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Mosquito-borne diseases such as chikungunya, dengue, and Zika represent a

major burden on global public health. To fight against these arboviruses, vector

control strategies are a priority. One existing strategy is based on the use of an

endosymbiotic bacterium, Wolbachia, which reduces the transmission of

arboviruses by the mosquito Aedes aegypti via a pathogen blocking effect.

Wolbachia in Ae. aegypti disrupts several pathways of the host’s metabolism.

Trehalose is a carbohydrate circulating mainly in insect hemolymph and plays a

role in numerous mechanisms as energy source or stress recovery molecule and

in chitin synthesis. This study explores the importance of trehalose in the

interactions between Wolbachia and Ae. aegypti, and attempts to understand

the pathogen blocking effect.
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1 Introduction

Vector-borne diseases exert a significant impact on public health contributing to global

morbidity and mortality (Bhatt et al., 2013; LaBeaud et al., 2011). For example, 400 million

people are infected by dengue virus (DENV) in the world each year (Bhatt et al., 2013;

WHO, 2023a), costing $9 billion (Shepard et al., 2016). Aedes aegypti is a primary vector of

several arboviruses including DENV (WHO, 2023b). There is no specific treatment against

dengue fever and vector control remains the main strategy to limit its emergence and rapid

spread. Among vector control strategies (Achee et al., 2019), insecticide treatments are

mainly implemented to interrupt dengue transmission (Van Den Berg et al., 2021).

However, control efforts have failed to limit dengue fever epidemics and targeted

mosquito populations developed resistance to insecticides (Asgarian et al., 2023), urging

the development of alternative vector control strategies. Among them, vector control using

Wolbachia pipientis has met with significant success (Hilgenfeld and Vasudevan, 2018).

Wolbachia are Gram-negative bacteria belonging to the Alphaproteobacteria class and

the Rickettsiales order. Discovered in 1924 (Hertig and Wolbach, 1924), Wolbachia are
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obligate intracellular bacteria found in nematodes, insects and other

arthropods; 40-60% of insects are infected by Wolbachia (Weinert

et al., 2015). These bacteria are vertically transmitted and

manipulate their hosts to secure their own transmission to the

progeny by: (i) inducing a sex ratio distortion in favor of

Wolbachia-infected females via parthenogenesis, feminization,

male killing or (ii) sterilizing certain individuals via cytoplasmic

incompatibility (Landmann, 2019). These effects are not shared by

all Wolbachia strains, e.g. Wolbachia from filarial nematodes. In

arthropods, Wolbachia strains manipulate the host reproduction

and inhibit the transmission of some pathogens, making them

potential candidates for vector control (Gill et al., 2014). In

insects, Wolbachia is mainly present in reproductive tissues

(ovaries) but also in somatic tissues such as the midgut, fat body,

salivary glands and muscles (Mejia et al., 2022; Zouache et al., 2009).

The relationship between the host and the endosymbiont can be

parasitic, mutualistic or commensal (Newton and Rice, 2020),

depending on cellular host conditions and the availability of

certain nutrients (Lindsey et al., 2018). In addition, the bacterium

modifies the host intracellular environment (Lindsey et al., 2018)

affecting the cytoskeleton (microtubule and actin) (Ferree et al.,

2005; Sheehan et al., 2016) and also modulates gene expression in

the host cell; differential expression of genes related to metabolism

(Molloy et al., 2016), immunity (Xi et al., 2008) or synthesis of

antioxidant molecules [21, 22]. Additionally, Wolbachia induce

oxidative stress (Pan et al., 2012), which indirectly affects host

metabolism (Bhardwaj and He, 2020) and immunity (Pan et al.,
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2012; Zug and Hammerstein, 2015). All these changes induced by

Wolbachia affect the replication and transmission of DENV in Ae.

aegypti (Reyes et al., 2021; Terradas and McGraw, 2017). This

phenomenon is known as pathogen blocking effect or pathogen

interference. The exact mechanisms leading to the pathogen-

blocking effect are not yet fully elucidated, but they appear to be

multifactorial, involving immunity, competition for resources,

lipids, and oxidative stress (Reyes et al., 2021; Terradas and

McGraw, 2017).

