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Introduction: Crohn’s disease (CD) results from alterations in the gut microbiota

and the immune system. However, the exact metabolic dysfunctions of the gut

microbiota during CD are still unclear. Here, we investigated metagenomic

functions using PICRUSt2 during the course of CD to better understand

microbiota-related disease mechanisms and provide new insights for novel

therapeutic strategies.

Methods: We performed 16S rRNA-based microbial profiling of 567 faecal

samples collected from a cohort of 383 CD patients, including 291 remissions

(CR), 177 mild-moderate (CM) and 99 severe (CS) disease states. Gene and

pathway composition was assessed using PICRUSt2 analyses of 16S data.

Results: As expected, changes in alpha and beta diversity, in interaction networks

and increases in Proteobacteria abundance were associated with disease

severity. However, microbial function was more consistently disrupted than

composition from CR, to CM and then to CS. Major shifts in oxidative stress

pathways and reduced carbohydrate and amino acid metabolism in favour of

nutrient transport were identified in CS compared to CR. Virulence factors

involved in host invasion, host evasion and inflammation were also increased

in CS.

Conclusions: This functional metagenomic information provides new insights

into community-wide microbial processes and pathways associated with CD

pathogenesis. This study paves the way for new advanced strategies to rebalance

gut microbiota and/or eliminate oxidative stress, and biofilm to downregulate

gut inflammation.
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Introduction

Crohn’s disease (CD) is a chronic and relapsing gastrointestinal

inflammatory disease triggered by both innate and adaptive immune

responses to environmental factors in genetically-predisposed

individuals (Manichanh et al., 2006; Dicksved et al., 2008).

Although it remains unclear whether dysbiosis is a cause or a

consequence of CD, it is thought to play a key role in the

pathogenesis of CD (Ni et al., 2017). Numerous studies showed

that the microbiota composition of faecal samples from CD patients

was significantly different from that of non-CD controls (Joossens

et al., 2011; Machiels et al., 2014; Vieira-Silva et al., 2019). This

dysbiosis was characterised by low microbial alpha diversity (Pascal

et al., 2017a; Deleu et al., 2021a), including reducing butyrate-

producing bacteria identified as essential for gut homeostasis (Sokol

et al., 2008). In the remission state, the microbiota usually turns back

to eubiosis (Swidsinski et al., 2008; Papa et al., 2012; Gevers et al.,

2014; Machiels et al., 2014; Kolho et al., 2015; Tedjo et al., 2016a;

Franzosa et al., 2019). Furthermore, the higher likelihood of a

favourable outcome of therapies is associated with an increase in

short-chain fatty acid-producing bacteria and a decrease in mucus-

decomposing bacteria (Kolho et al., 2015; Shaw et al., 2016;

Ananthakrishnan et al., 2017; Doherty et al., 2018), as well as a

decrease in bacteria with pro-inflammatory properties, such as

Fusobacterium, Escherichia, Veillonella, Streptococcus (Shaw et al.,

2016; Tedjo et al., 2016a; Zhou et al., 2018; Vieira-Silva et al., 2019).

Most treatments for CD target the immune response to reduce

inflammatory responses (Lamb et al., 2019; Cushing and Higgins,

2021). Despite the use of several classes of advanced therapies,

remission rates for all agents rarely exceed 30% (Kayal et al., 2023).

This highlights both the large unmet medical need in CD for

existing therapies and the need for new, complementary and

highly effective medical therapies for CD.

In order to provide new insights for new treatments, the

identification of the major perturbations in fundamental microbial

metabolic functions is a prerequisite (Morgan et al., 2012). To address

these challenges, gene marker approaches such as 16S rRNA are widely

used to identify dysbiosis. To overcome the lack of functional

information when using 16S rRNA profiling, tools such as

Phylogenetic Investigation of Communities by Reconstruction of

Unobserved States 2 (PICRUSt2) (https://github.com/picrust/

picrust2) have been developed to predict the functional potential

of a bacterial community (Langille et al., 2013; Douglas et al., 2020).

Therefore, the aim of this study was to characterise dysbiosis

and identify microbial metabolic functions using PICRUSt2 in

faecal samples from CD patients in remission, mild-moderate and

severe disease, in order to provide new insights for novel therapeutic

strategies targeting and/or involving the gut microbiota.
Methods

Patient cohort

A total of 383 patients (n=567 samples) with CD were enrolled at

the University of Rennes (France) referral centre over a five-year period
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and provided informed consent for this observational, non-

interventional study. This prospective observational study of CD

patients was conducted from the standard follow-up of 383 CD

patients from 2018 to 2022 including 255 patients with 1 sample, 88

patients with 2 consecutive samples, 28 patients with 3 consecutive

samples, 9 patients with 4 consecutive samples, 2 patients with 5

consecutive samples and 1 patient with 6 consecutive samples, for a

total of 383 patients with at least one sample (567 samples). Patients

were informed of their enrolment in a prospective research database

(Rennes, approved by the Commission Nationale Informatique et

Liberté (CNIL) No. 1412467). Inclusion criteria were patients aged

16-80 years with a diagnosis of CD based on standard endoscopic,

histological or radiological criteria. Exclusion criteria included patients

with ulcerative colitis and/or ostomy. Information on sex, age,

smoking, gastrointestinal surgery, Montreal classification, faecal

calprotectin (FC) levels, and treatments (anti-TNF-a [infliximab,

adalimumab, golimumab]; anti-integrin a-4b7 [vedolizumab]; anti-

IL-12 and IL-23 [ustekinumab]; thiopurines; methotrexate [MTX]) was

collected on the same day as the faecal samples, as detailed in Table 1.

At each visit, the severity of the patient’s CD was assessed using the

Harvey-Bradshaw Index (HBI) and a faecal sample was collected. HBI

thresholds were used to classify patients into three groups: “remission”

(CR) (HBI < 5 with no abdominal pain and no complications); “mild-

moderate” (CM) (HBI = 5-8 with mild or moderate abdominal pain

and no complications); and “severe” (CS) (HBI > 8 with severe

abdominal pain and at least one complication) (Vermeire et al.,

2010). The clinical and biological characteristics between CR, CM

and CS are compared in Table 1. Chi2 or Kruskall-Wallis tests were

performed. A P value <0.05 was considered significant.
Analysis of 16S rRNA gene
amplicon sequencing

We used a standard protocol for 16S rRNA gene-based profiling of

the faecal microbiota. In accordance with the International Human

Microbiome Standards (IHMS), faecal samples were collected in a

sterile container (supplied by VWR) immediately after defecation.

