannii

have been associated with high mortality. To improve the outcomes of patients,

this study explored the clinical characteristics and outcomes of patients with

BSIs, as well as the phenotypic and genomic characteristics of these isolates.

Methods: A retrospective cohort study was conducted involving A. baumannii

BSIs cases from 2020 to 2023 in a tertiary hospital. The clinical characteristics of

all A. baumannii isolates were evaluated. Virulence phenotypes of all isolates

were evaluated using the growth curve, biofilm-forming assay, antiserum

complement killing, and G.mellonella killing assay. Furthermore, whole-

genome sequencing (WGS) was utilized to analyze genomic characteristics.

Results: The 30-daymortality rate of 67 patients with BSIs was 55.22%. Patients in

the death group had significantly lower platelet counts and higher CRP levels

than those in the survival group. Additionally, higher rates of antibiotic use (≥2

classes) and greater carbapenem exposure were observed. Among the isolates,

CRAb accounted for 80.6%, ST2 accounted for 76.12%, and KL2/3/7/77/160

accounted for 65.67%. The predominant KL type was KL3, found in 19.4% of

the isolates. All ST2 and KL2/3/7/77/160 isolates were CRAb. Among the isolates,

90.7% of the CRAb isolates coharbored blaOXA-23 and blaOXA-66, while one

coharbored blaNDM-1 and blaOXA-23. Compared with non-ST2 and non KL2/3/7/

77/160 infections, ST2 and KL2/3/7/77/160 infections had higher mortality rates

(66.0% vs. 23.5%, P=0.002; 65.90% vs. 34.78%, P=0.015). Patients with ST2 and

KL2/3/7/77/160 infections underwent more invasive procedures, received two or
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Abbreviations: ST, sequence type; KL, K locus; W

sequencing; BSI, bloodstream infection; CRAb, c

Acinetobacter baumannii; CPS, Capsular polysaccharide.
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more antibiotics and carbapenem therapy before isolation, and had lower serum

albumin levels. These isolates exhibited significantly higher resistance to

antimicrobial agents. No significant differences in virulence phenotypes were

observed between the two groups, except for biofilm formation between the ST2

and non-ST2 groups (P=0.002). However, these isolates harbored more

virulence genes related to iron uptake and biofilm formation.

Conclusion: The mortality rate associated with BSIs caused by A. baumannii is

high. It is of great significance for clinicians to pay attention to the risk factors of

the clinical characteristics of patients and to identify the ST and KL types of the

strains causing the infection at an early stage.
KEYWORDS

Acinetobacter baumannii, bloodstream infection, carbapenem-resistant Acinetobacter
baumannii, sequence type, capsular type
1 Introduction

Over the past two decades, Acinetobacter baumannii has

emerged as a significant pathogen of nosocomial infections,

especially carbapenem-resistant Acinetobacter baumannii (CRAb)

(Doi, 2019; Antimicrobial Resistance Collaborators, 2022). It poses

a major global threat due to its ability to acquire a high level of

antimicrobial resistance and tolerance to the environment (Cain

and Hamidian, 2023; Cavallo et al., 2023). The incidence of CRAb

has increased markedly in the last decade (Lasarte-Monterrubio

et al., 2022; Potron et al., 2024). According to the Antimicrobial

Resistance Surveillance Network (CHINET) program, the

resistance rates of A. baumannii to meropenem and imipenem

rose from 39.0% and 31.0% in 2015 to 73.7% and 73.4% in 2023,

respectively (http://www.chinets.com/).

The mortality rate of infections caused by CRAb is high,

particularly for BSIs (Paul et al., 2018; Wang et al., 2024). In

recent years, the mortality rate of bacteremia caused by A.

baumannii has been reported to be 42% to 69.4% (Yu et al., 2021;

Falcone et al., 2023; Wang et al., 2024). Numerous factors

contribute to the poor prognosis associated with A. baumannii

bacteremia. Previous research has identified main risk factors,

including mechanical ventilation, a higher age-adjusted Charlson

comorbidity index, prolonged ICU stay, previous surgery, and

thrombocytopenia, and certain virulence genes (Peng et al., 2021;

Yu et al., 2021; Bai et al., 2022).

Analysis of the study of publicly accessible genome sequence

data indicates that sequence type 2 (ST2) is the most predominant

type (Hamidian and Nigro, 2019), which has been related to the

poor clinical outcomes in A. baumannii bacteremia (Chuang et al.,
GS, Whole-genome

arbapenem-resistant

02
2019).In addition, capsular polysaccharide (CPS) plays a critical

role in the pathogenicity of A. baumannii (Geisinger et al., 2019;

Morris et al., 2019). Different capsule types may influence antibiotic

resistance, prognosis, and disease pattern (Hsieh et al., 2020).