Wolbachia strategy is at the base of two distinct and

complementary approaches in vector control: (i) incompatible

insect technique based on cytoplasmic incompatibility to reduce

the size of vector populations and (ii) pathogen-blocking effect to

limit the transmission of arboviruses (Caragata et al., 2021). The

most commonlyWolbachia strains used for vector control are wMel

from Drosophila melanogaster and wAlbB from Aedes albopictus

trans-infected in Ae. aegypti (Caragata et al., 2021; Ross, 2021). The

pathogen blocking phenotype is Wolbachia strain- and host-

dependent (Jiménez et al., 2019); wAlbB enhances, rather than

inhibits, West Nile virus infections in Culex tarsalis (Dodson et al.,

2014; Glaser and Meola, 2010). The effects produced by Wolbachia

are based on a variety of cellular and molecular mechanisms.

Indeed, Wolbachia have an effect on the carbohydrate and lipid

metabolism and among carbohydrates, trehalose is an essential

molecule for growth, fertility, and vitality.

Trehalose (a-D-glucopyranosyl-a-D-glucopyranoside) is a

non-reducing disaccharide found in insects (Figure 1A). Present
FIGURE 1

Trehalose molecule, synthesis and pathway. (A) Haworth representation of trehalose, a glucose dimer linked by a a,a-1,1 bond. (B) Trehaloneogenesis,
the trehalose-forming metabolic pathway. (C) Trehalose involved in trehaloneogenesis and glycolysis. UDP, Uridine diphosphate glucose; iP, inorganic
phosphate; TPS, Trehalose 6-phosphate synthase; TPP, Trehalose 6-phosphatase; TREH, Trehalase; GLUT1, Glucose transporter I; HK, Hexokinase; PGM,
Phosphoglucomutase; GP, Glycogen phosphorylase; G1P, Glucose 1-phsophate; G6P, glucose 6-phosphate; T6P, trehalose 6-phosphate; HTH,
Hypertrehalosemic hormone;TRET1, Trehalose transporter I (Created in https://BioRender.com).
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in soluble form at high concentrations (5 to 50mM) in insect

hemolymph, its concentration is highly dependent on

environmental conditions, nutrition and the insect state of stress

(homeostasis disturbance) (Becker et al., 1996; Tamayo et al., 2022;

Thompson, 2003). Trehalose participates in several physiological

processes such as metabolism, development, chitin synthesis, flight,

recovery from stress, and more globally in maintaining homeostasis

(Matsuda et al., 2015; Shukla et al., 2015).

We examine the role of trehalose in interactions between

Wolbachia and an arbovirus in Ae. aegypti, and discuss

implications of these relationships for the control of mosquito-

borne diseases.
2 Trehalose in Aedes aegypti

Trehalose is a molecule synthesized in the fat body through

trehaloneogenesis from glucose acquired with food. The

trehaloneogenesis pathway diverts one of the intermediates of

glycolysis: glucose-6-phosphate (G6P) as substrate for trehalose-6-

phosphate synthase (TPS) producing trehalose-6-phosphate (T6P)

which is dephosphorylated via trehalose-6-phosphate-phosphatase

(TPP) giving trehalose (Figure 1B) (Shukla et al., 2015). Then, this

molecule is released in the hemolymph via the trehalose transporters

TRET1 (Tamayo et al., 2022) and cleaved into two glucose molecules

by trehalases (TREH), which operate in two forms: TREH-1 soluble

and TREH-2 anchored in the membrane of all insect cell types

(muscle, midgut, salivary glands, fat body) (Tamayo et al., 2022).
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Finally, glucose molecules produced by cleavage are imported into

cells via glucose transporters (GLUT1), initiating multiple metabolic

pathways including glycolysis (Figure 1C) (Tamayo et al., 2022).

Trehalose can also be imported into various types of cells via TRET1

or through active transporters. Indeed, TRET1 is highly expressed in

fat body cells and muscles (Kanamori et al., 2010) while Malpighian

tubules possess active transporters for trehalose (Figure 1C)

(Kanamori et al., 2010).

