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This study explored the effectiveness of secondary metabolites of referred

traditional Ayurvedic plants in treating fungal infections, particularly targeting

Candida auris. Recognized as a global health threat, this fungus is notorious for its

resistance to several antifungal treatments. The inhibition of lanosterol 14a-
demethylase causes the depletion of ergosterol, ultimately resulting in the

inhibition of fungal cell growth. A total of 469 metabolites, including alkaloids,

flavonoids, and tannins from Ayurvedic plants, were screened against CYP51

(PDB ID: 4UYL) using molecular docking. Key active site residues, namely HIS461,

CYS463, and TYR122, were targeted to inhibit the ergosterol synthesis, with VNI

employed to benchmark the findings. Shortlisted metabolites underwent

physicochemical analysis, ADMET analyses, and the principles of medicinal

chemistry, which were confirmed through pharmacokinetic simulations.

Further, this study investigated the molecular dynamics (MD) of co-crystalized

VNI, trans-p-coumaric acid, and MCPHB [(r)-n-(1’-methoxycarbonyl-2’-

phenylethyl)-4-hydroxybenzamide] to evaluate RMSD, RMSF, Rg, SASA, cross-

correlation of residue motions, PCA, and free energy decomposition. The top

compounds demonstrated favorable drug-like criteria. They exhibited good

absorption potential with high gastrointestinal uptake. Distribution and

metabolism were manageable with low risks of drug-drug interactions.

Excretion profiles indicated proper clearance, and toxicity assessments showed

low potential for cardiovascular issues. The results showed stable interactions for

trans-p-coumaric acid and MCPHB, suggesting that all the ligands maintain

stable binding interactions with the protein, which preserves structural integrity
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across all systems. This comprehensive approach suggests that these natural

metabolites from Ayurvedic medicine could potentially serve as primary agents

against fungal diseases, pending further validation through controlled in vitro and

in vivo clinical trials.
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Introduction

Fungal infections are emerging as a serious healthcare issue in

humans and animals. Such infections in humans have been

historically neglected, despite the death of about 1.5 million

people annually from fungal diseases. In the last ten years,

understanding of the underlying mechanisms of these infections

has been significantly improved. This progress is achieved by

gaining an important understanding of the elements related to

both the host and the pathogen, which have a role in determining

the characteristics and seriousness of these diseases (Brown et al.,

2024). Epidemiological studies have suggested that fungus can cause

various superficial and systematic infections, and patients with

weakened immune systems are more susceptible to infection

(De Pauw et al., 2008; Sagatova et al., 2018). Most of the

infections, including fungal asthma, chronic pulmonary

aspergillosis, fungal keratitis, invasive candidiasis, fungal

pneumonia, invasive aspergillosis, cryptococcal meningitis in

HIV/AIDS patients, and disseminated histoplasmosis, are linked

with fungal diseases (Denning, 2015; Bongomin et al., 2017;

Rajasingham et al., 2017).

A novel Candida species, isolated from a patient’s external

auditory canal, is a deadly, multiple-drug-resistant fungal,

pathogenic yeast first reported in Japan in 2009 (Satoh et al.,

2009). The azoles, i.e., fluconazole, itraconazole, voriconazole, and

posaconazole, as well as polyenes and echinocandins classes, are

used as the first-line treatment and prevention of fungal infections,

including fungemia caused by C. auris (Perfect, 2017; Shaban et al.,

2020). However, the extensive and prolonged use of these antifungal

drugs has caused drug resistance in these pathogens (Wickes, 2020).

Due to the resistance of antifungal drugs, there is a need to develop

new therapeutic approaches against pathogenic fungi in treating

various diseases.

Lanosterol 14a-demethylase (CYP51) enzyme is a potential

target for antifungal drug discovery. It belongs to the superfamily

of cytochrome P450 (Aoyama et al., 1996). Ergosterol is the fungal-

specific sterol involved in maintaining the integrity, fluidity, and

permeability of the cell membrane structure (Monk and Keniya,

2021). Targeting the CYP51 enzyme causes the depletion of

ergosterol and the accumulation of lanosterol with other methyl

sterols, ultimately resulting in the inhibition of fungal cell growth
02
(Aoyama et al., 1996). Moreover, the lack of ergosterol by CYP51

inhibition results in the weakening of biofilm in C. auris

(Harikrishnan et al., 2022). Biofilm is the most significant

pathogenicity feature of C. auris, which makes it a “superbug”, as

biofilm formation causes increased resistance to antifungal agents.