Samples were stored at 4°C for up to 24 hours and then at - 80°C in

the laboratory until DNA extraction. As described in our previous

article (Buffet-Bataillon et al., 2022), DNA extraction from faecal

samples was performed using MagAttract Microbial DNA (Qiagen®)

according to the manufacturer’s instructions. Primers were designed to

target the V3-V4 regions of bacteria, (PCR_341 F: 5’-

CCTACGGGNGGCWGCAG - 3 ’ ) ; ( P C R _ 7 8 5 R : 5 ’ -

GACTACHVGGGTATCTAATCC-3’). PCR products were then

sequenced on the Illumina MiSeq platform following the protocol in

the Illumina 16S Sample Preparation Guide. FROGS v4.0.1 was used

for bioinformatic analysis of the data, following the author’s guidelines.

First, reads were merged using pear (Zhang et al., 2014), primers were

removed using cutadapt (Martin, 2011) and sequences shorter than

380, longer than 500 and containing N were removed. After

dereplication, 218,947,691 of the 243,133,427 sequences remained.

Sequences were then clustered using swarm with an aggregation

distance of 1 and using the fastidious option (Mahé et al., 2015).

Vsearch was used to remove chimera (12.2% of the clusters) (Rognes
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et al., 2016). The 500 most abundant (out of 40,014,154) clusters were

retained, corresponding to 127,532,487 sequences (66.3% of

192,259,330). These Amplicon Sequence Variants (ASVs) were

aligned using Blast with blast against Silva v138.1 filtered on Pintail

100 (Altschul et al., 1990; Quast et al., 2013). All reads were assigned to

the lowest possible taxonomic level (species or genus) using FROGS

(Escudié et al., 2018). An ASV table was then generated from the 16S

rRNA gene sequencing data.
Analysis of Amplicon Sequence Variants

As described in another previous article (Buffet-Bataillon et al.,

2021), descriptive statistics and visualisation of microbiome data

were performed in R (version 4.3.3) within Jupyter Notebooks

(Visual Studio Code, version 1.88.0) using several packages

(McMurdie and Holmes, 2013). Alpha diversity was assessed

using the Chao1 and Shannon indices. The Bray-Curtis

dissimilarity matrix was used to assess beta diversity, and the

results were visualised using Principal Coordinates Analysis

(PCoA) based on a variant of the PERMANOVA procedure

(using the “adonis” function in the R “vegan” package). The

Kruskal-Wallis test was used to compare the relative abundance

of bacterial microbiota at the phylum and genus level in remission,
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mild-moderate and severe patients. Differential abundance analysis

of bacterial genera between remission and severe patients was

performed using DESeq2 (adjusted p < 0.05). To analyse

interactions and differences between ASV in remission and severe

patients, Pearson correlations were calculated and a correlation

matrix and interaction network were generated using Cytoscape

(version 3.10.2) (https://cytoscape.org/). The False Discovery Rate

(FDR) method was used to adjust p-values for multiple testing.
Analysis of metagenome function

PICRUSt2 is a widely used prediction tool that uses a hidden state

prediction algorithm to infer function from 16S rRNA gene phylotypes

(Douglas et al., 2020). Functional abundance tables were generated

using PICRUSt2 (version 2.4.1) integrated into FROGS from the ASV

abundance table and representative ASV sequences generated. We

generated abundance tables from the databases: Kyoto Encyclopedia of

Genes and Genomes (KEGG) orthologs (KO) and Enzyme

Commission (EC) databases. First, we used multivariate association

with linear models (MaAsLin) to find associations between CR, CM

and CS and the functional abundance of KOs (Mallick et al., 2021). An

FDR < 0.25 was the default setting for MaAsLin2. KO is a classification

system developed by the KEGG database (Kanehisa et al., 2023). It uses
TABLE 1 Cohort characteristics and univariate analysis of disease activity (remission/mild moderate/severe), n (%) (n= 567 samples/383 patients).

Variables Remission
(n= 291 samples)

Mild-moderate
(n=177 samples)

Severe
(n=99 samples)

P

Age (years) 40.09 ± 15.31 [14.37-83.38] 38.55 ± 13.94 [15.16 – 82.26] 43.55 ± 15.05 [15.8 – 77.37] NS

Female Sex 155 (53.3%) 97 (54.8%) 64 (64.6%) NS

Smoking 50 (17.2%) 43 (24.3%) 27 (27.3%) NS

Gastrointestinal surgery 140 (48.1%) 75 (42.3%) 50 (50.5%) NS

Montreal A A1: 72 (24.7%); A2: 183 (62.9%);
A3: 34 (11.7%)

A1: 29 (16.4%); A2: 122 (68.9%);
A3: 25 (14.1%)

A1: 12 (12.1%); A2: 67 (67.7%);
A3: 18 (18.2%)

NS

Montreal B B1: 132 (45.4%); B2: 45 (15.5%);
B3: 27 (9.3%); pB1: 62 (21.3%);
pB2: 11 (3.8%); pB3: 8 (2.7%)

B1: 80 (45.2%); B2: 33 (18.6%);
B3: 17 (9.6%); pB1: 33 (18.6%); pB2: 4
(2.3%); pB3: 4 (2.3%)

B1: 36 (36.4%); B2: 21 (21.2%);
B3: 10 (10.1%); pB1:22 (22.2%); pB2:
6 (6%); pB3: 1 (1%)

NS

Montreal L L1: 95(32.6%); L2:65 (22.3%); L3:
129 (44.3%); L4: 32 (11%)

L1: 57 (32.2%); L2: 30 (16.9%);
L3: 88 (49.7%); L4: 29 (16.4%)

L1: 28 (28.3%); L2: 23 (23.2%);
L3: 46 (46.5%); L4: 10 (10.1%)

NS

Faecal calprotectin (µg/g) <50: 139 (47.8%); 50-250: 89
(30.6%); >250: 34 (11.7%)

<50: 49 (27.6%); 50-250: 50 (28.2%);
>250: 61 (34.4%)

<50: 23 (23.2%); 50-250: 21 (21.2%);
>250: 35 (35.4%)

<0.001

Anti-TNF a (%); [infliximab (%),
adalimumab (%), golimumab (%)]

Anti-TNF a:
141 (%)
[infliximab: 27 (9.3%),
adalimumab: 117 (40.2%),
golimumab: 2 (0.7%)]