In this research, we explored the clinical characteristics and

outcomes of patients with BSIs, as well as the phenotypic and

genomic characteristics of these isolates. Furthermore, we delineate

the STs, capsule type distribution, and their associations with the

prognosis in cases of with A. baumannii blood infection.
2 Methods

2.1 Patients and clinical data collection

Clinical data were collected from patients at the first affiliated

University of Nanchang (Nanchang, China) with positive A.

baumannii blood cultures between January1,2020 and March 31,

2023, using electronic health records. Data included patient

demographics (age and sex), hospitalization period, invasive

procedures, comorbid disease, other sites of A. baumannii

isolation, laboratory examination, and antimicrobial usage, all

analyzed retrospectively.
2.2 A. baumannii isolates

Identification of A. baumannii isolates was performed using

matrix-assisted laser desorption/ionization mass spectrometry

(bioMérieux, Marcy-l’Étoile, France) and PCR detection of

blaOXA-51-like.Antimicrobial susceptibility testing was conducted

with VITEK 2 Compact (bioMe´rieux) and interpreted according

to the CLSI guidelines (CLSI, 2022). The minimal inhibitory

concentrations of colistin and tigecycline were determined using

the broth microdilution assay according to Clinical and Laboratory
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Standards Institute (2022) and U.S. Food and Drug Administration

(FDA) standards, respectively (Zhang et al., 2022).
2.3 Growth curve

The single colony was inoculated into 5ml of Luria-Bertani

broth and incubated at 37°C until it reached the logarithmic growth

stage. The concentration of the bacterial solution was adjusted to

106CFU/ml with LB broth, and 200mL of the bacterial solution was

dispensed into 96-well plates, with an equal volume of broth used as

a blank control. Incubation was performed at 120rpm and 37°C for

24 hours. The absorbance value (OD600) of the bacterial solution

was measured every 30 minutes using a Multifunctional enzyme

labeling instrument (Thermo Scientific, USA). Each experiment was

conducted in triplicate to obtain an average value (Rakovitsky et al.,

2023). The growth rates of isolates were calculated using the

growthcurver R package.
2.4 Biofilm forming assay

Biofilm formation activity was assessed using the microtiter plate

technique as described by Mahmoud AFK et al (Mahmoud et al.,

2021). After overnight growth in LB broth at 37°C, isolates were

adjusted to 0.5 McFarland standards and diluted 1:100 in LB broth.

Then, 200mL of the adjusted bacterial cultures were incubated in 96-

well polystyrene plates for 24 hours at 37°C. Following incubation,

the wells were stained with 0.1% crystal violet for 20 minutes. After

washing and allowing to dry naturally, the bound dye was dissolved

in 200mL of ethanol, and absorbance was measured at 540 nm. Each

strain was tested in triplicate, and the means of three repeated

experiments were calculated.
2.5 Antiserum complement killing

To obtain sterile serum, blood was drawn from healthy

participants, centrifuged, and filtered through a 0.22 µm pore

syringe filter. By heating the serum for 30 minutes at 56°C in a

water bath, half of the serum was rendered inactive. When A.

baumannii reached 2 × 106 CFU/ml during the logarithmic growth

phase, it was combined with normal or inactivated serum at a 1:1

ratio. The samples were serially diluted and plated on MH agar

plates after a one-hour incubation period at 37°C. Following an

overnight incubation period at 37°C, the number of bacterial

colonies was counted. The bacterial survival rate was calculated

using the formula:(number of colonies in normal serum/number of

colonies in inactivated serum) × 100% (Niu et al., 2020).
2.6 In vivo G.mellonella killing assay

Virulence in vivo was evaluated by a G.mellonella killing assay

as previously described (Chen et al., 2023). The assay comprising of
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10 larvae (250–350 mg; Huiyude, Tianjin, China) was performed

using 1×106CFU/mL A. baumannii strain for single infections, with

PBS as a negative control for three times. The larvae were

maintained at 37°C for 96 hours, with assessments for signs of

death occurring every 24 hours. Larvae were considered dead when

no movement was observed after gentle prodding with forceps. A.

baumannii AB5075 and ATCC 19,606 were used as reference

strains for high and low virulence, respectively.
2.7 Genomic analysis

All isolates were sequenced using the Illumina PE Cluster Kit

(Illumina, USA). FastQC software was employed for quality control

of the raw sequencing data. Clean data were assembled using SOAP

Denovo 2.0. The raw sequencing data generated from this research

have been deposited in NCBI SRA (http://www.ncbi.nlm.nih.gov/

sra) under the accession number PRJNA1193765. Multilocus

sequence typing (MLST) was performed using the Pasteur

scheme, targeting seven housekeeping genes (cpn60,gltA, fusA,

pyrG,recA,rpoB, and rplB) from the WGS sequences to determine

Sts. The online tool MLST 2.0 was utilized. K locus (KL) types were

determined using Kaptive version 2.0.6 (Wyres et al., 2022).