Hence, inhibiting CYP51 in C. auris is a promising strategy for

reducing biofilm formation and combating this multidrug-

resistant pathogen.

Natural bioactive metabolites from medicinal plants have

gained importance in the recent era of antifungal drug discovery

(Qadri et al., 2013). In the Ayurvedic medicinal system, about 7500

plants are used for their antipyretic, antifungal, antibacterial, and

anti-diabetic properties (Joshi and Dhawan, 2005; Saini et al., 2015;

Nahar and Sarker, 2019). Currently, computer-aided drug discovery

(CADD) is being popularly used for the discovery of new and

potent drugs by screening a large number of plant-derived

molecules and evaluating their toxicity. Its major benefit is the

reduced cost and time (Macalino et al., 2015). Various CADD

studies have been done to explore the new bioactive metabolites

from natural plants that contain antifungal activity. The metabolites

of Caesalpinia bonduc seeds and Piper crocatum (red betel leaf)

inhibit ergosterol synthesis by targeting the CYP51 enzyme

(Sasidharan et al., 2023; Siswina et al., 2023). Other studies by

Shalini A. Shinde et al. and Sakyiamah et al (Sakyiamah et al., 2022;

Shinde et al., 2024) have also reported promising antifungal

potential of plant-derived metabolites by inhibiting the

CYP51 enzyme.

The increasing prevalence of antifungal resistance, particularly

for C. auris, poses a significant challenge to public health, creating an

urgent need for novel inhibitors by targeting the CYP51 enzyme.

Targeting this enzyme causes the depletion of ergosterol, contributing

a potential pathway for novel anti-fungal therapeutics. This study

particularly aims to identify potent bioactive metabolites from

Ayurvedic medicinal plants, namely Swertia chirayita (Roxb.)

H.Karst. [Gentianaceae] (Jauhari et al., 2017), Abutilon indicum

(L.) Sweet [Malvaceae] (Kuo et al., 2008; Gomaa et al., 2018),

Phyllanthus emblica L. [Phyllanthaceae] (Gaire and Subedi, 2014),

Nelumbo nucifera Gaertn. [Nelumbonaceae] (Chen et al., 2007; Rho

and Yoon, 2017), Alangium salviifolium (L.f.) Wangerin [Cornaceae]

(Venkateshwarlu et al., 2011; Meenakshi and Rajesh, 2015), Rauvolfia

serpentina (L.) Benth. exKurz [Apocynaceae] (Kumari et al., 2013),
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Asparagus racemosus Willd. [Asparagaceae] (Singaravadivel, 2014),

and Abroma augustum (L.) L.f. [Malvaceae] (Rakesh et al., 2023).

They have been reported for their medicinal activity, including

antiviral, antibacterial, anti-inflammatory, and particularly

antifungal activity. Our research hypothesizes that phytochemicals

from these plants can effectively inhibit CYP51, thereby combating

antifungal resistance. We employed molecular docking, drug-

likeness, and ADME analyses, molecular dynamics simulations, and

pharmacophore modeling. The significance of this study lies in its

potential to discover new therapeutic agents that could be developed

into drugs to address antifungal drug resistance and notable benefits

over current treatments.
Materials and methods

Ligand selection

A total of 469 metabolites from Ayurvedic medicinal plants were

retrieved in the meticulous literature study. These include 118

metabolites from S. chirayita (Roxb.) H.Karst. [Gentianaceae], 50

metabolites from A. indicum (L.) Sweet [Malvaceae], 73 metabolites

from P. emblica L. [Phyllanthaceae], 122 metabolites from N. nucifera

Gaertn. [Nelumbonaceae], 37 metabolites from A. salviifolium (L.f.)

Wangerin [Cornaceae], 14 metabolites from R. serpentina (L.) Benth.

ex Kurz [Apocynaceae], 47 metabolites from A. racemosus Willd.