Anti-TNF a:
95 (53.7%)
[infliximab: 16 (9%), adalimumab: 79
(44.6%), golimumab: 2 (1.1%)]

Anti-TNF a:
49 (49.5%)
[infliximab: 6 (6%), adalimumab: 42
(42.4%), golimumab: 2 (2%)]

NS

Anti-integrine a4b7: Vedolizumab (%) 5 (1.7%) 5 (2.8%) 2 (2%) NS

Anti-interleukin (IL)-12 and IL23:
Ustekinumab (%)

47 (16.2%) 38 (21.5%) 24 (24.2%) NS

Thiopurines (%) 50 (17.1%) 36 (20.3%) 23 (23.2%) NS

Methotrexate (MTX) (%) 23 (7.9%) 26 (14.7%) 20 (20.2%) 0.003
frontie
Montreal A (age at diagnosis): A1<16 years, A2: 17-40 years and A3: >40 years. Montreal L (Disease location): L1 ileum; L2 colon; L3 ileum-colon; L4 isolated upper disease. Montreal B (disease
behaviour): B1 inflammatory; B2 structuring; B3 penetrating; p perianal disease modifier. Anti-TNFa: infliximab, adalimumab, golimumab. Anti-integrine a4b7: Vedolizumab. Anti-interleukin
(IL)-12 and IL23: Ustekinumab. Thiopurines: azathioprine, 6-mercaptopurine. (CR: patients in remission; CM: patients with mild to moderate disease; CS: patients with se-vere disease). Data are
(%) of samples unless otherwise stated. NS, not significant.
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a hierarchical structure to classify enzymes based on the reactions they

catalyse. To better understand the role of pathways in CR and CS and

to classify the pathways, the KO abundance table can be converted to

KEGG pathway abundance (https://www.genome.jp/kegg/

pathway.html). We then used KEGG Pathway to generate a KEGG

pathway abundance table. The relative abundance of KEGG

pathways and KOs between CR and CS was analysed using a

two-tailed unpaired Student’s t-test. P<0.05 was considered to

indicate a significant difference. In addition, we performed

differential abundance analysis on the PICRUSt2 predicted

abundances using DESeq2. Analogous to the binary comparisons

for the microbial selection, the functional abundance table was split

according to CR and CS. From the DESeq2 output, we considered as

‘significantly differentially abundant’ those functions with an

estimated ‘effect’ of ≥2 (absolute value of log2 fold change or

base mean).
Results

Changes in gut microbiota diversity, and
composition with disease severity

We first wanted to confirm how the composition and diversity of

the gut microbiota changed in CD patients with different disease

severity. A total of 567 samples from 383 different patients were
Frontiers in Cellular and Infection Microbiology 04
included. Of these, 291 (51.3%) samples were related to remission

status (CR), 177 (31.2%) samples to mild to moderate status (CM) and

99 (17, 5%) samples to severe status (CS) according to the Harvey

Bradshaw Index (HBI). Clinical characteristics were comparable

between CR, CM and CS (Table 1). As expected, significant changes

in microbiota alpha and beta diversity and composition were observed

between CR, CM and CS. CS had a significantly lower (p<0.01)

Shannon diversity than CR, whereas the Shannon diversity of CM

was similar to that of CR (Figure 1A). The Chao1 richness of CS was

similar to that of CR or CM (p>0.05). Globally, the beta diversity of the

gut microbiota differed significantly between CR, CM and CS

(Permanova; p<0.05) (Figure 1B). At the phylum level, the

abundance of Proteobacteria was higher in both CM and CS than in

CR (P<0.01), whereas that of Actinobacteriota was lower (P<0.01)

particularly in CS than in CR (P<0.01) (Figure 1C). No difference in the

abundance of Firmicutes was observed between CR, CM and CS

(P>0.05). At the genus level, the relative abundance of pro-

inflammatory genera such as Escherichia-Shigella, Veillonella,

Megasphaera, Streptococcus and Enterococcus increased in CS

compared to CR (P<0.01), whereas anti-inflammatory genera such as

Bifidobacterium, Akkermansia Faecalibacterium, Blautia, Alistipes

decreased in CS compared to CR (P<0.01) (Figure 1D). Differential

abundance analysis (DESeq2) showed the same changes for

proinflammatory genera in CS compared to CR (Figure 1E).

The striking differences and interactions between the bacterial

communities were investigated using a correlation matrix and
FIGURE 1

Alpha diversity index (Chao1 index and Shannon) box plot in CR, CM, CS (A). Beta diversity (Bray Curtis) between CR, CM and CS. (B) Global
composition of bacterial microbiota at the phyla level (C) and at the genus level (D) in CR, CM and CR, (E) DESeq2 analysis of bacterial microbiota
between CR and CS: Significant (p < 0.05) log-fold changes in the abundance of bacterial genera in CS com-pared to CR. A positive log-fold change
indicates an increase in abundance in CS compared to CR, whereas a negative log-fold change indicates a decrease in abundance. (CR: patients in
remission; CM: patients with mild to moderate disease; CS: patients with severe disease). The symbol * means *p<0.05.
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interaction network with Cystoscape (version 3.10.2) (Figure 2). In

CR, Faecalibacterium was positively correlated with Streptococcus,

Bifidobacterium, Bacteroides, Alistipes, and negatively correlated

with Escherichia-Shigella (Figure 2A). In CS, Faecalibacterium

remained positively correlated with Bifidobacterium, Bacteroides,

Alistipes, but more negatively correlated with proinflammatory

bacteria such as Streptococcus and Escherichia-Shigella

(Figure 2B). The interaction network was characterised by a more

restricted structure in CS compared to CR (Figures 2C, D). In CR,

the interaction networks highlight the dense and complex genus

interactions between genera supporting remission status.

Escherichia-Shigella was associated with pro-inflammatory

bacteria such as Veillonella, Streptococcus, but also with anti-

inflammatory bacteria such as Lachnoclostridium (Figure 2C). In

CS, the anti-inflammatory bacteria Akkermansia was only

associated with Alistipes, which in turn had limited correlations

with Blautia , Subdoligranulum , Bacteroides , Roseburia ,

Fusicatenibacter, and Bifidobacterium.(Figure 2D).
Changes in functional pathways across
severity status

Taken together, the alpha and beta diversity, composition, and

network data confirm that the gut microbiota changes between CR,
Frontiers in Cellular and Infection Microbiology 05
CM and CS. We next wanted to assess how these observed changes

affect the functionality of the gut microbiota. To explore the

functional potential of the gut microbiota and its role in gut

inflammation, we used PICRUSt 2 which refers to gene families

such as KEGG orthologs (KOs) and Enzyme Classification numbers

(ECs). First, we used multivariate association with linear models

(MaAsLin2) to find associations between the KO abundance table

and CR, CM and CS (Figure 3A). Then, to better understand the

role of pathways in CR and CS groups and to classify pathways, the

KO abundance table was converted to KEGG pathway abundance.