Identification of antimicrobial resistance genes and virulence

genes was achieved by the ResFinder database and the Virulence

Factor Database (VFDB), respectively.
2.8 Statistical analysis

Statistical analysis was conducted using SPSS 25 and GraphPad

Prism 8.0. Figures were produced using the R package and

GraphPad Prism 8.0.
3 Results

3.1 MLST and KL types

Among the 67 strains, 14 distinct Sts and 20 distinct KL types

were identified.ST2 was the most common, accounting for 76.12%

of the strains.KL2/3/7/77/160 accounted for 65.67% of all

A.baumannii isolates and 88.0% of CRAb. The predominant KL

type was KL3, representing 23.6% for CRAb. All ST2 and KL2/3/7/

77/160 isolates were CRAb.
3.2 Antimicrobial susceptibility

The isolates from the death group demonstrated significantly

higher resistance to ceftazidime, cefepime, piperacillin-tazobactam,

meropenem, imipenem, and ciprofloxacin than isolates from the

survival group.ST2 isolates and KL2/3/7/77/160 isolates exhibited

significantly markedly greater resistance to ceftazidime, cefepime,

piperacillin-tazobactam, cefoperazone sulbactam, imipenem,
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meropenem, ciprofloxacin, levofloxacin, and tobramycin than non

ST2 and non KL2/3/7/77/160 isolates. There was no significant

difference in resistance to tigecycline, minocycline, or colistin

between ST2 and non-KL2 isolates, KL2/3/7/77/160, and non

KL2/3/7/77/160 isolates (Table 1).
3.3 Clinical analysis according to the
outcome of 30-day

A total of 67 patients with BSI caused by A. baumannii were

included in the study. Thirty-seven patients died within 30 days,

resulting in a mortality rate of 55.22%. Clinical data comparing the

death and survival groups are presented in Table 2. The age and

hospital stay duration of patients in the death group were

significantly higher than those of the survival group (P<0.005,

P<0.001), although the majority of patients in both groups were

elderly and male. Most patients underwent invasive procedures,

with tracheal intubation, mechanical ventilation, and Central

venipuncture being the most common. The death group had a

higher proportion of patients undergoing more invasive procedures

involving mechanical ventilation and tracheal intubation compared

to the survival group(P=0.029, P=0.015). Pulmonary infection was

the most frequent comorbidity with A. baumannii isolated from the

sputum of 34.33% of patients. The results of laboratory tests

revealed that the death group had significantly lower platelet

counts and higher C-reactive protein (CRP) levels than the

survival group. Additionally, the death group had higher rates of

antibiotic usage (defined as the use of two or more antibiotic

classes) and greater exposure to carbapenems prior to blood

separation (P=0.028, P<0.001)(Table 2).
3.4 Clinical analysis according to ST and
KL types

In terms of clinical analysis based on ST and KL types, the 30-

day mortality rate among patients with ST2 and KL2/3/7/77/160

infections was higher than that among patients with non-ST and

non KL2/3/7/77/160 infection (P=0.002, P=0.015). Compared to

patients with non-ST2 infection, patients with ST2 isolates

underwent more invasive procedures, including mechanical

ventilation, tracheal intubation, and central venipuncture

(P=0.004, P=0.005, P<0.001). They were also given two or more

antibiotics and received carbapenem therapy before blood isolation

(P<0.001, P=0.002), and had lower serum albumin levels (P=0.018).

Similarly, compared to patients with non-KL2/3/7/77/160

infections, a greater percentage of patients in the KL2/3/7/77/160

group underwent invasive procedures of mechanical ventilation,

tracheal intubation and central venipuncture (P=0.002, P=0.001,

P<0.001), and were given two or more antibiotics and carbapenem

therapy prior to blood isolation (P=0.002, P=0.015), while also

exhibiting lower serum albumin levels (P<0.001, P=0.002).
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Furthermore, a higher incidence of A. baumannii was isolated

from sputum samples during hospitalization (P=0.035) (Table 2).
3.5 Phenotype analysis of virulence in
A. baumannii

In our study, we assessed the virulence of all isolates using the

growth curve, antiserum complement killing, biofilm-forming, andG.

mellonella killing assay in vivo. The growth curve, antiserum

complement killing, biofilm-forming, and G. mellonella killing

assay in vivo were not statistically different between the survival

and death groups (P=0.956, P=0.843, P=0.397, P=0.697) (Figure 1).