[Asparagaceae], and 8 metabolites from A. augustum (L.) L.f.

[Malvaceae]. The structures of these metabolites were obtained from

the PubChem database in mol format. For those structures that were

unavailable in PubChem, we employed the ChemDraw 12.0 program

and Canonical SMILES for drawing and then saving them in mol files.

VNI [(R)-N-(1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)

ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide)], the native

ligand of 4UYL, was selected as a reference in our study

(Shamsuddin et al., 2021). VNI was chosen as the standard

compound for our study due to its proven efficacy against

pathogens, favorable pharmacokinetics, and low toxicity. Its

superior effectiveness against A. fumigatus makes it a suitable

model for evaluating plant metabolites that target the CYP51

enzyme in treating C. auris infections (Friggeri et al., 2018).
Ligand preparation

A database was prepared in which all the ligands were converted

into their 3D structures with proper tautomers, ionization states,

chiralities, and bond orders and used as input for molecular docking

and saved in MDL Molfile (mol). All the ligands were stabilized by

energy minimization and further processed by using the default

parameters in the molecular operating environment software

(Molecular Operating Environment (MOE), 2022.02 Chemical

Computing Group ULC, 1010 Sherbooke St. West, Suite #910,

Montreal, QC, Canada, H3A 2R7, MOE2022.v11.18.1). This

precision ensures accurate modeling of ligand behavior in

biological systems, improves prediction of ligand-protein

interactions, and enhances the reliability of computational methods.
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Target protein selection

The three-dimensional crystal structure of cytochrome P450

sterol 14a-demethylase was obtained from the RCSB protein data

bank (PDB ID: 4UYL). The protein PDB ID was selected based on

the presence of a co-crystallized ligand (VNI) in the active site, a

resolution of 2.81 Å, and its crystallization through the X-ray

crystallography technique.
Target protein preparation

Protein preparation is an important step for molecular docking

analysis (Shah et al., 2021). The protein structure was prepared

through MOE software. All the unwanted chains were deleted; only

unique chain A was retained for further analysis. All the attached

water molecules and ligands with the protein structure were

removed in the refinement process to avoid interaction during the

optimization and minimization processes. Then the protonation

was done to ensure that all the hydrogen atoms were properly

assigned for the proper molecular interactions. Afterwards, the

energy minimization was performed to ensure that the protein

structure is stable and there are no hindrances or strains during

interactions (Yamin et al., 2024).
Active site determination

The active site of the target protein was determined through

MOE software by using the SiteFinder tool in MOE. This tool

predicted various active sites of different sizes. Among them, the

active site was chosen that aligned with the location of the co-

crystallized ligand (VNI), which also served as the standard in our

study. This active site contained specific residues that have been

previously highlighted in literature for their essential role in protein

activity (Shamsuddin et al., 2021).
Docking validation

For the validation of docking within the active site of the target

protein, the retrieved PDB complex (PDB 4UYL) and the docked

complex of VNI (prepared through MOE) were superimposed

through PyMOL software (Molecular Graphics System, Version

3.0 Schrödinger, LLC). The root mean square deviation (RMSD)

was calculated. The RMSD value less than 2 Å was considered

optimal as it justified the accuracy of docking parameters (Khalid

et al., 2024).
Molecular docking

Molecular docking is an important computational technique,

and its key aim is to determine the potential binding geometries of a

ligand of a known three-dimensional structure with a target protein

(Muhammad et al., 2020; Kumari et al., 2023). The selected 469
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1537872
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Shah et al. 10.3389/fcimb.2025.1537872
metabolites, alongside the standard VNI, were docked with the

CYP51 target protein to identify the best ergosterol synthesis

inhibitor. The docking was achieved through an induced fit

model of MOE 2022.02 software.

The docking process was conducted in multiple phases to

ensure the most favorable interactions between the ligands and

the target proteins. The Triangle Matcher Algorithm was initially

employed to establish ligand positioning. In the initial rescoring

step, the London dG correction was implemented with a retention

value of 10. After the initial scoring, a refinement step was carried

out using the forcefield approach to adjust the placement of the

ligands in the active structures. For the second rescoring phase, the

GBVI/WSA dG method was used, with a retention value of 5. For

the final analysis, our method guaranteed that only the most

energetically favorable ligand positions were considered.