The average pathway abundance (Figure 3B) and KO

abundance (Figures 4A, B) in CR and CS were analysed. In

addition, we performed a differential abundance analysis between

CR and CS on KO abundance abundances using DESeq2 with an

estimated “effect” of ≥2 (Log2 fold change (Figure 5A) or base

mean (Figure 5B).

MaAsLin2 showed that the changes in the gut microbial

functional pathways were graded from CR to CM, and then from

CM to CS. There was a gradient of over- and under-expression of

KOs from CR to CM and from CM to CS (Figure 3A). Among the

50 KOs differentially expressed between groups, 31 KOs and 9 KOs

were over-expressed and under-expressed in CS compared to CR,

respectively, and intermediate expressed in CM. These results

revealed distinct metabolic signatures between the CR and CS

groups, highlighting potential molecular mechanisms underlying
FIGURE 2

Spearman correlation matrix between bacterial genera in CR (A) and in CS (B). Positive values (green rounds) indicate positive correlations, and
negative values (red rounds) indicate inverse correlations. The shading of the round indicates the strength of the association; darker rounds are more
strongly associated than lighter rounds. Molecular correlation analysis (Cytoscape software, version 3.10.2). Whole bacterial genus correlation
analysis showing molecular interactions/grouping; (C) extracted analysis showing bacterial genus highly correlated in CR; (D) extracted analysis
showing bacterial genus highly correlated in CS; Nodes are labelled with the weight of the bacterial genus they represent. The width of the edges
connecting the nodes is proportional to the strength of the interactions. (CR: patients in remission; CS: patients with severe disease).
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1540352
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Buffet-Bataillon et al. 10.3389/fcimb.2025.1540352
FIGURE 3

Distinct KEGG Orthologs (KO) (A) and KEGG Pathway Variations (B) in CD Patients Related to Severity Status. (A) According to the MaAsLin2
regression coefficient, there was a gradation of overexpression or underexpression of KEGG orthologs (KO) from CR, then CM and finally CS. (A) The
heatmap shows the comparative analysis for functions between severity of CD patients. Red and blue in the heatmap represent functions enriched
and depleted between CS or CM and CR (FDR < 0.05, MaAsLin2), respectively. (B) Microbial KEGG pathways with significantly altered abundances in
CR and CS (B) (Green: CR; Blue: CS). Basic metabolism (most amino acid and fatty acid biosynthesis) was decreased in abundance in CS, whereas
metabolism of biological antioxidants (glutathione metabolism; pentose phosphate pathway) and numerous DNA, RNA repair pathways beneficial for
oxidative stress were increased in CS. (CR: patients in remission; CM: patients with mild to moderate disease; CS: patients with severe disease).
FIGURE 4

Distinct KEGG enzyme (EC) in CR and in CS. Distinct KEGG enzyme (EC) were significantly altered in abundance in CR (A) and CS (B). KEGG enzymes
(EC) were analysed for significant association with severity status. Metabolites related to oxidative stress (glutathione (GST;GSR;GSH) and regulatory
systems (TCS)) and to optimal nutrient utilisation (carbohydrate transport (PTS)) were upregulated, whereas basic biosynthetic processes were
downregulated. (CR: patients in remission; CS: patients with severe disease).
Frontiers in Cellular and Infection Microbiology frontiersin.org06
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CD pathogenesis. Therefore, we decided to focus our analysis with

different statistical approaches of functional microbiota in CS

versus CR.
Amino acid biosynthesis and carbohydrate
metabolism are reduced in CS whereas
amino acid and carbohydrate transport
are increased

Considering only the contrast between CS and CR, a total of

1030 and 459 different KOs were differentially abundant (p <0.05).

The average abundance of almost all amino acid metabolic

pathways such as alanine, arginine, aspartate, cysteine, glutamate,

isoleucine, leucine, methionine, valine was decreased in CS

(Figure 3B). Focusing on KOs involved in tryptophan

metabolism, the abundance of several KOs was decreased in CS:

the proteasome accessory factor A (pafA), shikimate kinase (aroKB)

(Figure 4A) and several KOs were underexpressed as K06001 trpB,

tryptophan synthase beta chain [EC:4.2.1.20]; (Figure 3A); as kynA,

tryptophan 2,3-dioxygenase [EC:1.13.11.11], KMO [EC:1.14.13.9],

KynU [EC:3.7.1.3], TRP (Figure 5A). The amino acid transport

system with K02062 thiQ, thiamine transport system ATP-binding

protein; K10000 artP, arginine transport system ATP-binding

protein [EC:3.6.3.-] (Figure 3A) and ABC.PA.A, polar amino acid

transport system ATP-binding protein [EC:3.6.3.21] was

overexpressed in CS (Figure 5B).

We found a decrease in carbohydrate metabolism in CS,

including D-xylulose reductase (EC: E1.1.1.9), glycogen
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phosphorylase/synthase (K16153), polyphosphate glucokinase

(ppgK) and acetyl-CoA/propionyl-CoA carboxylase (bccA)

(Figure 4A) or E2.1.3.1-12S and spnR (Figure 5A), whereas

increased KO was associated with carbohydrate transport as

specific PTS transport systems for cellulose (PTS-Cel-EIIA celC

chbA), mannitol (PTS-Mtl-EIIA mtlA cmtB), maltose/glucose

(PTS-MalGlc-EIIC malX), and glucose (PTS-Glc-EIIB ptsG);

K02779 PTS-Glc-EIIC, ptsG, PTS system, glucose-specific IIC

component (Figure 3A) were strongly present. CS showed a

decrease in lipid metabolism as indicated by a reduction in fatty

acid biosynthesis (Figure 3B).
Extreme functional changes in CD include
changes associated with oxidative stress