There were also no significant differences in growth curves, antiserum

complement killing, and G. mellonella killing assays between the ST2

and non-ST groups (P=0.911, P=0.423, P=0.118). The biofilm-

forming ability of non-ST2 isolates was significantly stronger than

that of ST2 isolates (P<0.05) (Figure 2). While there were no

differences in virulence phenotypes between KL2/3/7/77/160 and

non KL2/3/7/77/160, differences were observed among various KL

types. Specifically, the growth rate of KL7 was slower than that of

KL160 (P=0.026), and serum resistance in KL77 was lower than that

in KL2, KL3, and KL160 (P=0.027, P=0.021, P=0.008). Furthermore,

the survival rates of G. mellonella in KL7 isolates were lower than

those in KL77 and other KL isolates (P=0.033, P=0.006) (Figure 3).
3.6 Genome analysis of A. baumannii based
on WGS

In our study, all CRAb isolates harbored carbapenemase genes,

including blaOXA-23 (52/54), blaOXA-66(49/54), blaNDM-1(2/54), blaOXA-91,

blaOXA-132, blaOXA-430.Notably, 90.7% of the CRAb isolates(49/54)

co-harbored blaOXA-23 and blaOXA-66, while one isolate co-harbored

blaNDM-1 and blaOXA-23. The antimicrobial resistance genes of all isolates

are presented in Figure 4. Analysis of virulence genes revealed that a

total of 49 virulence genes (ompA, adeFGH, bap, csuA/BABCDE,

pgaABCD, plc, plcD, lpsB, lpxABCDLM, barAB, basABCDFGHIJ,

bauABCDEF,entE,hemO,abaIR,bfmRS,pbpG, and katA). These genes

are involved in multiple virulent functions, including serum resistance,

biofilm formation, adhesion, iron uptake, etc. Strains isolated from the

death group exhibited significantly higher levels of iron uptake (barAB,

basABCDFGHIJ, bauABCDEF,entE, hemO), Biofilm formation (bap,

csuA), Regulation (abaI, abaR) genes compared to those from the

survival group (P<0.05). ST2 strains harbored more of Iron uptake

(barAB, basABCDFGHIJ, bauABCDEF, entE, hemO), Biofilm

formation (bap,csuA), Regulation (abaI, abaR) and Stress adaptation

(katA) genes than those from the non-ST2 strains (P<0.001). Moreover,

KL2/3/7/77/160 isolates exhibited increased levels of iron uptake

(barAB, basABCDFGHIJ,bauABCDEF,entE, hemO), Biofilm

formation (bap,csuA), and Stress adaptation (katA) genes compared

to non KL2/3/7/77/160 (P<0.001). The virulence genes of all isolates are

shown in Figure 5.
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TABLE 1 Comparison of the antimicrobial resistance rates of the isolates from the death and survival group, the ST2 and non ST2 isolates and the KL2/3/7/77/160 and non KL2/3/7/77/160 isolates.

L2/3/7/77/160 (n=44)
non KL2/3/

7/77/
160(n=23)

p-Value
(Death

vs. Survive)

p-Value
(ST2 vs.
non ST2)

p-Value (KL2/3/7/
77/160 vs. other

KL types
KL77
(n=9)

KL7
(n=8)

KL2
(n=7)

KL160
(n=7)

100.00% 100.00% 100.00% 100.00% 39.13% 0.001 <0.001 <0.001

100.00% 100.00% 100.00% 100.00% 47.83% <0.001 <0.001 <0.001

100.00% 100.00% 100.00% 85.71% 47.83% <0.001 <0.001 <0.001

55.56% 87.50% 57.14% 85.71% 17.39% 0.124 <0.001 <0.001

100.00% 100.00% 100.00% 100.00% 43.48% <0.001 <0.001 <0.001

100.00% 100.00% 100.00% 100.00% 43.48% <0.001 <0.001 <0.001

100.00% 100.00% 100.00% 100.00% 39.13% 0.001 <0.001 <0.001

88.89% 100.00% 100.00% 71.43% 26.09% 0.053 <0.002 <0.001

88.89% 100.00% 85.71% 85.71% 30.43% 0.169 <0.001 <0.001

77.78% 62.50% 100.00% 100.00% 43.48% 0.055 <0.001 0.451

11.11% 0.00% 0.00% 14.29% 0.00% 0.196 0.402 0.299

0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00%
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Antimicrobial
agents

Total
(n=67)

Death
(n=37)

Survival
(n=30)

ST2
(n=50)

non
ST2

(n=17)
KL3

(n=13)

ceftazidime 79.10% 94.59% 63.33% 100.00% 17.65% 100.00%

cefepime 82.09% 97.30% 66.67% 100.00% 29.41% 100.00%

piperacillin-
tazobactam 80.60% 97.30% 60.00% 98.00% 29.41% 100.00%

cefoperazone
sulbactam 53.73% 62.16% 43.33% 70.00% 5.88% 84.62%

meropenem 80.60% 97.30% 60.00% 100.00% 23.53% 100.00%

imipenem 80.60% 97.30% 60.00% 100.00% 23.53% 100.00%

ciprofloxacin 79.10% 94.59% 60.00% 100.00% 17.65% 100.00%

levofloxacin 62.69% 72.97% 50.00% 78.00% 17.65% 61.54%

tobramycin 68.66% 75.68% 60.00% 90.00% 5.88% 84.62%

sulfamethoxazole
trimethoprim 67.16% 75.68% 53.33% 82.00% 29.41% 69.23%

minocycline 2.99% 5.41% 0.00% 4.00% 0.00% 0.00%

tigecycline 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

colistin 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Bold values are statistically significant (P < 0.05).
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TABLE 2 Clinical characteristics of patients with bloodstream infections caused by Acinetobacter baumannii according to the clinical outcome，ST type and KL type.

