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carbapenemase-producing
strains in a two-center study
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Wei Xie1 and Chunmei Jing1*

1Department of Clinical Laboratory, Children’s Hospital of Chongqing Medical University, National
Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of
Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and
Immunity, Chongqing, China, 2Department of Clinical Laboratory, Kunming Children’s Hospital,
Kunming, China
Objective: This study assessed epidemiology characteristics, carbapenem-

resistance genes, and drug resistance to ceftazidime-avibactam (CZA) and

aztreonam-avibactam (AZA) in children with carbapenem-resistant Klebsiella

Pneumoniae (CRKP) infections.

Methods: A total of 363 non-repetitive CRKP strains were collected from

children who underwent two tertiary children’s hospital between 1 January

2021 and 30 June 2024 in Chongqing and Kunming in Southwest China.

Carbapenem resistance genes and antimicrobial susceptibility were analyzed.

Basic clinical characteristics of the patients were obtained from medical records.

Results: blaNDM-5, blaNDM-1, and blaKPC-2 were the predominant carbapenemase

genes; their detection rates were 35.8%, 30.3%, and 25.3%, respectively. Patients

in the KPC-2-producing Klebsiella pneumoniae (KPC-KP) (median age, 90 days)

were older than those producing NDM-1 and NDM-5 Klebsiella pneumoniae

(NDM-KP) (median age, 37 days) (P < 0.05). The detection rate of NDM-KP in the

neonatal unit was higher compared with KPC-KP (62.5% vs. 9.8%, P < 0.05), while

the detection rate of NDM-KP in the intensive care unit (ICU) was decreased

compared with KPC-KP (9.6% vs. 40.2%, P < 0.05). NDM-KP had lower resistance

rates to aminoglycosides and fluoroquinolones than KPC-KP; the resistance rate

of aminoglycosides and fluoroquinolones among NDM-KP and KPC-KP in

Chongqing was increased compared with Kunming. The sensitivity rates of

KPC-KP to CZA and NDM-KP to AZA were 100%, and the MIC50 of the CRKP

to CZA and AZA were 2 mg/mL and 0.125mg/mL, respectively.
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Conclusions: The epidemiological characteristics of Chinese children with CRKP

infections, including the resistance genes and the antibiotic resistance of CRKP,

exhibited significant variation between the two regions.KPC-KP strains had

higher antimicrobial resistance in patients and thus should be given more

attention in clinics and infection control.
KEYWORDS
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1 Introduction

Klebsiella pneumoniae is the second leading pathogen responsible

for clinical infectious diseases in China (Hu et al., 2024). It can cause

infections in the respiratory system, urinary system, and various

tissues, with a high morbidity and mortality rate (Hussein et al., 2013;

Kontopoulou et al., 2019; Martin et al., 2018).Notably, the mortality

rate among patients with K.pneumoniae-caused pneumonia is

approximately 50% (Martin et al., 2018). The resistance rate of

Klebsiella pneumoniae to meropenem has steadily increased from

2.9% in 2005 to 30.0% in 2023 (http://www.chinets.com/Data/

GermYear) (Hu et al., 2024).Carbapenem-resistant Klebsiella

pneumoniae (CRKP) has become widespread globally, leading to

life-threatening infections. In terms of disability-adjusted life years

(DALYs) per 100,000 population, the median for CRKP infections in

the European Union is 11.5 (Karampatakis et al., 2023). An

Australian study reported a pooled mortality rate of 37.2% due to

CRKP infections (Agyeman et al., 2020). In Greece, the rate of CRKP

isolates reached 66.3% in 2020, the highest among all countries

(Cassini et al., 2019; European Centre for Disease Prevention and

Control, 2019). CRKP is strongly associated with high mortality rates,

particularly among critically ill and immunocompromised patients,

especially young children, posing a significant threat to public

health.CRKP is strongly associated with high rates of mortality,

especially in critically ill and immunocompromised young patients,

and poses immense threats to human health (Xu et al., 2017).In 2017,

the World Health Organization (WHO) published a list of critical

priority pathogens, including CRKP, for which there is an urgent

need to develop new antibiotics (Nordmann and Poirel, 2019).

Despite annual epidemiological surveillance reports on CRKP

(Veeraraghavan and Walia, 2019; Yin et al., 2020), most previous

studies focus on adult populations, while there is a lack of relevant

literature focusing on children. Several multi-center studies

conducted in different countries found differences in bacterial

clones between pediatric and adult patients within the same centers

(Castagnola et al., 2019). In China, the prevalence rate of CRKP is

approximately 13.4% to 23% among children (Fu et al., 2021).