Oxidative stress refers to increased intracellular levels of reactive

oxygen species (ROS) that cause damage to DNA, proteins and

membrane lipids. We observed increases in DNA and RNA repair

pathways such as nucleotide excision repair, base excision repair, and

homologous recombination, RNA degradation (Figure 3B), peptide-

methionine (R)-S-oxide reductase (msrB) (Figure 4B); and K02344

holD, DNA polymerase III subunit psi [EC:2.7.7.7]; K03583 recC,

exodeoxyribonuclease V gamma subunit [EC:3.1.11.5]; K03580

hepA, ATP-dependent helicase HepA [EC:3.6.4.-] (Figure 3A) in

CS. This was associated with a global decrease in pyrimidine and

nucleotide biosynthetic modules in CS (Figure 3B), such as

dihydroxy-methylpterin dimethylallyltransferase (K06937), nucS

endonuclease, and tRNA (adenine57-N1/adenine58-N1)-
FIGURE 5

DESeq2 analysis of functions between CR and CS (A) Log2FoldChange and (B) Base Mean. The significantly differentially enriched and depleted
functions between CR and CS (adjust p < 0.05) with their log2 fold changes (in the x-axis) or with their base mean were visualised by scatterplots.
Functions were plotted on the left axis of the scatterplots. Each point on a scatterplot represents one bacterial function. (CR: patients in remission;
CS: patients with severe disease).
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methyltransferase (TRM61) (Figure 4A), mabO and phoD

(Figure 5A) and K01950 E6.3.5.1, NADSYN1, QNS1, nadE, NAD+

synthase (glutamine hydrolysing) [EC:6.3.5.1]; K01880 GARS, glyS1,

glycyl-tRNA synthetase [EC:6.1.1.14] (Figure 3A).
To counteract the damaging effects of
ROS, glutathione (GSH) is the most
important biological antioxidant

We observed an increase in the abundance of glutathione

metabolism genes in CS (Figure 3B), notable KOs being glutathione

S-transferase (GST, gst), glutathione reductase (NADPH) (GSR, gor;

[EC:1. 8.1.7]), K01460 gsp, glutathionylspermidine amidase/synthetase

[EC:3.5.1.78 6.3.1.8] and GSH-dependent disulfide bond

oxidoreductase (yghU, yfcG) regenerate glutathione (Figures 4B, 3A).

The pentose phosphate pathway pentose is required to regenerate

oxidised glutathione back to its reduced form. The pentose phosphate

pathway E2.2.1.1, tktA, tktB, transketolase [EC:2.2.1.1]; PRPS, prsA,

ribose phosphate pyrophosphokinase [EC:2.7.6.1] were also

overrepresented in CS (Figure 5B). In contrast, CR showed a higher

abundance of genes involved in ubiquinone biosynthesis: mqnB,

mqnD, mqnC and mqnA (Figure 4A).
Finally, genes involved in pathogenic
processes, such as regulatory systems and
virulence factors were overrepresented
in CS

The two-component regulatory system (TCS) is the predominant

regulatory system for bacteria to sense and respond to environmental

changes, and can therefore be considered an essential requirement for

their pathogenicity. TCS was significantly present in CS as a two-

component LytTR sensor kinase system (K02478) (Figure 4B).

Bacteria use quorum sensing to regulate a variety of functions,

including virulence and biofilm formation. Quorum sensing

detection used by enterobacteria was significantly upregulated in CS

as: K07640 cpxA, two-component system, OmpR family, sensor

histidine kinase CpxA [EC:2.7.13.3]; K07645 qseC, two-component

system, OmpR family, sensor histidine kinase QseC [EC:2.7.13.3]

(Figure 3A). Virulence factors appeared to be predominantly related

to iron uptake as KOs related to aerobactin biosynthesis iucD, iucA,

iucC, and iucB, KO related to iron porphyrin metabolism

( F i g u r e 5A ) : h emN , h emZ , o x y g e n - i n d e p e n d e n t

coproporphyrinogen III oxidase [EC:1.3.98.3] were overexpressed in

CS (Figure 5B). In addition, adherence/invasion was prominently

enriched in CS as adhesin-related KOs such as pla, plasminogen

activator [EC:3.4.23.48] (Figure 5A), as well as KOs related to biofilm

formation in E.coli: K07678 barA, gacS, varS, two-component system,

NarL family, sensor histidine kinase BarA [EC:2.7.13.3] (Figure 3A).

Moreover, KOs conferring resistance to b-lactam antibiotics were also

identified, such as adeS and blaACT_MIR, ddl, D-alanine-D-alanine

ligase [EC:6.3.2.4]; alr, alanine racemase [EC:5.1.1.1]; mrcA, penicillin

binding protein 1A [EC:2.4.1.129 3.4.16.4]. KO, mrcA, penicillin

binding protein 1A [EC:2.4.1.129 3.4.16.4] (Figure 5).
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Discussion

We investigated microbial community functions from

taxonomic profiles in CR, CM and CS.

First, our study confirms that gut microbiota dysbiosis is

strongly associated with CD severity. Our results confirmed a

significant decrease in Shannon’s alpha diversity index in CS and

a dissimilarity between CR, CM and CS. In particular,

Proteobacteria were significantly more abundant in CS than in

CR and CM. At the genus level, pro-inflammatory bacteria such as

Escherichia-Shigella, Veillonella, Megasphaera, Streptococcus and

Enterococcus were identified as biomarkers. In contrast, the anti-

inflammatory bacteria: Faecalibacterium, Akkermansia, Alistipes,

Blautia, Bifidobacterium, were more abundant in CR. These

results were consistent with previous reports in the literature

(Sokol et al., 2008; Joossens et al., 2011; Gevers et al., 2014; Tedjo

et al., 2016a; Pascal et al., 2017a; Zuo and Ng, 2018; Franzosa et al.,

2019; Lloyd-Price et al., 2019; Caparrós et al., 2021; Deleu et al.,

2021a). In addition to the general analysis of the differential

abundance of phyla and genera in patients in remission or in

severity status, our study defined distinct networks of taxa

associations that are essential for mechanically capturing the

structure and maintenance of the microbial community.

According to Yilmaz et al, Faecalibacterium was positively

corre la ted wi th ant i - inflammatory bac ter ia such as

Bifidobacterium and negatively correlated with pro-inflammatory

genera such as Escherichia-Shigella (Yilmaz et al., 2019).

Furthermore, our results support that the robustness of microbial

networks and their interdependent structure are associated with CR

microbiota, whereas a loose structure and an increase in

Enterobacteria characterise CS microbiota (Mondot et al., 2016).