Duplicates were eliminated at every stage of the procedure.

The highest-scored pose of each ligand based on the “S” score

and binding energy was considered. The scores of ligands were

compared with those of VNI as the reference inhibitor. Ligands with

a higher docking score than the reference metabolite were selected

for further investigations (Kumari et al., 2023).
Drug likeness and physicochemical analysis

The drug-likeness and physicochemical analysis of selected

metabolites were analyzed using the SwissADME online tool

(http://www.swissadme.ch/index.php). This analysis provides

guidelines that increase the probability of the chemical passing

clinical trials (Ursu et al., 2011). SwissADME software comprises

five rules of drug likeness, namely, Lipinski (Lipinski et al., 1997),

Ghose (Ghose et al., 1999), Veber (Veber et al., 2002), Egan (Egan

et al., 2000a), and Muegge (Muegge et al., 2001). If the selected

metabolites are unable to follow the maximum rules of drug-

likeness, they may not be considered orally active.
Protein-ligand interaction

Protein-ligand interaction was evaluated to assess how the

target protein interacts with the ligand using BIOVIA Discovery

Studio software. This tool is used to simulate, analyze, and visualize

chemical and biological systems, including drawing 2D and 3D

structures of target protein complexes.
Molecular dynamics simulation

MD simulations were conducted to explore the dynamic

interactions of the top 2 metabolites, namely trans-p-coumaric acid

and MCPHB, with the CYP51 protein, alongside the co-crystallized

ligand VNI. The selected top-hit complexes with CYP51 receptors

were obtained from docked models. These selected complexes

underwent 100 ns MD simulations for re-refining as well as

stabilization. Following prior practice (Khalid et al., 2024), partial
Frontiers in Cellular and Infection Microbiology 04
atomic charges for the ligands were assigned using the Antechamber

module of the AMBER20 package (Arantes et al., 2021). The ligands

and receptors were subjected to the leap module to fill in the missing

hydrogens, neutralize the system, solvate the complexes, and finally

generate the parameter files and coordinates for the simulation system.

The dynamic parameters of the ligands and receptors were

characterized under the generalized Amber force field (GAFF) and

ff14SB, respectively. The counter ions such as Cl or Naþ were used to

neutralize the proton-containing protein, followed by the solvation of

the complex using an octahedral TIP3P box with dimensions of 10.0 x

10.0 x 10.0 Å. The resultant solvated complexes were saved in PDB

format; subsequently, the parameter and coordinate files were created

at the final step of the Leap module. Afterward, the steric clashes were

removed by minimizing the complexes in three sequential steps.

Initially, both receptors and ligands were optimized using ions and a

solvated water system. In the next step, the optimization of residues of

the pocket with backbone amino acids and proteins was optimized.

Finally, the optimization of the whole system was performed to relax

the complexes with the proteins. Notably, all steps of minimization

were carried out with 2500 steps of steepest descent and 5000 steps of

conjugate gradient. At the end of minimization, the whole system was

heated by progressively raising the temperature from 0 to 300 K. An

additional equilibration step was executed at 300 K to further stabilize

the system. The Langevin dynamics was used to execute the

equilibration process by keeping the collision frequency at 1 ps-1 and

maintaining the force constant at 10 kcal (mol Å2)-1 (Raza et al., 2023).

After stabilizing the system, MD simulations were conducted

for 100 ns by applying 300 K of NPT ensemble and 1 atm of

atmospheric pressure. Finally, at the end of simulations for all

selected complexes, the CPPTRAJ module of AMBER20 was used to

analyze the RMSD, RMSF, and SASA. Moreover, the 2D-RMSD,

radius of gyration (Rg), principal component analysis (PCA), and

cross-correlation (DCCM) for the trajectories from the last 50 ns of

MD simulations were performed by following the methodology

developed by Arantes et al (Arantes et al., 2021). Additionally, to

gain knowledge about the dynamic stability and sampling patterns,

the RMSD and 2D-RMSD were computed for the selected ligands as

well as for the apoprotein complex.
Binding free energy calculations by
MMGBSA/MMPBSA and Per-residue-free
energy decomposition analysis