The production of carbapenemases, including Ambler A-class

b-lactamase blaKPC, encoding metallo-b-lactamase blaNDM(B-class),

and D-class b-lactamase blaOXA-48 (Lutgring, 2019), which are key

mechanisms for carbapenem resistance in Klebsiella pneumoniae.In
02
addition, studies have found that CRKP exhibits different molecular

characteristics in children of different ages (Yin et al., 2020). For

example, class A carbapenemase blaKPC-2 is mainly found in non-

neonatal and adult patients, while class B carbapenemase blaNDM-1

is more prevalent in neonates (Yin et al., 2020). However, data on

the clinical outcomes in children infected with CRKP are limited.

CRKP is usually resistant to the most commonly used

antibiotics, and there are limited treatment options available.

Since 2014, the development of new antibiotics brought new

opportunities for treatments of CRKP. The novel approved

antibiotics against CRKP infections include imipenem/cilastatin-

relebactam, CZA, meropenem-vaborbactam, plazomicin, and

eravacycline (Papp-Wallace, 2019). CZA includes a combination

of a beta-lactam antibiotic and a beta-lactamase inhibitor that

effectively inhibits the activity of class A, C, and some D class

carbapenemases.Compared with other antibiotics, CZA can

significantly improve the clinical survival rate (Theuretzbacher

et al., 2021). In 2022, CZA was approved by the National Medical

Products Administration for treating complicated intra-abdominal

infections (cIAIs) in children older than 3 months. However, none

of these b-lactamase-inhibitor combinations showed activity

against carbapenemase, especially for metallo-b-lactamase (MBL)

(Biagi et al., 2019). Still, the recent novel antibiotic aztreonam-

avibactam (AZA) represented remarkable progress in treating

MBL- or other b-lactamases-producing CRKP (Zou et al., 2020).

There have been very few studies on the activity of CRKP against

CAZandAZA in children.To the best of our knowledge, this is thefirst

multicenter study that analyzed epidemiology characteristics ofCRKP,

genes related to CRKP, and drug resistance to ceftazidime-avibactam

(CZA) and aztreonam-avibactam (AZA) in children. The present

study also compared differences between genetic types and

geographic regions. These data provide strong evidence for the

clinical treatment, prevention, and control of CRKP in children.
2 Materials and methods

2.1 Bacterial strains

A total of 363 nonduplicate clinical CRKP isolates collected

from patients who underwent two tertiary children’s hospital
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between 1 January 2021 and 30 June 2024 in Chongqing and

Kunming in Southwest China were analyzed. Isolates

identification and antimicrobial susceptibility testing (AST) were

performed using the automated BD Phoenix™ M50 Microbiology

System. P. aeruginosa ATCC27853 and E. coli ATCC 25922 were

used as quality controls.

CRKP was defined as a resistant strain to any carbapenem

antimicrobials (i.e., minimum inhibitory concentrations (MICs) of

≥ 2 mg/mL against ertapenem or ≥ 4 mg/mL against meropenem or

imipenem. The results were interpreted by the breakpoint criteria

recommended by the Clinical and Laboratory Standards Institute

(CLSI) M100-S34 guidelines from 2024 (Clinical and Laboratory

Standards Institute (CLSI), 2024).
2.2 Screening of carbapenemase genes

PCR was performed to screen the carbapenemase encoding

genes, including blaKPC, blaNDM, blaIMP, blaVIM, and blaOXA-48-like.

Positive PCR products were sequenced by Sanger sequencing

(Sangon Biotech), and the sequences were blasted in GenBank

(https://blast.ncbi.nlm.nih.gov/Blast.cgi). The primers used for

detecting these carbapenemase genes have been reported

previously (Zhou et al., 2013; Wang et al., 2018).
2.3 In vitro antimicrobial
susceptibility testing

The MICs of CRKP strains were determined using the standard

broth microdilution method and were interpreted according to

CLSI criteria (Clinical and Laboratory Standards Institute (CLSI),

2024). All CRKP strains were tested for MICs of CZA; only the

NDM-KP strain detected MICs of AZA. For CZA and AZA testing,

AVI was tested at a fixed concentration of 4 mg/L, while ceftazidime

and aztreonam were added at different concentrations, respectively.