non KL2/3/
7/77/

160(n=23)

p-Value
(Death

vs. Survive)

p-Value
(ST2 vs.
non ST2)

p-Value (KL2/3/7/77/
160 vs. non KL2/3/7/

77/160 )
60
7)

00
481 51.00±19.00 0.0048 0.1933 0.0348

3% 78.26% 0.206 0.911 0.385

43
.15 24.78±17.55 <0.001 0.304 0.329

00
12 8.70±7.59 0.9826 0.187 0.332

9 0.029 0.004 0.002

3 0.872 0.608 0.336

10 0.015 0.005 0.001

2 0.464 0.202 0.571

7 0.09 <0.001 <0.001

1 0.763 1.000 1.000

4 0.871 0.202 1.000

3 0.811 0.140 1.000

9 0.252 0.08 0.307

2 1 0.565 0.890

9 0.371 0.958 0.683

4 0.125 0.712 0.368

6 0.557 0.499 0.502

2 0.703 0.519 0.656

3 0.735 0.859 1.000

2 0.763 1 0.890
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Total
(n=67)

survival
(n=37)

death
(n=30)

ST2
(n=50)

non-
ST2

(n=17)

KL2/3/7/77/160 (n=44)

KL3
(n=13)

KL77
(n=9)

KL7
(n=8)

KL2
(n=7)

KL1
(n=

Demographic

Age (years), mean±SD
57.21
±17.51

50.63
±18.50

62.54
±14.88

58.84
±16.50

52.41
±19.97

62.46
±13.53

62.67
±10.77

68.63
±17.40

55.00
±21.06

50
±15

Male gener number(%) 0.7164 76.67% 67.57% 72.00% 70.59% 61.54% 66.67% 87.50% 57.14% 71.

Hospital stay
days, mean±SD

28.9
±24.74

40.83
±29.86

19.22
±13.74

30.72
±27.07

23.53
±15.45

30.85
±33.12

24.33
±27.87

34.38
±26.65

29.86
±27.05

37
±25

Hospital stay
days bofore BSI ,
mean±SD

10.24
±9.33

10.27
±8.55

10.22
±10.04

11.12
±9.73

7.65
±7.70

8.23
±8.44

10.56
±7.16

18.13
±18.18

9.86
±5.67

10
±4

Invasive procedures

Mechanical ventilation 43 15 28 37 6 8 7 7 6

Central venous catheter 6 2 4 5 1 0 0 1 2

Tracheal intubation 46 16 30 39 7 9 8 7 6

tracheotomy 13 7 6 12 1 2 3 0 3

Central venipuncture 41 15 26 37 4 10 7 7 4

tracheoscope 4 1 3 3 1 1 1 1 0

thoracentesis 14 6 8 12 2 2 1 3 1

Abdominal puncture 12 5 7 11 1 4 1 1 1

Comorbid disease

Pulmonary infection 32 12 20 27 5 7 4 6 2

Septic shock 4 2 2 2 2 0 1 0 1

Respiratory failure 24 9 15 18 6 4 4 4 2

Multiple organ failure 16 4 12 13 3 2 3 2 3

hypertension 18 7 11 15 3 4 5 0 2

diabetes 9 3 6 8 1 4 0 0 2

hepatitis 9 5 4 6 3 3 0 1 0

Coronary heart disease 4 1 3 3 1 1 1 0 0
.
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TABLE 2 Continued

)
non KL2/3/

7/77/
160(n=23)

p-Value
(Death

vs. Survive)

p-Value
(ST2 vs.
non ST2)

p-Value (KL2/3/7/77/
160 vs. non KL2/3/7/

77/160 )
7)

KL160
(n=7)

5 4 0.877 0.167 0.035

2 0 0.006 0.325 0.087

5
9.38
±4.37 10.72±6.46 0.368 0.848 0.890

7.50
±4.60 8.41±5.63 0.869 0.816 0.628

3.49
±0.73 3.17±1.01 0.816 0.713 0.364

4
169.29
±118.95

141.70
±101.76 <0.001 0.625 0.361

31.37
±3.10 33.21±5.54 0.064 0.018 <0.001

8
8

67.97
±50.79 74.41±59.92 0.003 0.179 0.073

7
98

7.61
±7.94 20.38±36.19 0.144 0.525 0.529

0 4 0.23 0.69 0.936

0 0 0.49 0.219 0.112

6 7 0.028 <0.001 <0.001

4 6 <0.001 0.002 0.002

% 42.86% 34.78% 0.002 0.015
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Total
(n=67)

survival
(n=37)

death
(n=30)