Trehalose plays a fundamental role in insects due to its

versatility in many physiological processes (Thompson, 2003). As

the main circulating carbohydrate, it serves not only as an energy

source for metabolic activities (Becker et al., 1996; Shukla et al.,

2015; Thompson, 2003), but is also involved in energy storage in the

form of glycogen (Zeng et al., 2020). Additionally, trehalose acts as a

protector against extreme environmental conditions, providing

cryoprotection against cold (Huang et al., 2022) and shielding

cells from desiccation (Thorat et al., 2012). It is also involved in

chitin synthesis (Yang et al., 2024), an essential component of insect

exoskeleton, and plays a role in key biological processes such as

oogenesis and diapause (Becker et al., 1996; Zeng et al., 2020).

Finally, trehalose is crucial for recovery after periods of stress,

demonstrating its vital importance for insect survival and

adaptation to changing environments (Shukla et al., 2015;

Thompson, 2003; Yasugi et al., 2017; Yu et al., 2020).

In insects, trehaloneogenesis is a pathway regulated by hormones

(Tellis et al., 2023; Thompson, 2003). Indeed, trehaloneogenesis is

activated in fat body cells by hormones secreted from the nervous

system (e.g. juvenile hormone analogs, 20-Hydroxyecdysone (20E)
FIGURE 2

The role of trehalose in interactions between Wolbachia and Aedes aegypti. The green circles with a W represent Wolbachia bacteria. TREH,
Trehalase; GLUT1, Glucose transporter; TRET, Trehalose transporter; Tnut, Transporter of nutrients; G6P, glucose 6-phosphate; G3P,
Glycéraldéhyde-3-phosphate; JH, Juvenile hormone; AKH, Adipokinetic hormones; miRNA, microRNA. (Created in https://BioRender.com).
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and diuretic hormone (DH)) (Shukla et al., 2015; Tellis et al., 2023).

Some factors such as exposure to pesticides and temperature shifts,

increase trehalase activity while others (hormonal regulation via

regulating factors) reduce it (Shukla et al., 2015; Tellis et al., 2023).

Thus, trehalose concentration varies throughout insect life. The

hypertrehalosemic hormone (HTH) is responsible for regulating

trehalose levels in insects (Thompson, 2003). HTH is primarily

released in response to increased energy demand or stressful

conditions, and it stimulates the release of stored trehalose from

tissues to provide an additional energy source for the insect

(Thompson, 2003). This helps to maintain trehalose homeostasis

and ensures that insects have a readily available energy source when

needed (Tellis et al., 2023); HTH is released when insects need

additional energy (e.g. for flight) (Thompson, 2003). This

stimulates the breakdown of glycogen stored in tissues into glucose

(Thompson, 2003). Subsequently, glucose is converted into trehalose,

which is released into the hemolymph (Tellis et al., 2023; Thompson,

2003). Additionally, the regulation of trehalose concentration in the

hemolymph is ensured by modulating the expression of trehalose

transporters, such as TRET1, in the fat body cells (Kanamori et al.,

2010; Tamayo et al., 2022).
3 Trehalose as an energy source for
Wolbachia in Ae. Aegypti

The presence of Wolbachia disrupts various cellular dynamics

of its host. Indeed, Wolbachia can modify the expression of certain

host genes (Caragata et al., 2017; Lindsey et al., 2021). Genes

involved in membrane transport (glucose transporter, permeases,

monocarboxylate or cholesterol transporters) and carbohydrate

metabolism are over-expressed, activating the host cell global

metabolism (Caragata et al., 2017). Induced changes increase the

amount of nutrients imported and metabolic activity, as well as

trehalose concentration which depends on iron availability in the

organism (Currin-Ross et al., 2021). However, it has been shown

that Wolbachia can use trehalose and glycogen reserves, increasing

the amount of glucose (Zhang et al., 2021). Wolbachia wMel strain

lacks a trehalose-forming pathway, but synthesizes enzymes that

can import and use trehalose (Jiménez et al., 2019). Thus, the

Wolbachia-infected host may use trehalose to obtain glucose, a

main source of energy (Currin-Ross et al., 2021), as well as other

nutrients such as glyceraldehyde 3-phosphate (GP3) (Jiménez et al.,

2019; Lindsey et al., 2018). The bacterium induces an increased level

of glucose (Zhang et al., 2021) and therefore participates in energy

metabolism such as glycolysis (Shukla et al., 2015), providing it with

essential metabolic intermediates and precursors (G3P) and energy.