The testing MICs range of CZA was 0.016/4–256/4 mg/mL. The

testing MICs range of AZA was 0.032/4–64/4 mg/mL. MICs

breakpoints for CZA were interpreted as CLSI guidelines (2024)
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(Clinical and Laboratory Standards Institute (CLSI), 2024). The

MICs breakpoints for AZA were interpreted using the 2024 CLSI

(Clinical and Laboratory Standards Institute (CLSI), 2024)

breakpoints (interpretation via 2024 EUCAST criteria (EUCAST,

2024) is provided in Supplementary Table S2). P. aeruginosa

ATCC27853 and E. coli ATCC 25922 were used as quality control

strains. MICs were determined in triplicate on two separate days.
2.4 Definitions

Neonatal patients were defined as those no older than 28 days,

while pediatric patients were defined as those between 29 days and

14 years old (Nichols et al., 2015).
2.5 Statistical analysis

Raw data were processed using Whonet 5.6 software and then

calculated using GraphPad Prism 5. The age difference was further

determined using the Mann-Whitney U test, and categorical data were

evaluated using the Chi-square test or Fisher’s exact test. Statistical

significance was confirmed if the two-tailed P-value was < 0.05.
3 Results

3.1 Carbapenem resistance gene of
CRKP strains

Of the 363 CRKP isolates, 363 (100%) strains were successfully

identified with the carbapenemase genes; blaNDM-5 (35.8%, 130/363)

was a predominant gene, followed by blaNDM-1 (30.3%, 110/363),

blaKPC-2 (25.3%, 92/363), and blaVIM (8.5%, 31/363). The detection

rates of blaKPC-2 and blaNDM (blaNDM-1 and blaNDM-5) were 18.0%,

54.1%, and 75.1%, 31.1% in Chongqing and Kunming, respectively.

Compared to Kunming, the detection rate of blaNDM-5 and blaNDM-1

increased while blaKPC-2 and blaVIM decreased in Chongqing (all P

< 0.05) (Figure 1A). In addition, blaNDM-5 was the most prevalent in
FIGURE 1

Resistance genes of CRKP isolates. (A) Compare to carbapenemase genes in Chongqing and Kunming. (B) Predominant carbapenemase genes in
Chongqing and Kunming.**indicate statistical significance with P < 0.01, ***indicate statistical significance with P < 0.001.
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Chongqing, while blaKPC-2 was the most prevalent in Kunming.

Also, the detection rates of four carbapenem resistance genes were

significantly different in Chongqing and Kunming (all P <

0.05) (Figure 1B).
3.2 Clinical characteristics and
epidemiology of CRKP strains

A total of 363 non-repetitive CRKP strains were collected from

pediatric inpatients. The clinical characteristics of these isolates

are summarized in Table 1. The female-to-male ratio was 0.7, and

the proportion of males was 63.0% and 61.7% in KPC-KP and

NDM-KP, respectively. Patients who were colonized or infected

with CRKP had a median age of 48 days (interquartile range, 1–

6120 days). Of the 363 CRKP isolates, 57.6% (n = 209) were

collected from sputum, 14.6% (n = 53) from blood samples, and

5.5%% (n = 20) from urine samples. Patients in the KPC-KP

(median age, 90 days) were older than the NDM-KP (median age,

37 days) (P < 0.05) (Table 1). Most CRKP strains were isolated

from the neonatal unit (41.9%) and ICU (22.0%); most NDM-KP

were collected from the neonatal unit (62.5%, 150/240), and

isolates carrying KPC-2 were mainly detected in the ICU

(40.2%, 37/92). The detection rate of NDM-KP in the neonatal

unit was increased compared with KPC-KP (62.5% vs. 9.8%, P <

0.05). However, the detection rate of NDM-KP in the ICU was

decreased compared with KPC-KP (9.6% vs. 40.2%, P<0.05). In

addition, the detection rates of blaNDM-1 and bla NDM-5 were 57.9%

(92/159) and 36.5% (58/159) in the neonatal unit, respectively.
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NDM-KP and KPC-KP detection rates were the highest in 2022

and 2024, respectively (Table 1).
3.3 Antimicrobial susceptibility testing

As shown in Table 2, all CRKP isolates were defined as MDR for

resistance to more than three antibiotic classes. Also, all strains

showed high resistance to cephalosporin antibiotics (100%). The

resistance rates to aztreonam (88.3%) were higher than 70.0%. The

resistance rates to amikacin, gentamicin, and trimethoprim-

sulfamethoxazole were 29.4%, 35.4%, and 34.1%, respectively. The

percentage of resistance to ciprofloxacin and levofloxacin was 39.8%

and 34.0%, respectively. Of note, the KPC-KP group showed a

different antibiotic resistance spectrum to the non-b-lactams than

the NDM-KP group. The MIC50 of gentamicin, ciprofloxacin, and

levofloxacin in the KPC-KP group (16, 4, 8, respectively) was higher

than in the NDM-KP group (2, 0.25, 0.5, respectively). Compared

with the KPC-KP group, the NDM-KP group had lower resistance

rates to amikacin (2.1% vs. 89.8%), gentamicin (2.1% vs. 96.2%),

ciprofloxacin (14.2% vs. 96.3%), levofloxacin (5.9% vs. 96.3%) and

aztreonam (85.4% vs. 100%) (all P < 0.05, Table 2).