ST2
(n=50)

non-
ST2

(n=17)

KL2/3/7/77/160 (n=44

KL3
(n=13)

KL77
(n=9)

KL7
(n=8)

KL
(n=

A.baumannii isolated from other sites during hospital stay

sputum 23 10 13 20 3 7 3 2 2

other sites 6 6 0 6 0 0 2 0 2

Laboratory examination,mean±SD

White blood cell count
(×109/L)

10.92
±8.18

11.92
±8.67

10.01
±7.79

10.80
±8.64

11.25
±6.88

12.11
±6.92

7.19
±9.20

12.25
±9.26

14.1
±14.

Neutrophil count(×109/L)
8.96
±6.65

8.81
±5.89

9.08
±7.29

9.07
±6.90

8.63
±6.07

10.85
±6.70

6.46
±8.42

10.53
±8.84

10.1
±6.9

Red blood cell count(×109/L)
3.04
±0.82

3.06
±0.70

3.02
±0.91

3.02
±0.82

3.10
±0.84

2.93
±0.74

2.93
±0.73

2.73
±0.67

2.87
±0.5

Platelet count(×109/L)
124.34
±111.49

178.7
±125.89

80.27
±74.58

120.42
±114.86

135.88
±103.32

113.23
±74.54

82.67
±86.33

146.25
±208.71

71.5
±49.

Albumin(g/L)
29.86
±5.72

31.29
±5.68

28.69
±5.55

28.91
±5.54

32.66
±5.46

27.40
±4.86

27.74
±5.76

27.32
±5.79

27.5
±5.1

CRP (mg/L)
94.15
±66.27

67.96
±40.39

118.53
±76.38

101.72
±65.84

75.22
±65.54

83.17
±45.21

121.25
±62.45

131.70
±88.50

140.
±83.

Procalcitonin(ng/mL)
16.86
±19.17

10.33
±21.19

21.52
±33.25

18.13
±29.78

12.26
±27.45

12.11
±28.47

15.82
±26.77

8.41
±14.95

33.1
±33

Leukopenia(<4×109/L) 12 3 9 10 2 1 4 2 1

Agranulocytosis(<0.5×109/L) 5 1 4 5 0 0 4 1 0

Usage of antimicrobials,n(%)

The numbers of antibiotic
classes used before isolating
from blood≥2

41 15 26 38 3 7 8 6 7

Carbapenem therapy before
isolating from blood

34 7 27 31 3 7 8 4 6

Outcome

30-day mortality (%) 55.22% 66.00% 23.53% 84.62% 77.78% 37.50% 71.4

Bold values are statistically significant (P < 0.05).
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4 Discussion

A. baumannii bloodstream infections pose a serious hazard to

human health due to their high mortality rates (Gu et al., 2022;

Hassoun-Kheir et al., 2024). In our study involving 67 BSI patients,

the 30-day mortality was 55.2%. Our findings indicate that factors

such as age, CRP levels, the frequency of invasive procedures

(mechanical ventilation and tracheal intubation), antimicrobial

resistance, the number of antibiotic classes used (≥2), and

exposure to carbapenems were significantly higher in patients

from the death group compared to those in the survival group.
Frontiers in Cellular and Infection Microbiology 08
Consistent with previous studies, mechanical ventilation and prior

antibiotic exposure were identified as risk factors for BSI patients

(Zhong et al., 2022; Zhang et al., 2023).

A nationwide retrospective research conducted across 19

hospitals in Italy analyzed the mortality associated with

bloodstream infections caused by carbapenem-resistant Gram-

negative bacilli, revealing that carbapenem resistance significantly

increases mortality rates in BSI patients (Falcone et al., 2023). In our

study, 80.6% of the 67 patients with A. baumannii bloodstream

infections were identified as CRAb (54/67). Once Acinetobacter

baumannii develops resistance to carbapenems, it often exhibits
FIGURE 1

The virulence of isolates from the death and survival group (the growth curve, antiserum complement killing, biofilm-forming, and G. mellonella
killing assay in vivo).
FIGURE 2

Biofilm formation ability of ST2 and non ST2 isolates. * p <0.05.
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resistance to most other antimicrobial agents, resulting in limited

treatment options. Currently, there is no clear “standard of care”

antimicrobial regimen for CRAb infections. Moreover, there is

insufficient data to demonstrate the additive benefits of routinely

used combination regimens or the prioritization of specific agents

with CRAb activity (Tamma et al., 2024). The primary treatment

recommendations for extensively drug-resistant A. baumannii in

China include tigecycline-based regimens, polymyxin-based

regimens, and sulbactam-based regimens (Guan et al., 2016).In

our study, 73.0% (27/37) of patients in the mortality group and

43.3% (13/30) of patients in the survival group received these

regimens. Notably, 54.1% (20/37) of patients in the mortality

group underwent changes in their anti-infective treatment

regimen (two or more alterations). Studies have indicated that

early and rational antibiotic use can reduce mortality of A.

baumannii infection (Erbay et al., 2009). The lack of standardized

treatment in this study might have contributed to the high mortality

rate observed. More data are necessary to validate a rational

antimicrobial regimen for treating CRAb infections.