Second, the functional analysis of the gut microbiota provides

new insights into the relationship between dysbiosis and CD, with

possible causality, opening the way to new therapeutic approaches

(Figure 6). By combining shifts in the abundance and expression of

functional modules, two major imbalances in the progression of CD

severity were identified:
• Depletion of fundamental microbial pathways associated

with amino acid, carbohydrate and lipid biosynthesis, while

increasing amino acid and carbohydrate transport in CS.

• Involvement of oxidative stress and underlying biological

mechanisms such as DNA, RNA repair, glutathione,

siderophore, biofilm formation, suggesting a potentially

invasive “pathobiont” in CS.
Amino acid and carbohydrate biosynthesis
were reduced in CS, suggesting that their
metabolites may be drivers of an altered
gut immune system

Notably, the depletion of microbial pathways associated with

the glutamate metabolism was associated with CD severity status.

Indeed, several studies have highlighted the critical role of
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glutamate in maintaining mucosal integrity (DeMarco et al., 2003;

De-Souza and Greene, 2005), possibly by preventing disruption of

tight junctions via transactivation of the epidermal growth factor

receptor, which mediates intestinal epithelial cell proliferation

(Basuroy et al., 2005).

In recent years, an increasing number of studies have shown

that disorders of tryptophan metabolism are strongly associated

with CD (Ding et al., 2020; Lavelle and Sokol, 2020). Gut microbiota

dysbiosis induces tryptophan metabolite alterations leading to CD

progression, which is mainly based on reduced indole derivatives

and AhR activity (Monteleone et al., 2011; Nikolaus et al., 2017).

The gut microbiota is the primary source of endogenous AhR

ligands. Consistent with other studies, the reduction in

tryptophan metabolism in our study was associated with the

reduction in Bifidobacterium (Agus et al., 2018; Roager and

Licht, 2018).

We found a decrease in carbohydrate metabolism in CS,

suggesting a possible decrease in SCFA production by the gut

microbiota. SCFAs (butyrate, acetate, propionate) act as signalling

molecules via G-protein coupled receptors (GPRs) in various types

of host cells (De Preter et al., 2013; Makki et al., 2018; Parada

Venegas et al., 2019; Lloyd-Price et al., 2019). Mucin levels in goblet

cells, antimicrobial peptides in Paneth cells, and tight junction

proteins in intestinal epithelial cells are upregulated by GPR

activation. In addition, the secretion of pro-inflammatory
Frontiers in Cellular and Infection Microbiology 09
cytokines (TNF-alpha, IL-2, IL-6, IL-12, IL-23) by macrophages,

the expression of den-dritic cell-migrated proteins (CXCL, CD40)

and HDAC activity are inhibited by SCFAs.

Treg differentiation and their secretion of anti-inflammatory

cytokines such as IL-10 are in-duced by histone 3 acetylation, which

is enabled by HDAC inhibition. Similarly, IL-10 secretion by

dendritic cells is promoted by SCFAs. Finally, IgA production by

B cells is induced by SCFAs (Campbell et al., 2023). With

accumulating data suggesting regulatory functions of SCFAs in a

wide range of immune cells, they represent a new frontier in the

treatment of intestinal inflammation in animal models and

eventually in CD patients (Sun et al., 2017).

Bile acids (BAs) are synthesised from lipids as cholesterol in

hepatocytes and secreted into the duodenum. BAs are further

metabolised by the gut microbiota. Bacteroidota and

Bifidobacterium are extensively involved in the conversion of BAs,

the abundance of which has been shown to be reduced in CD

patients (Duboc et al., 2013; Lavelle and Sokol, 2020). Dysbiosis

affects the composition of BAs. We found a decrease in fatty acid

biosynthesis and in the abundance of Bacteroidota and

Bifidobacterium in CS, which in turn may have an impaired

ability to deconjugate and convert BAs into conjugated secondary

BAs. Secondary BAs act as high-affinity ligands for TGR5 and FXR,

the activation of which exerts immunomodulatory and anti-

inflammatory effects (Duboc et al., 2013; Hang et al., 2019;
FIGURE 6

Schematic of the mechanism hypothesis of gut microbiota dysfunction in relation to CD severity. Disease in remission is characterised by
integrity of the mucosal barrier; presence of Treg; anti-inflammatory cytokines due to eubiosis and microbial pathways involving amino acid
biosynthesis (glutamate (EGFR activation), tryptophan (indole derivatives: AhR activation), carbohydrate biosynthesis (SCFAs (butyrate, acetate,
propionate): GPR activation), lipid biosynthesis (secondary BAs: TGR5 and FXR activation). ROS production by immune cells is also prevented by
ubiquinone biosynthesis. Mild to moderate disease is characterised by the establishment of dysbiosis with the loss of beneficial anti-
inflammatory bacteria and the presence of pro-inflammatory bacteria, thus decreasing the basal beneficial metabolism to down regulate
inflammation leading to mucosal barrier damage, over ROS production, pro-inflammatory responses pro-inflammatory cytokines. Severe disease
is characterised by loss of mucosal barrier integrity; presence of Th1, Th17; pro-inflammatory cytokines with excessive amounts of ROS (DNA,
RNA repair; glutathion metabolism), microbial virulence factors to invade the host (TCS, quorum sensing, heme metabolism) and to evade host
defences (biofilms). (Treg, Regulatory T cells; EGFR, epidermal growth factor receptor; AhR, aryl hydrocarbon receptor; SCFA, short chain fatty
acids (Butyrate, acetate, propionate); GPRs, G protein-coupled receptors; Ba, bile acids; FXR, farnesoid X receptor; TGR5, G protein-coupled bile
acid receptor 1; TCS, two-component systems; ROS, Reactive oxygen species).
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Campbell et al., 2020; Fiorucci et al., 2021). Thus, gut dysbiosis and

subsequent abnormal BA profile could exacerbate CD progression

by inhibiting TGR5 and FXR activity.

