Skip to main content

ORIGINAL RESEARCH article

Front. Cell. Infect. Microbiol.
Sec. Antibiotic Resistance and New Antimicrobial drugs
Volume 15 - 2025 | doi: 10.3389/fcimb.2025.1545856
This article is part of the Research Topic Mechanisms Driving Drug Resistance in Tuberculosis and Malaria: Genetic, Environmental, and Evolutionary Insights View all 5 articles

The DosR regulon of Mycobacterium avium and adaptation to hypoxia

Provisionally accepted
  • 1 Colorado State University, Fort Collins, United States
  • 2 Norwegian University of Science and Technology, Trondheim, Norway

The final, formatted version of the article will be published soon.

    Mycobacterium tuberculosis and M. abscessus, M. avium is likely exposed to a variety of stressors during infection, including hypoxic conditions inside activated macrophages and in the avascular necrotic regions of granulomas. How M. avium survives hypoxic stress to establish a chronic infection is currently not well understood. Using RNA-sequencing, we here show that M. avium grown under progressive microaerophilic conditions activates more than 4-fold a subset of 16 genes, the expression of 13 of which is dependent on the two-component system regulator DosRS.A subset of M. avium DosR regulon genes was confirmed to also be activated upon exposure to nitric oxide. Although a second sensor kinase besides DosS has been proposed to function with the transcriptional regulator DosR in M. avium, we show that this other kinase cannot compensate for a deficiency in DosS. Loss of dosRS expression in M. avium led to a significant reduction in viability under hypoxia that was more marked at acidic than at neutral pH. Unlike the situation in M. abscessus, however, loss of DosRS did not significantly impact the ability of M. avium to establish a drug tolerant state in vitro or form biofilms under host relevant conditions. Collectively, these results are suggestive of a lesser impact of DosRS on the ability of M. avium to develop antibiotic tolerance compared to other nontuberculous mycobacteria. The M. avium dosRS mutant further showed no signs of virulence attenuation in murine macrophages and in chronically infected immunocompetent BALB/c mice.

    Keywords: Mycobacterium avium, Nontuberculous Mycobacteria, DosRS, Biofilm, hypoxia, Virulence

    Received: 16 Dec 2024; Accepted: 27 Jan 2025.

    Copyright: © 2025 Belardinelli, Avanzi, Martin, Lam, Dragset, Wheat, Podell, Gonzalez Juarrero and Jackson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Mary Jackson, Colorado State University, Fort Collins, United States

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.