As shown in Table 3, the KPC-KP strains showed differences in

antibiotic resistance rates between Chongqing and Kunming; the

resistance rate of ertapenem in Chongqing was lower than that in

Kunming, while the resistance rates to amikacin, gentamicin,

ciprofloxacin, and levofloxacin in Chongqing were higher than those

in Kunming. The MIC50 of sulfamethoxazole-trimethoprim in

Chongqing (8) was higher than in Kunming (1), Chongqing also
TABLE 1 Clinical characteristics of the CRKP strains.

Total (n = 363) KPC-KP (n = 92) NDM-KP (n = 240) P-value

Male sex 216 (59.5%) 58 (63.0%) 148 (61.7%) 0.817

Age in days (median) 48 90 37 <0.0001

Specimen

Sputum 209 (57.6%) 52 (56.5%) 146 (60.8%) 0.474

Blood 53 (14.6%) 13 (14.1%) 38 (15.8%) 0.700

Urine 20 (5.5%) 9 (9.8%) 13 (5.4%) 0.152

Others 81 (22.3) 18 (19.6%) 43 (17.9%) 0.729

Isolation wards

Neonatal unit 152 (41.9%) 9 (9.8%) 150 (62.5%) <0.0001

Intensive care unit 80 (22.0%) 37 (40.2%) 23 (9.6%) <0.0001

Others 131 (36.1%) 46 (50.0%) 67 (27.9%) 0.0001

Years

2021 83 (25.0%) 9 (9.8%) 74 (30.8%) <0.0001

2022 102 (30.7%) 8 (8.7%) 94 (39.2%) 0.0001

2023 91 (27.4%) 29 (31.5%) 62 (25.8%) 0.2983

2024 56 (16.9%) 46 (50.0) 10 (4.2%) <0.0001
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TABLE 2 Antimicrobial activities tests of CRKP strains.

Antibiotics
Total (n = 363) KPC-KP (n = 92) NDM-KP (n = 240) P-value (KPC-KP

R%/NDM-KP R%)MIC50 MIC90 R% MIC50 MIC90 R% MIC50 MIC90 R%

CZO 32 32 100 32 32 100 32 32 100 –

CXM 32 64 100 64 64 100 32 64 100 –

CTX 64 64 100 64 64 100 64 64 100 –

CRO 64 64 100 64 64 100 64 64 100 –

CAZ 32 64 100 64 64 100 32 64 100 –

FEP 32 32 100 32 32 100 32 32 100 –

AMC 32 64 100 32 64 100 32 64 100 –

SAM 32 32 100 32 32 100 32 32 100 –

CSL 64 64 100 64 64 100 64 64 100 –

TZP 128 128 99.4 128 128 100 128 128 99.2 0.3798

ETP 4 8 97 8 8 98 4 8 96.1 0.4727

MEM 16 16 100 16 16 100 16 16 100 –

IPM 16 16 100 16 16 100 16 16 100 –

AMK 8 64 29.4 64 64 89.8 8 8 2.1 <0.0001

GEN 2 16 35.4 16 16 96.2 2 16 2.1 <0.0001

CIP 0.5 8 39.8 4 8 96.3 0.25 1 14.2 <0.0001

LVX 0.5 16 34.0 8 16 96.3 0.5 1 5.9 <0.0001

SXT 1 8 34.1 1 8 41.7 1 16 30.7 0.0709

ATM 32 64 88.3 64 64 100 32 64 85.4 0.0001
F
rontiers in Cellul
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CZO, cefazolin; CXM, cefuroxime; CTX, cefotaxime; CRO, ceftriaxone; CAZ, ceftazidime; FEP, cefepime; AMC, amoxicillin-clavulanate; SAM, ampicillin-sulbactam; CSL, ceftazidime-
sulbactam; TZP, piperacillin-tazobactam; ETP, ertapenem; MEM, meropenem; IPM, imipenem; AMK, amikacin; GEN, gentamicin; CIP, ciprofloxacin; LVZ, levofloxacin; SXT,
sulfamethoxazole-trimethoprim; ATM, aztreonam; CZA, ceftazidime- avibactam; AZA, aztreonam-avibactam.
TABLE 3 Antimicrobial activities tests of KPC-KP strains.