NADH synthetized could indirectly benefit Wolbachia via the

pentose phosphate pathway using G6P as a metabolic precursor.

Wolbachia also affects host hormone regulation. Indeed, this

bacterium impacts the regulation of its host’s insulin/IGF-like

signaling pathways (Ikeya et al., 2009). The insulin/IGF pathway,

in turn, is known to affect trehalose carbohydrate storage in insects

(Bobrovskikh and Gruntenko, 2023; Broughton et al., 2005).
Frontiers in Cellular and Infection Microbiology 04
Furthermore, it has been shown that the level of juvenile

hormone (JH) is elevated in Wolbachia-infected Drosophila

melanogaster males (Zhang et al., 2021). This hormone is known

to regulate trehalose synthesis (Xu et al., 2013). Finally, Wolbachia-

induced oxidative stress (Pan et al., 2012) leads to a hormonal

response with synthesis of hormones belonging to the adipokinetic

hormones (AKH) family (Chaitanya et al., 2016); this hormone also

plays a role in increasing the amount of trehalose, using glycogen

reserves for energy purposes (Huang et al., 2012; Lu et al., 2019).

The increased amount of energy produced would compensate for

losses of resources diverted by Wolbachia. Glycolysis is an essential

component of intracellular bacteria-host interactions; it was shown

that pyruvate maintains the symbiotic relationship (Melnikow et al.,

2013; Voronin et al., 2019, 2016). In addition, in immune cells,

sugar metabolism (from trehalose and glucose), particularly the

pentose phosphate pathway (PPP cycle), is crucial not only for

fighting and regulating infections but also for protecting the host

from the effects of its own immune response and for ensuring the

fitness (Kazek et al., 2024). This phenomenon could be accentuated

with DENV infection. Indeed, competition for resources and energy

becomes critical, and trehalose regulation may help in host

cell survival.
4 Trehalose as a key molecule in the
regulation of oxidative stress

As previously mentioned, Wolbachia induces oxidative stress,

resulting in increased concentrations of reactive oxygen species

(ROS) (H2O2, O2•, OH•) (Pan et al., 2012). Oxidative stress is

unsustainable for the cell if prolonged, as ROS induce lipid

peroxidation, damage to genetic material or apoptosis (Kodrıḱ

et al., 2015; Martemucci et al., 2022). To preserve cell integrity, it

is vital to counterbalance this oxidative stress with antioxidant

mechanisms (Felton and Summers, 1995). These can be antioxidant

enzymes such as Glutathione S-transferase (GST), or antioxidant

molecules such as glutathione, ascorbic acid, uric acid and

carbohydrates (Felton and Summers, 1995), which are ubiquitous

in insect tissues (fat bodies, midgut, Malpighian tubes) (Felton and

Duffey, 1992). Antioxidant molecules trap molecules responsible for

oxidative stress (Felton and Summers, 1995). As trehalose is a

carbohydrate, it could be a key molecule in the regulation of

Wolbachia-induced oxidative stress in Ae. aegypti. Indeed,

trehalose can scavenge free radicals, thus acting as an antioxidant,

at least in insect hemolymph (Felton and Summers, 1995). Thus,

oxidative stress can be attenuated by regulating trehalose

metabolism (Peng et al., 2024; Thorat et al., 2016). Similarly,

trehalose intake reduces the amount of oxidizing molecules,

giving it at least an antioxidant effect (Peng et al., 2024). The

increase in trehalose seems to be involved in regulating redox

balance (Thorat et al., 2016). Furthermore, trehalose is also

involved in redox balance in many other organisms (antioxidant

molecule), as in yeast, certain bacteria, mammals and plants

(Benaroudj et al., 2001; Luo et al., 2008; Reyes-DelaTorre et al.,
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2012; Zhang et al., 2023), trehalose accumulation during cellular