The binding free energy (BFE) was calculated using molecular

mechanics-based analysis consisting of molecular mechanics

(MMPBSA/MMGBSA) modules integrated into the AMBER17

software to examine the structural and energetic properties of

the selected complexes. MM/GBSA computations were done for

each complex system using 1000 snapshots from the last 2 ns MD

trajectories. The binding free energy was calculated as the

difference between the total free energy of the ligand-protein

complex (Gcom) and the sum of the free energies of individual

proteins (Gpro) and ligands (Glig) (Equation 1) (Chohan et al.,

2020):
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DGbind = DH –TDS  = DGcom –  (DGCYP51 + DGIig) (1)

Subsequently, the free energy of the ligand-protein complex,

protein, and ligand was also calculated (Equation 2):

DG  = DEMM –TDS  + DGsol (2)

The molecular mechanics were further investigated by

fragmenting it into Van der Waals energies (EvdW), non-bonded

electrostatic energies (Eele), and solvation-free energy (Gsol), which

was further subdivided into polar and non-polar solvation energies.

For more insight into the BFE, per-residue energy

decomposition was estimated through vdW (GvdW), electrostatic

(Gele), polar (Gele, sol), and nonpolar (Gnonpol, sol). The

decomposition parameters were evaluated based on the binding

free energy snapshots. The analysis of per-residue free energy

decomposition offers an advantage over binding free energy by

allowing a more comprehensive analysis of the binding affinity as

well as the selectivity of each inhibitor. Thereby, helping the

researchers to design more effective inhibitors targeting the

specific interactions or regions (Asif et al., 2022; Khalid et al., 2022).
Generation of essential pharmacophores

A high-quality pharmacophore model was developed with the

Pharmacophore Query Editor in MOE software as reported earlier

(Ahmad et al., 2024; Khalid et al., 2024). This tool can generate a

variety of predefined pharmacophore features, such as hydrogen

bond donor (Don), hydrogen bond acceptor (Acc), aromatic center

(Aro), Pi ring center (PiR), aromatic ring or Pi ring normal (PiN),

hydrophobic (Hyd), anionic atom (Ani), and cationic atom (Cat).

After a comprehensive analysis of protein-ligand interactions

among the predominant metabolites, unique interactions were

identified and labeled using a single structure framework,

resulting in the development of a comprehensive pharmacophore.

The radius of the detected pharmacophore features was

standardized to 1.0 Å, and the distances between the features

were measured (Ahmad et al., 2024).
Bioavailability score analysis

The bioavailability score analysis of metabolites was evaluated

through the SwissADME online tool. It predicts the bioavailability

of metabolites through different physicochemical properties,

including lipophilicity (XLOGP3), molecular size (MW), polarity

(TPSA), solubility (log S), unsaturation, and flexibility. The optimal

range for each physicochemical property includes lipophilicity:

XLOGP3 between −0.7 and +5.0, size: MW between 150 and

500 g/mol, polarity: TPSA between 20 and 130 Å2, solubility: log S

not higher than 6, saturation: fraction of carbons in the sp3

hybridization not less than 0.25, and flexibility: no more than 9

rotatable bonds (Daina et al., 2017).
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Medicinal chemistry