Antibiotics
Chongqing (n = 52) Kunming (n = 40) P-value (Chongqing R

%/Kunming R%)MIC50 MIC90 R% MIC50 MIC90 R%

CZO 32 32 100 32 32 100 –

CXM 32 32 100 64 64 100 –

CTX 64 64 100 64 64 100 –

CRO 64 64 100 64 64 100 –

CAZ 64 64 100 32 64 100 –

FEP 32 32 100 32 32 100 –

AMC 64 64 100 32 32 100 –

SAM 32 32 100 32 32 100 –

CSL 64 64 100 64 64 100 –

TZP 128 128 100 128 128 100 –

ETP 4 4 95.3 8 8 100 0.2098

MEM 16 16 100 16 16 100 –

(Continued)
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showed greater resistance to sulfamethoxazole-trimethoprim than

Kunming (P < 0.05, Table 3).

As shown in Table 4, the NDM-KP strains showed differences in

antibiotic resistance rates between Chongqing and Kunming.Compared

with Kunming, the lower resistance rates to piperacillin-tazobactam,

ertapenem and aztreonam were found in Chongqing, while the
Frontiers in Cellular and Infection Microbiology 06
resistance rates to amikacin, gentamicin, ciprofloxacin, and

levofloxacin in Kunming were lower than those in Chongqing. The

MIC50 of sulfamethoxazole-trimethoprim in Chongqing (1) was lower

than in Kunming (16), while the resistance rates to sulfamethoxazole-

trimethoprim in Chongqing was lower than those in Kunming

(P<0.05, Table 4).
TABLE 3 Continued

Antibiotics
Chongqing (n = 52) Kunming (n = 40) P-value (Chongqing R

%/Kunming R%)MIC50 MIC90 R% MIC50 MIC90 R%

IPM 16 16 100 16 16 100 –

AMK 64 64 96.2 64 64 83.9 0.0598

GEN 16 16 96.2 16 16 83.9 0.0598

CIP 8 8 98.1 4 4 94.6 0.4101

LVX 16 16 98.1 8 8 94.6 0.4101

SXT 8 8 71.2 1 16 14.3 <0.0001

ATM 64 64 100 64 64 100 –
CZO, cefazolin; CXM, cefuroxime; CTX, cefotaxime; CRO, ceftriaxone; CAZ, ceftazidime; FEP, cefepime; AMC, amoxicillin-clavulanate; SAM, ampicillin-sulbactam; CSL, ceftazidime-
sulbactam; TZP, piperacillin-tazobactam; ETP, ertapenem; MEM, meropenem; IPM, imipenem; AMK, amikacin; GEN, gentamicin; CIP, ciprofloxacin; LVZ, levofloxacin; SXT,
sulfamethoxazole-trimethoprim; ATM, aztreonam; CZA, ceftazidime- avibactam; AZA, aztreonam-avibactam.
TABLE 4 Antimicrobial activities tests of NDM-KP strains.

Antibiotics
Chongqing (n = 217) Kunming (n = 23)

P-value (Chongqing R%/Kunming R%)
MIC50 MIC90 R% MIC50 MIC90 R%

CZO 32 32 100 64 64 100 –

CXM 32 32 100 64 64 100 –

CTX 64 64 100 64 64 100 –

CRO 64 64 100 64 64 100 –

CAZ 32 64 100 64 64 100 –

FEP 32 32 100 32 32 100 –

AMC 32 64 100 32 32 100 –

SAM 32 32 100 32 32 100 –

CSL 64 64 100 64 64 100 –

TZP 128 128 99.1 128 128 100 0.6438

ETP 4 8 95.2 8 8 100 0.2930

MEM 16 16 100 4 4 100 –

IPM 16 16 100 16 16 100 –

AMK 8 8 2.3 2 2 0 0.4619

GEN 2 16 21.2 1 1 0 0.0141

CIP 0.25 1 14.7 0.125 0.5 9.1 0.4288

LVX 0.5 1 6.0 1 1 4.5 0.7492

SXT 1 8 25.9 16 16 77.3 <0.0001

ATM 32 64 85.3 64 64 100 0.0479
CZO, cefazolin; CXM, cefuroxime; CTX, cefotaxime; CRO, ceftriaxone; CAZ, ceftazidime; FEP, cefepime; AMC, amoxicillin-clavulanate; SAM, ampicillin-sulbactam; CSL, ceftazidime-
sulbactam; TZP, piperacillin-tazobactam; ETP, ertapenem; MEM, meropenem; IPM, imipenem; AMK, amikacin; GEN, gentamicin; CIP, ciprofloxacin; LVZ, levofloxacin; SXT,
sulfamethoxazole-trimethoprim; ATM, aztreonam; CZA, ceftazidime- avibactam; AZA, aztreonam-avibactam.
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The resistance rates to CZA (74.7%) were higher than 70.0%.