stress such as oxidative stress may reduce free radical damage via

mechanisms that remain unclear (Benaroudj et al., 2001; Reyes-

DelaTorre et al., 2012). We therefore suggest a similar accumulation

mechanism in Ae. aegypti, participating in the regulation of

oxidative stress, as Wolbachia does (Pan et al., 2012).
5 Trehalose in Ae. aegypti -
Wolbachia interactions

Interactions between Wolbachia and Ae. aegypti can take

various forms and lead to different effects: metabolic (Lindsey

et al., 2018; Ponton et al., 2015; Reyes et al., 2021), immune

(Caragata et al., 2017; McGraw, 2004; Souza-Neto et al., 2009; Ye

et al., 2013) or others (Lindsey et al., 2018). All together they impact

DENV replication, leading to a pathogen-blocking effect (Reyes

et al., 2021; Terradas and McGraw, 2017). Exchanges and

interactions between Wolbachia and its mosquito host take place

via diverse detection and signaling processes (Lindsey, 2020). In

addition, Wolbachia interacts with its host’s RNA (Terradas et al.,

2017); the miRNA (micro) pathway participates in “pathogen-

blocking” effect by wMelPop strain in Ae. aegypti (Hedges et al.,

2008). Inhibition of certain miRNAs leads to a decrease in

Wolbachia density, suggesting that the endosymbiont facilitates

its maintenance in the host by manipulating host gene expression

via miRNAs (Zhang et al., 2013), as piRNAs (Mayoral et al., 2014).

piRNAs are important in cell signaling and host immune responses.

Nevertheless, the nature of all the interactions between Wolbachia

and its host is not fully understood.
5.1 Trehalose as potential glycolipid

Trehalose may play a role in these interactions. This molecule

has been shown to be crucial in interactions between the bean bug

and a Gram-negative symbiont bacterium (Lee et al., 2023). The

same role can be suggested in the relationship between Ae. aegypti

and Wolbachia. Indeed, the trehalose imported by the cell carrying

Wolbachia could directly serve the endosymbiont itself. It is

believed that Wolbachia do not have their own trehaloneogenesis

pathway (Jiménez et al., 2019). However, the Wolbachia wMel

strain possesses a PEP (phosphoenolpyruvate) system for

trehalose transport within the bacterium (Jiménez et al., 2019), as

well as a trehalose 6-phosphate-specific phosphohydrolase,

resulting in trehalose production (Jiménez et al., 2019). A portion

of the trehalose could be used for the synthesis of trehalose-forming

glycolipids, as it is the case in other types of intracellular bacteria

(Asselineau and Asselineau, 1978; Reinink et al., 2019). A

hypothesis here is that these glycolipids could play a role in the

Wolbachia-induced pathogen-blocking effect in Ae. aegypti. Indeed,

these molecules are reported as having immunostimulant properties

(Asselineau and Asselineau, 1978; Vanaporn and Titball, 2020) and

can be brought into contact with the host through as yet unknown
Frontiers in Cellular and Infection Microbiology 05
mechanisms, supporting the immune system priming hypothesis in

pathogen blocking effect.
5.2 Trehalose as an autophagy inducer

Autophagy is a self-degradative process pivotal for re-

equilibrating energy sources at critical times in development and

response to stress (Jo et al., 2021; Li et al., 2022; Tracy and

Baehrecke, 2013). Autophagy is a highly conserved intracellular

mechanism in eukaryotes (Glick et al., 2010; Kuo et al., 2018).