In summary, we can hypothesise that the decrease in basic

microbial pathways such as tryptophan and carbohydrate

metabolism led to a lower amount of bioactive metabolites

required to activate the AhR and GPRs, respectively, in order to

down-regulate the gut inflammation. Due to dysbiosis, BA

metabolism could be altered and participate in the chronic

inflammatory loop of CD. On the contrary, in CS we found an

increase in carbohydrate and amino acid transport. The

characteristic of these specific transport systems is that they

provide microbiota-integrated systems that ensure optimal

utilisation of carbohydrates and amino acids in stressful situations

(Kotrba et al., 2001; Kandasamy et al., 2018).
Significant functional changes in CD
include alterations in oxidative
stress metabolism

Oxidative stress results from an imbalance between the

production of ROS and the defence system responsible for their

detoxification. Persistent ROS in the gut environment play a key role

in chronic inflammation, immune responses and DNA damage

(Wang et al., 2022). ROS are primarily produced by cells of the

immune system, mainly macrophages, dendritic cells, B lymphocytes

and polymorphonuclear neutrophils. Excessive amounts of ROS,

which directly cause various forms of DNA damage, including

single-strand breaks, double-strand breaks and DNA base sequence

changes, can also be generated by the dysbiotic microbiota (Li et al.,

2021; Wang et al., 2022; Barnes et al., 2022; Ray et al., 2022). Indeed,

we observed an increase in DNA and RNA repair and a decrease in

DNA biosynthesis in CS. In contrast, CR showed a higher abundance

of genes involved in ubiquinone biosynthesis. The physiological role

of ubiquinone in bacteria is to regulate energy metabolism, gene

expression and prevent oxidative stress (Abby et al., 2020). In

addition, our results showed an increase in glutathione metabolism

and the pentose phosphate pathway, which is necessary for the

regeneration of oxidised glutathione in the CS. This reflects a

mechanism by which the gut microbiota respond to inflammation-

induced oxidative stress. Proteobacteria and some Streptococci and

Enterococci synthesise glutathione, which helps them to grow under

oxidative stress (Masip et al., 2006). Accordingly, Enterobacteria,

streptococci, and enterococci were enriched in CS. In addition, the

role of glutathione in virulence includes the activation of virulence

gene expression and contributes to optimal biofilm formation (Ku

and Gan, 2021). Thus, overproduction of ROS causes oxidative stress

and microbiota-induced inflammation, which are strongly linked in

CD, initiating a vicious cycle of mucosal barrier damage. This can

lead to increased mucosal permeability, loss of protection, which

favours intestinal invasion by inflammatory bacteria, which in turn

can stimulate further inflammation and ROS production (Rapozo

et al., 2017; Khanna and Raffals, 2017; Wang et al., 2022).
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Significant functional changes in CD
indicate that virulence factors are required
to invade the host, evade host defences
and participate in the establishment
of inflammation

Virulence factors highlight the importance of signalling systems

in the context of host-microbiota interactions. The first signalling

systems in virulence processes are two-component systems (TCS),

which are signalling mechanisms in bacteria that allow intracellular

changes from extracellular cues and allow bacteria to adapt very

quickly to changes in environmental conditions (Stock et al., 2000).

TCS allow bacteria to control a variety of processes such as

metabolism, oxidative stress or pathogenicity. Not only do these

systems modulate oxidative stress and metabolism, but TCS also

modulate virulence traits through diverse mechanisms such as iron

uptake, and biofilm formation (Shaw et al., 2022). Interestingly, the

TCS that are predominant in CS compared to CR are LytTR-type

histidine kinase/response regulator systems, as demonstrated in

Escherichia coli (Jung et al., 2012). The second signalling system

involved in virulence processes is quorum sensing (QS). QS is a

generalised cell-to-cell communication strategy that allows bacteria

to coordinate their phenotypes via chemical signalling. Phenotypes

such as antibiotic resistance, and the production of virulence factors

are known to be genetically regulated by QS and dependent on

population density (Sharma et al., 2024). QS is thought to provide a

mechanism for pathogenic bacteria to minimise host immune

responses by delaying the production of tissue-damaging

virulence factors until sufficient bacteria have accumulated and

are ready to overwhelm host defences and cause inflammation.

Interestingly, KOs associated with QS recognition used by

enterobacteria were significantly present in CS.

In order to invade the host, bacterial pathogens must synthesise

heme or acquire heme from the host; however, host heme is

sequestered in high-affinity hemoproteins. Bacteria have developed

sophisticated strategies to acquire heme from host sources or from

bacteria (Choby and Skaar, 2016). Aerobactin, a siderophore produced

by Escherichia coli, is one of the strategy to capture available iron

from other bacteria present (Micenková et al., 2018). Remarkably,

KOs related to iron uptake, such as Aerobactin biosynthesis and

iron porphyrin metabolism, were predominant in CS.

To evade the host defences, biofilms are communities of cells

attached to surfaces and held together by a self-produced

extracellular matrix. The matrix consists of different extracellular

DNA molecules, proteins and polysaccharides, depending on the

bacterial species (Joo and Otto, 2012). Cells in the biofilm state

show increased protection against antibiotics and the host immune

response molecules (Flemming and Wingender, 2010). Other

studies have shown that KOs associated with biofilm formation in

Escherichia coli are overabundant and overexpressed in CS

(Darfeuille-Michaud et al., 2004; Baumgart et al., 2007). This

biofilm allows escape from host defence and could persist despite

antibiotic therapy. In addition, KOs conferring resistance to

b-lactam antibiotics have been identified in CS.
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Overall, metabolic pathways in CS are characterised by a strong

coherence with the lifestyle of highly auxotrophic bacteria such as the

“pathobiont” Escherichia coli or related genera (Iwasaki et al., 2021).

The limitation of our study is that it is an observational, non-

interventional study of 383 patients (n=567 samples), of which 128

patients had more than 2 samples (n=312 samples), but with the

important number of samples, it allowed us to elucidate the potential

mechanisms and pathways of gut microbiota imbalance involved in the

development of CD, providing a basis for updating the treatment

strategies for CD. With the subset of 128 patients from the cohort with

multiple temporal faecal sampling during the longitudinal study

(n=312 samples in total), we aim to further exploit the microbiota-

modulating effect of immunomodulators (azathioprine, 6-

mercaptopurine, methotrexate), and biologic therapies (e.g., anti-

TNFa: infliximab, adalimumab, golimumab; anti-integrin a4b7:
vedolizumab; anti-interleukin (IL)-12 and IL23: ustekinumab) to

establish a chain of events and determine whether restoration of

eubiosis and pathways precedes, follows, or coincides with remission.

In conclusion, the data presented here confirm that CS is

associated with a dysbiosis characterised by changes in the

Proteobacteria phyla. These changes in bacterial composition

were associated with major gut microbiota dysfunction in CD,

linked to impaired basal metabolism and virulence factors of the

microbiota in an environment of oxidative stress.