Moreover, a much lower level of resistance to AZA (0%) was

observed in this study. Additionally, The MIC50 of CZA in the

KPC-KP group (2) was lower than that in the NDM-KP group

(128). In addition, NDM-KP strains had greater resistance to CZA

than the KPC-KP group (P<0.05). MICs for CZA isolates ranged

from 0.5 to 4 µg/mL; MIC50 and MIC90 of KPC-KP strains were

2 and 4 µg/mL, and MICs for AZA isolates ranged from ≤ 0.032 to

2 µg/mL. MIC50 and MIC90 of NDM-KP strains were 0.125 and

0.25 µg/mL, respectively (Tables 5, 6, Figure 2).
Discussion

The epidemiological study of CRKP infection is vital for

developing clinical treatment strategies and evaluating the

effectiveness of different treatment approaches. Regional

differences in the distribution of bacteria exist due to variations in

climate, economy, and medical conditions. Regional variations in
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CRKP prevalence have been reported (Wyres and Holt, 2022).

Children, as a special population, have underdeveloped

organs, relatively lower immune function, and are therefore

more susceptible to bacterial infections. Furthermore, the

composition and resistance profiles of pathogenic bacteria

differ between children and adults. Understanding the resistance

patterns and regional variations of antibiotics is thus of great

importance.Currently, data on the clinical and epidemiology of

CRKP infection with different resistant gene types are limited in

children. This is the first multicenter study on the epidemiological

characteristics of CRKP in children, its associated genes, and

resistance to ceftazidime-avibactam (CZA) and aztreonam-

avibactam (AZA), comparing differences across genetic types and

geographic regions. Some studies (Castagnola et al., 2019) detected

differences in bacterial clones among pediatric and adult patients

within the same centers. The prevalent carbapenem-resistant gene

in Chinese adults was blaKPC,while the prevalent carbapenem-

resistant genes widely vary in pediatric patients (Wang et al.,

2018; Li et al., 2022). Domestic and international studies have
TABLE 5 Antimicrobial activities tests of CZA.

CRKP strains KPC-KP strains NDM-KP strains

Total
(n = 363)

KPC-2
(n = 92)

NDM*
(n = 240)

Chongqing
(n = 52)

Kunming
(n = 40)

Chongqing
(n = 217)

Kunming
(n = 23)

MIC50 128 2 128 2 2 128 128

MIC90 128 4 128 2 4 128 128

R% 74.7 0 100 0 0 100 100
TABLE 6 Antimicrobial activities tests of AZA.

CRKP strains NDM-KP strains

Total (n = 363) KPC-2 (n = 92) NDM* (n = 240) Chongqing (n = 217) Kunming (n = 23)

MIC50 0.125 – 0.125 0.125 0.125

MIC90 0.25 – 0.25 0.25 0.25

R% 0 – 0 0 0
FIGURE 2

Distribution of minimum inhibitory concentrations (MIC) for CZA and AZA of CRKP. (A) Minimum inhibitory concentrations of CZA (µg/ml). (B)
Minimum inhibitory concentrations of AZA (µg/ml). CZA, ceftazidime-avibactam; AZA, aztreonam-avibactam.
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shown that blaNDM is the most common carbapenemase gene in the

pediatric population (Zhou et al., 2022; Ilham et al., 2023). Early

studies (Wang et al., 2018) reported that blaNDM-5 is rarely found in

Klebsiella pneumoniae in China. In the present study, the most

frequently detected carbapenemase was blaNDM-5 (35.8%), and the

primary carbapenem resistance gene was blaNDM-5 and blaKPC-2 in

the Chongqing and Kunming, respectively, which may be due to

regional variations of CRKP (Wyres and Holt, 2022). We inferred

that the frequent switch of predominant carbapenemase genotype

might result from the introduction of those strains from different

sources (like regions, age, or specimen) with different prevalent

carbapenemase genes or transformation of some mobile elements

carrying carbapenemase genes that underwent transfers between

species (Marques et al., 2019; Zhang et al., 2016; Zhang et al., 2018).

Although the underlying mechanism remains unclear, this further

emphasizes the importance of active resistance monitoring for

CRKP in pediatric patients.