Although the mechanism remains universal, some proteins

involved in this process are different in insects (Brackney, 2017;

Jain et al., 2015; Kuo et al., 2018). Autophagy is an important

process involved in interactions between Wolbachia and Ae.

aegypti. Host autophagy directly affects Wolbachia density

(Deehan et al., 2021), but also Wolbachia infection (Hargitai

et al., 2022). Autophagy could also indirectly allow Wolbachia

colonization in Ae. aegypti, since this mechanism regulates

oxidative stress (Chaitanya et al., 2016; Wu et al., 2009), avoiding

apoptosis. Activation of autophagy can also eliminate pathogens

such as arboviruses (Jo et al., 2021; Mahanta et al., 2023; Wu et al.,

2009), since arboviruses also influence autophagy in infected cells

(Barletta et al., 2016; Echavarria-Consuegra et al., 2019; Heaton and

Randall, 2011). Trehalose has been shown to induce and regulate

autophagy in many organisms, with mechanisms that need to be

determined. This molecule induces autophagy leading to various

effects in human cells: an antiviral effect (Belzile et al., 2016), an

antioxidant effect (Honma et al., 2018; Mizunoe et al., 2018), an

induction of apoptosis in the cell (Darabi et al., 2018) or a renewal

effect of intracellular components (Xu et al., 2019). Trehalose-

inducing autophagy effect is also described in plants (Williams

et al., 2015). It is conceivable that the highly conserved process of

autophagy could also be induced by trehalose in insect cells and

participates in interactions between Wolbachia and Ae. aegypti.
6 Conclusion and discussion

Trehalose is an essential disaccharide for insects. Its role in

maintaining metabolism in the presence of Wolbachia, in stress

recovery, as an antioxidant and potentially as an inducer of

autophagy and priming of the immune system through glycolipid

synthesis, makes it a key molecule to understand the Ae. aegypti -

Wolbachia - arbovirus relationship (Figure 2).

Despite the knowledge recently acquired on the interactions

between Wolbachia and Ae. aegypti, many questions remain

unresolved. Future research avenues are proposed, including

experimental studies to elucidate the precise role of trehalose in

Wolbachia colonization and pathogen blocking effect. The potential

role of trehalose in autophagy induction should be addressed by

experimentally testing if trehalose supplementation leads to

autophagic structure formation. Similarly, the presence of

trehalose forming lipids should be confirmed.
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It has been shown that inactivation of TRET decreases

significantly trehalose concentration in the hemolymph of

Anopheles gambiae, responding differently to various stresses

including infection with Plasmodium falciparum; low levels of

circulating trehalose significantly reduced parasite infection,

suggesting that trehalose plays a role in the sporogonic

development of the parasite (Liu et al., 2013). These results could

inspire further studies on arboviral infections, by carrying out

inactivation or RNAi studies targeting trehaloneogenesis proteins

to find out whether viral replication and vectorial competence of Ae.

aegypti are affected.

Finally, the additional knowledge gained could contribute to a

better understanding of the pathogen blocking effect, enabling the

conception of transgenic mosquito lines devoid of Wolbachia but

having kept the pathogen-blocking effect. In addition, this

knowledge will help in designing new-generation insecticides

targeting trehaloneogenesis proteins, as is currently being done

(Garcıá and Argüelles, 2021; Matassini et al., 2020).
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Garcıá, M., and Argüelles, J. (2021). Trehalase inhibition by validamycin A may be a
promising target to design new fungicides and insecticides. Pest Manage. Sci. 77, 3832–
3835. doi: 10.1002/ps.6382

Gill, A. C., Darby, A. C., and Makepeace, B. L. (2014). Iron necessity: the secret of
wolbachia’s success? PloS Negl. Trop. Dis. 8, e3224. doi: 10.1371/journal.pntd.0003224

Glaser, R. L., and Meola, M. A. (2010). The Native Wolbachia Endosymbionts of
Drosophila melanogaster and Culex quinquefasciatus Increase Host Resistance to West
Nile Virus Infection. PloS One 5, e11977. doi: 10.1371/journal.pone.0011977

Glick, D., Barth, S., and Macleod, K. F. (2010). Autophagy: cellular and molecular
mechanisms. J. Pathol. 221, 3–12. doi: 10.1002/path.2697
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