Our results suggest that two complementary approaches to

restore eubiosis in the microbiota of CD patients could be: 1)

rebalancing the microbiota and 2) eliminating the oxidative stress.

This should result in reversing biofilm formation and rebalancing

the microbiota with the ultimate goal of protecting the intestinal

mucosa and reducing relapse. Finally, it will be exciting to support

the development of ‘personalised microbiota-targeted’ therapy for

CD based on microbial metabolic function profiles.
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Mahé, F., Rognes, T., Quince, C., de Vargas, C., and Dunthorn, M. (2015). Swarm v2:
highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420. doi: 10.7717/
peerj.1420

Makki, K., Deehan, E. C., Walter, J., and Bäckhed, F. (2018). The impact of dietary
fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715.
doi: 10.1016/j.chom.2018.05.012

Mallick, H., Rahnavard, A., McIver, L. J., Ma, S., Zhang, Y., Nguyen, L. H., et al.
(2021). Multivariable association discovery in population-scale meta-omics studies.
PloS Comput. Biol. 17, e1009442. doi: 10.1371/journal.pcbi.1009442

Manichanh, C., Rigottier-Gois, L., Bonnaud, E., Gloux, K., Pelletier, E., Frangeul, L.,
et al. (2006). Reduced diversity of faecal microbiota in crohn’s disease revealed by a
metagenomic approach. Gut 55, 205–211. doi: 10.1136/gut.2005.073817
frontiersin.org

https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/j.chom.2017.04.010
https://doi.org/10.1038/s41594-022-00790-y
https://doi.org/10.1038/s41594-022-00790-y
https://doi.org/10.1152/ajpgi.00464.2004
https://doi.org/10.1038/ismej.2007.52
https://doi.org/10.1016/j.clinre.2021.101669
https://doi.org/10.1016/j.clinre.2021.101669
https://doi.org/10.1038/s41598-022-23757-x
https://doi.org/10.1038/s41586-020-2193-0
https://doi.org/10.3390/biomedicines11020294
https://doi.org/10.3390/biomedicines11020294
https://doi.org/10.1080/19490976.2021.1949096
https://doi.org/10.1016/j.jmb.2016.03.018
https://doi.org/10.1001/jama.2020.18936
https://doi.org/10.1053/j.gastro.2004.04.061
https://doi.org/10.1016/j.ebiom.2021.103293
https://doi.org/10.1093/jn/133.7.2176
https://doi.org/10.1002/ibd.22970
https://doi.org/10.1097/01.ccm.0000162680.52397.97
https://doi.org/10.1038/ismej.2008.37
https://doi.org/10.1155/2020/9706140
https://doi.org/10.1128/mBio.02120-17
https://doi.org/10.1128/mBio.02120-17
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1136/gutjnl-2012-302578
https://doi.org/10.1093/bioinformatics/btx791
https://doi.org/10.1007/s10620-020-06715-3
https://doi.org/10.1038/nrmicro2415
https://doi.org/10.1038/s41564-018-0306-4
https://doi.org/10.1038/s41564-018-0306-4
https://doi.org/10.1016/j.chom.2014.02.005
https://doi.org/10.1038/s41586-019-1785-z
https://doi.org/10.1093/jb/mvaa140
https://doi.org/10.1016/j.chembiol.2012.10.022
https://doi.org/10.1136/gut.2010.223263
https://doi.org/10.1016/j.mib.2011.11.009
https://doi.org/10.1016/j.mib.2011.11.009
https://doi.org/10.1016/j.tibs.2018.05.003
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1016/j.cgh.2022.02.044
https://doi.org/10.1016/j.gtc.2017.05.004
https://doi.org/10.1038/ajg.2015.149
https://doi.org/10.1263/jbb.92.502
https://doi.org/10.1016/j.redox.2021.102012
https://doi.org/10.1016/j.redox.2021.102012
https://doi.org/10.1136/gutjnl-2019-318484
https://doi.org/10.1136/gutjnl-2019-318484
https://doi.org/10.1038/nbt.2676
https://doi.org/10.1038/s41575-019-0258-z
https://doi.org/10.1016/j.phrs.2021.105694
https://doi.org/10.1038/s41586-019-1237-9
https://doi.org/10.1136/gutjnl-2013-304833
https://doi.org/10.7717/peerj.1420
https://doi.org/10.7717/peerj.1420
https://doi.org/10.1016/j.chom.2018.05.012
https://doi.org/10.1371/journal.pcbi.1009442
https://doi.org/10.1136/gut.2005.073817
https://doi.org/10.3389/fcimb.2025.1540352
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Buffet-Bataillon et al. 10.3389/fcimb.2025.1540352
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet.Journal 17, 10–12. doi: 10.14806/ej.17.1.200

Masip, L., Veeravalli, K., and Georgiou, G. (2006). The many faces of glutathione in
bacteria. Antioxidants Redox Signaling 8, 753–762. doi: 10.1089/ars.2006.8.753

McMurdie, P. J., and Holmes, S. (2013). Phyloseq: an R package for reproducible
interactive analysis and graphics of microbiome census data. PloS One 8, e61217.
doi: 10.1371/journal.pone.0061217
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Dijkstra, G., et al. (2019). Short chain fatty acids (SCFAs)-mediated gut epithelial and
immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol.
10. doi: 10.3389/fimmu.2019.00277

Pascal, V., Pozuelo, M., Borruel, N., Casellas, F., Campos, D., Santiago, A., et al.
(2017a). A microbial signature for crohn’s disease. Gut 66, 813–822. doi: 10.1136/
gutjnl-2016-313235

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013). The
SILVA ribosomal RNA gene database project: improved data processing and web-based
tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219

Rapozo, D. C. M., Bernardazzi, C., and de Souza, H. S. P. (2017). Diet and microbiota
in inflammatory bowel disease: the gut in disharmony. World J. Gastroenterol. 23,
2124–2140. doi: 10.3748/wjg.v23.i12.2124

Ray, S., Abugable, A. A., Parker, J., Liversidge, K., Palminha, N. M., Liao, C., et al.
(2022). A mechanism for oxidative damage repair at gene regulatory elements. Nature
609, 1038–1047. doi: 10.1038/s41586-022-05217-8

Roager, H. M., and Licht, T. R. (2018). Microbial tryptophan catabolites in health and
disease. Nat. Commun. 9, 3294. doi: 10.1038/s41467-018-05470-4

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: A
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