Differences were also observed in the distribution of NDM-KP

and KPC-KP among different departments and patients of

different ages. A total of 363 CRKPs were concentrated in the

neonatal unit and ICU (63.9%). The average age of CRKP

detection was 48 days, which is consistent with previous

literature reports (Flannery et al., 2022; Yin et al., 2021). Our

results showed that patients in the KPC-KP were older than those

NDM-KP (90 days vs. 37 days, P < 0.05). In this study, the

detection rate of blaNDM-1 was 57.9% in the neonatal unit, which is

consistent with the molecular epidemiological studies of CRKP

(blaNDM-1 is the main resistance mechanism of CRKP strains of

neonatal) (Qin et al., 2014; Yin et al., 2020; Yin et al., 2021).

CRKP-producing NDM was mainly distributed in younger

neonates while CRKP-producing KPC-2 was mainly found in

older non-neonates. Noteworthy, we observed a trend of the

emergence of carbapenem resistance gene with CRKP from

carrying NDM to KPC-2 in Chinese children. BlaKPC-2 is the

most common A-class b-lactamase, with stronger transmission

ability and higher toxicity than other carbapenemase genes

(Deshpande et al., 2006; Nordmann et al., 2009). It is more

commonly found in older children and adult patients. In fact,

there have been many hospital outbreak reports at home and

abroad (Gaspar et al., 2022; Huang et al., 2022; Maltezou et

al., 2009).

Our results showed that CRKP was a multi-drug-resistant

bacterium, with resistance rates of > 95% to first, second, and

third-generation cephalosporins, enzyme inhibitors, and

carbapenems, indicating a dire situation of drug resistance, which

is consistent with previous studies (Cienfuegos-Gallet et al., 2022;

Lei et al., 2022). However, the sensitivity to aminoglycosides and

fluoroquinolones was higher, which may be due to the limited use of

these antibiotics in pediatric patients due to renal, ear, and cartilage

toxicity. When facing the problem of multi-drug resistance can still

be treated with those antibiotics. Currently, it is believed that the

treatment of CRKP infections is better with combined drug therapy

than when using single drugs. Although there is a lack of research

on the treatment of children, the treatment for adult patients can be

used as a helpful reference; however, adjustments should be made in

terms of drug dosage and variety. Our findings also suggested that
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alternating the use of antibiotics and strengthening the rational use

of antibiotics can partially restore the sensitivity of antibiotics. We

observed different resistance patterns in KPC-KP and NDM-KP,

which is similar to the results of other pediatric studies (Liao et al.,

2020). Compared to NDM-KP, KPC-KP showed more severe

resistance to antibiotics such as amikacin, gentamicin,

ciprofloxacin, levofloxacin, and sulfamethoxazole-trimethoprim,

which should be taken seriously by clinicians and infection

control professionals.

The antibiotic susceptibility results revealed significant

differences in KPC-KP and NDM-KP across different regions. In

Kunming, the resistance rates of CRKP to amikacin, gentamicin,

ciprofloxacin, and levofloxacin were lower than those in

Chongqing. This finding suggests that antimicrobial resistance

exhibits regional variation, which is consistent with other studies

reporting significant regional variations in bacterial characteristics,

clinical outcomes, and antimicrobial resistance in global CRKP

epidemics (Wang et al., 2022).Interestingly, for the KPC-KP, the

resistance rate to sulfamethoxazole-trimethoprim was significantly

higher in the Chongqing than in the Kunming, while for the NDM-

KP, it was significantly lower. Sulfamethoxazole-trimethoprim has a

high sensitivity, probably due to potential adverse reactions such as

allergic reactions and liver and kidney function damage in children,

which may limit its use. When facing the problem of multi-drug

resistance and economic pressure, tuberculosis can still be treated

with sulfamethoxazole-trimethoprim in combination with

other drugs.