Studies on the molecular epidemiology of global CRAb have

shown that blaOXA-23 and blaOXA-24/40 are the most frequently

acquired carbapenemase genes (Wang et al., 2024).In our study,

carbapenem resistance of all CRAb isolates was mediated by

carbapenemase genes, with 96.3% (52/54) of CRAb isolates

carrying blaOXA-23, 90.7% (49/54) carrying blaOXA-66 and 3.7% (2/

54) carrying blaNDM-1. Notably, blaOXA-23remains globally

predominant. Among the two strains producing NDM-1, one

isolated in July 2022 co-harbored OXA-23, while A. baumannii

was not isolated from the patient’s sputum or stool. The other

strain, isolated in January 2023, came from a patient colonized in

the respiratory tract with A. baumannii. However, the drug-

resistance phenotypes of the two strains differed. The strain co-

producing OXA-23 and NDM-1 (ST2; KL47) was different from

reported strains (ST2; KL9) (Martins-Gonçalves et al., 2024),

suggesting potential contamination from the hospital

environment, for example through invasive procedures, et al

(Miltgen et al., 2021).
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Simultaneously, we evaluated differences in phenotypes and

genotypes of virulence between the survival and the death group.

No differences were observed in virulence phenotypes (growth rate,

serum resistance rate, biofilm formation, and survival rates of G.

mellonella) between the groups. However, strains from the death

group harbored more Iron uptake (barAB, basABCDFGHIJ,

bauABCDEF, entE, hemO), Biofilm formation (bap, csuA), and

Regulation (abaI, abaR) genes than those from the survival group.

Based on large and representative bacterial genomic data, a study

indicated that the presence of the additional haem-uptake system

hemO may have contributed to the success of certain A. baumannii

clones, as the expression of several iron-uptake clusters has been

connected to virulence (Artuso et al., 2023). The bap gene generates

certain proteins at the cell surface that are directly related to biofilm

formation and bacterial transmissibility. cusA/BABCDE is engaged

in the first surface attachment during biofilm formation (Rezania

et al., 2022).

Although new lineages are currently widespread in certain

regions, the expansion of two major clones, GC1 and GC2, has

been significantly responsible for the global spread of CRAb,

especially GC2 (Wang et al., 2024).ST2 as the representative ST

type of GC2 has been identified as the predominant MLST of A.

baumannii (Liu et al., 2022; Duan et al., 2024) and was related to

severe infection, inappropriate antibiotic treatment, and poor clinical

outcomes in BSI (Chuang et al., 2019). Our study confirmed that the

mortality rate for patients with ST2 isolates was significantly higher

than for those with non-ST2 isolates (66.0% vs. 23.5%; P = 0.002).

Patients with ST2 isolates underwent more invasive procedures,

received two or more antibiotics, and carbapenem therapy prior to

blood isolation, and exhibited lower serum albumin levels. The ST2

strains harbored more iron uptake, biofilm formation (bap, csuA),

regulatory (abaI, abaR), and stress adaptation (katA) genes than non-

ST2 strains. Nonetheless, there were no differences in virulence

phenotype tests (growth rate, serum resistance rate, and survival

rates of G. mellonella). Interestingly, non-ST2 isolates exhibited

stronger biofilm formation ability, potentially due to differences in

gene expression or other mechanisms.
FIGURE 3

The virulence of KL2/3/7/77/160 and non KL2/3/7/77/160 isolates ( the growth curve, antiserum complement killing, and G. mellonella killing assay in
vivo). *p <0.05, **p <0.01.
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In the genome of A. baumannii, capsule type is mainly

determined by the genes responsible for CPS biosynthesis at the

K locus (KL) of the chromosome (Kenyon and Hall, 2013). At

present, over two hundred distinct K loci genes have been identified

(Kenyon and Hall, 2021; Cahill et al., 2022). A study by Kelly L et al.

analyzed 2,944 A. baumannii genomes and identified the most

common KL types as KL2 (24.2%), KL9 (11.6%), KL22 (11.3%), KL3

(10.0%), and KL13 (5.3%) (Wyres et al., 2022). Wang et al. reported

the most prevalent KL types as KL22, KL2, KL125, and KL3 among

842 CRAb isolates from various global regions (Wang et al., 2024).

Yu-Chia Hsieh et al. screened K-types in large numbers of A.

baumannii bloodstream isolates using the wzy-PCR combined with

wzc-based method, finding KL2, KL10, KL22, and KL52 to be the

prevalent capsular types of CRAb, patients with KL2/10/22/52

infection had a higher 30-day mortality rate (Hsieh et al., 2020).