CRKP can be caused by different mechanisms, among which the

production of carbapenemases is the most common. The Ambler

class A (e.g., KPC), Ambler class B (e.g., NDM), and Ambler class D

(e.g., OXA-48-like) carbapenemases are the three major classes of

carbapenemases. Class A carbapenemases have serine-based

hydrolytic activity (Bush, 2018; Lee et al., 2016).These enzymes

are primarily KPC carbapenemases, whose activity can be inhibited

by avibactam. The enzyme-producing strains are typically sensitive

to CZA. Metallo-b-lactamase (MBL) enzymes (which encompass

the Ambler class B enzymes) require the presence of metal for their

activity (Bush, 2018; Lee et al., 2016).These enzymes are primarily

NDM carbapenemases, and their activity cannot be inhibited by

avibactam. Few of the enzyme-producing strains are sensitive to

aztreonam. Therefore, distinguishing between KPC- and NDM-

producing strains is crucial for the development of effective

therapeutic strategies. In recent years, the availability of several

novel b-lactam/b-lactamase inhibitor combinations has given hope

for the clinical treatment of CRKP. In this study, drug susceptibility

tests were performed for CZA and AZA. CZA is an intravenously

administered combination of the third-generation cephalosporin

Ceftazidime and the novel, non-b-lactam b lactamase inhibitor

avibactam. It exhibits excellent in vitro activity against various

significant gram-negative pathogens, including numerous

enterobacteriaceae producing OXA-48, AmpC, and extended-

spectrum b-lactamases. However, some reports have documented

CZA resistance to KPC-KP in China (Zhou et al., 2024; Zou et al.,

2019). The present study found the resistance rates of CRKP to CZA

of 74.7%, which is higher than the 36.0% reported by Dan Li (Li

et al., 2023). The difference in susceptibility rates of CRKP to CZA
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may be attributed to the different types of carbapenemase produced.

This study found that all KPC-KP strains were sensitive to CZA due

to the ability of avibactam to inhibit KPC enzyme activity. We

tested CZA resistance in MBL-producing strains to verify its

efficacy in treating pediatric CRKP infections. The results showed

that all MBL-producing strains (NDM-KP) were resistant to CZA,

as CZA is ineffective against MBL-producing strains due to the

inability of avibactam to inhibit the activity of metallo-b-lactamase

(MBL) enzymes. The MIC50 of CZA in KPC-KP strains (2) was

higher than the value of 1 reported in adult patients by Chunhong

Zou (Zou et al., 2020). Therefore, it is crucial to consider age and

regional variations to establish baseline data for future treatments,

and to strengthen monitoring of CZA drug resistance.As AZA may

simultaneously target different types of carbapenemases, it could

theoretically be used to treat CRKP infections that produce variable

carbapenemases. This study showed that all the studied NDM-KP

were 100% sensitive to AZA (MIC50 = 0.125 mg/L, MIC90 = 0.25

mg/L) in vitro, which is lower than the MIC50 = 1 mg/L and MIC90

= 4 mg/L reported by Dan Li (Li et al., 2023).Aztreonam is the only

clinically used b-lactam antibiotic stable to MBL hydrolysis. As

Enterobacteriaceae carrying MBLs may frequently harbor

additional aztreonam-inactivating b-lactamases, the activity of

aztreonam against these isolates is often compromised. However,

the addition of avibactam to aztreonam makes this combination

effective against MBL producers (Das et al., 2019; Li et al., 2015).

Therefore, AZA has been proposed as a treatment for infections

caused by MBL producers. A study reported that blaNDM is the

most common carbapenemase gene in the pediatric population

(Ilham et al., 2023; Zou et al., 2022). Consequently, the use of AZA

for treating CRKP infections in the pediatric population is crucial.

This study has two limitations. Firstly, ceftazidime-avibactam,

meropenem-vaborbactam, and imipenem-relebactam are three

novel antimicrobial agents used for the treatment of KPC-

producing Klebsiella pneumoniae. Cefiderocol is a novel

siderophore cephalosporin targeting Gram-negative bacteria,

including strains with NDM-producing Klebsiella pneumoniae.

However, meropenem-vaborbactam, imipenem-relebactam, and

cefiderocol are not available in China, and thus, we did not test

them. Secondly, phylogenetic analysis was not performed on all

carbapenem-resistant Klebsiella pneumoniae strains.

In conclusion, we analyzed the clinical characteristics, carbapenem

resistance gene, and resistance to CZA and AZA of 363 CRKP in

Chinese children, as well as the differences between different regions

and carbapenem gene, identifying blaNDM-5, blaNDM-1, and blaKPC-2 as

the primary resistance genes. There were differences in carbapenem

resistance gene and antibiotic resistance rates among different regions.

KPC-KP and NDM-KP showed different clinical and molecular

epidemiological characteristics, with KPC-KP showing more severe

resistance, thus posing a more serious challenge to hospital infection

control.AZA is preferentially used in regions with a high prevalence of

NDM-KP, particularly in the pediatric population. Therefore, it is

essential to tailor treatments based on resistance profiles and to

strengthen the monitoring of drug resistance in CRKP infections in

children, enabling clinicians to effectively treat CRKP infections and

curb the global spread of drug-resistant bacteria.
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