Our study is one of only a few studies that describe the

epidemiology of the KL types of A. baumannii bloodstream
Frontiers in Cellular and Infection Microbiology 10
infections through WGS and analyze virulence characteristics. We

found that KL2/3/7/77/160 were the most prevalent KL types with

KL3(24.1%), KL77(16.7%), KL7(14.8%), KL2(13.0%), KL160

(13.0%), accounting for 88.0% of CRAb totally. Among them,

KL7 A.baumannii isolates were described in the mucoid A.

baumannii previously as highly virulent strains in G.mellonella

survival assay (Chen et al., 2024). A study of tigecycline-resistant

A. baumannii genome analysis indicated the KL7 cluster carried

more antimicrobial resistance genes than other clusters (Qian et al.,

2024). Interestingly, Rare studies have been reported on KL77 and

KL160, suggesting the potential emergence of new clones in

Nanchang, China.

Compared to patients with non-KL2/3/7/77/160 infections, the

thirty-day mortality rate of the patients with KL2/3/7/77/160 infection

is higher (65.90%vs 34.78%; P = 0.015). Notably, the mortality rate of

KL3 was 84.62% (11/13).KL2/3/7/77/160 infections were more

frequently associated with older age, invasive procedures, use of two
FIGURE 4

Drug-resistant gene analysis of all isolates in this study. STs and KL types are included. The presence of genes is in dark blue, and the absence of
genes is in light blue. MLS, Macrolide, Lincosamide and Streptogramin B.
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or more antibiotics, prior exposure to carbapenems before blood

isolation, and lower serum albumin levels. We analyzed the resistance

phenotypes, virulence phenotypes, and genomic characteristics of

both groups and found that KL2/3/7/77/160 strains had a higher

resistance rate to other antimicrobials, except tigecycline and

polymyxin. Additionally, these strains harbored more genes related

to iron uptake, biofilm formation, and stress adaptation than the non-

KL2/3/7/77/160 group. However, no significant difference in virulence

phenotype was observed between KL2/3/7/77/160 and non-KL2/3/7/

77/160 types, despite variations among the different KL types.

Considering the limitations of our study, further research is needed

to assess the impact of A. baumannii BSI with different KL types on

patient outcomes.

Jia-Ling Yang et al. demonstrated that KL2 A. baumannii is

associated with higher antimicrobial resistance and increased

mortality from bacteremia (Yang et al., 2022). A study by Yu-

Chia Hsieh et al. found that patients with KL2/10/22/52 infections
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exhibited higher rates of pneumonia, APACHE II scores, intensive

care unit admissions, and Pitt bacteremia scores compared to those

with non-KL2/10/22/52 infections. Additionally, patients with KL2/

10/22/52 infections had a higher cumulative incidence of 30-day

mortality (Hsieh et al., 2020). Identifying KL types may be crucial

for understanding the virulence of A. baumannii and predicting

outcomes in BSI. This necessitates the inclusion of more strains

from other hospitals in epidemiological research to identify which

KL types of A. baumannii are more likely to result in poor

prognoses, along with further analyses of virulence and drug

resistance characteristics.

In conclusion, the mortality rate of BSI caused by A. baumannii

is high. Hospitals should enhance the management of A. baumannii

infections. The prognosis of BSI caused by A. baumannii is

influenced by numerous factors. It is of great significance to focus

on the clinical characteristics of patients and to identify the ST and

KL types of the strains causing the infection at an early stage.
FIGURE 5

Virulence gene analysis of all isolates. STs and KL types are included. The presence of genes is in dark blue, and the absence of genes is in white.
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C., et al. (2022). Carbapenem Resistance in Acinetobacter nosocomialis and
Acinetobacter junii Conferred by Acquisition of and Genetic Characterization of the
Transmission Mechanism between Acinetobacter Genomic Species. Microbiol. Spectr.
10, e0273421. doi: 10.1128/spectrum.02734-21

Liu, C., Chen, K., Wu, Y., Zhang, X., Li, Z., Zhou, Y., et al. (2022). Epidemiological
and genetic characteristics of clinical carbapenem-resistant Acinetobacter baumannii
strains collected countrywide from hospital intensive care units (ICUs) in China.
Emerg. Microbes Infect. 11, 1730–1741. doi: 10.1080/22221751.2022.2093134

Mahmoud, A. F. K., Fatma, A. A., Ahmed, F. E., Ali, A., Tan, W., Zhuang, Y., et al.
(2021). Virulence characteristics of biofilm-forming Acinetobacter baumannii in
clinical isolates using a Galleria mellonella model. Microorganisms 9, 2365.
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