The medicinal chemistry of the metabolites was evaluated through

the SwissADME tool. The important parameters ofmedicinal chemistry

include PAINS (pan-assay interference compounds), Brenk (structure

alerts), lead likeness, and synthetic accessibility. The PAINS alert

identifies the metabolites by finding false positive results. PAINS

predicts the substructure of the metabolite that exhibits biological

activity. The lead likeness of metabolites can also be predicted to have

aprobability of being a leadmetabolite indrugdiscovery, and it increases

thechancesof chemicals in clinical trials. Synthetic accessibilitydescribes

the syntheticprocess, and its scoring ranges from1to10.The lowervalue

predicts the simple synthetic process, and higher values predict the

complex synthetic process (Bakchi et al., 2022).
Pharmacokinetics analysis

ADMET (Absorption, Distribution, Metabolism, Excretion, and

Toxicity) analysis of drugs plays a significant role in drug development

(Jia et al., 2020). The ADMET properties of selected metabolites were

expla ined through ADMETlab 2.0 sof tware (ht tps : / /

admetmesh.scbdd.com/). For a drug to have appropriate and safe

therapeutic effects, it must be easily absorbed, distributed, and

metabolized within the body. That drug should pass out from the

body within the expected duration (Uzzaman et al., 2023). There are

several parameters involved in ADMET analysis. The factors

include human intestinal absorption, permeability of the blood-

brain barrier, inhibition of the cytochrome P450 enzyme,

cardiotoxicity, and cytotoxicity.
Pharmacokinetic simulation

The pharmacokinetic simulation was aimed at predicting the

human plasma concentration-time profile of the hit metabolites by

using their ADMET profile as input. Physiologically-based

pharmacokinetic (PBPK) modeling was performed using PK-Sim

software to predict the plasma concentration-time profiles of the

metabolites (Willmann et al., 2012; Frechen et al., 2021).

The plasma was selected as the target compartment with a focus

on achieving adequate drug concentrations for the effective

treatment of C. auris infections, including bloodstream infections

(candidemia) and deep-seated infections. A virtual population of

older adults (>65 years) was simulated, representing the target

demographic for C. auris treatment, as this age group is more

susceptible to such infections due to underlying medical conditions,

immunocompromised states, and frequent hospitalizations.

The administration protocol was based on the typical

administration of echinocandins, which are often the first-line

treatment for invasive C. auris infections. Intravenous (IV)

infusion was selected as the route of administration with an

infusion time set to 60 minutes.
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The simulations were performed using a standard model for

small molecules in plasma (unbound). The parameters of the

simulation include the physicochemical properties of metabolites,

including MW, lipophilicity, plasma protein binding, and solubility,

which were taken as input into the model. The unbound fraction of

the drug in the plasma compartment was selected for analysis.
Target prediction analysis

An important analysis of the top metabolites was performed

through the Swiss Target Prediction Server (http://www.

swisstargetprediction.ch) to evaluate their interaction with human

targets. For this purpose, SMILES of top metabolites were generated

and used as input files. The results were generated for the most

likely target of the query molecule.
Results and discussion

Potential active site

The selected active site contained residues, i.e., LEU109,

TYR122, THR126, PHE130, VAL135, TYR136, LEU143, GLN146,

LYS147, VAL150, LEU154, LEU205, PHE229, ASP276, MET300,

ALA303, LEU304, MET306, ALA307, GLY308, HIS310, SER311,

SER312, ILE373, HIS374, SER375, ILE376, ILE377, ARG378,

ARG460, HIS461, ARG462, CYS463, ILE464, GLY465, PHE468,

ALA469, GLN472, LEU503, and PHE504. This active site contains

specific residues that have been previously highlighted in literature

for their essential role in protein activity (Hargrove et al., 2015;

Tiwari et al., 2018).

The enzyme CYP51 has conserved residues essential for its catalytic

role in ergosterol production (Figure 1A). HIS461 facilitates catalytic

function and depends on proton transport to the active site (Hargrove

et al., 2015). Therefore, it displays a significant role as an acidic and basic

catalyst (Tiwari et al., 2018). CYS463 acts as the heme iron proximal

ligand, which is essential to the enzyme’s catalytic activity. Tyr122 is

invariant across the whole CYP51 family of target proteins; it forms the

hydrogen bond with the heme ring. A propionate is important for the

stability of protein structure, but the binding of strong inhibitors often

disrupts this hydrogen bond. TYR122, ARG378, HIS461, and CYS463

residues are conserved with target CYP51 family members, which

underscore their vital involvement in catalytic enzymatic function

(Hargrove et al., 2015). Furthermore, it has been observed that

HIS461 and LEU503 are involved in bond formation in standard

(VNI) interaction analysis (Shamsuddin et al., 2021). Understanding

the particular roles of these residues helps us understand CYP51’s

mechanistic features and provides a deep understanding of antifungal

drug development targeting this vital enzyme.
Molecular docking

In this docking analysis, binding energies of all metabolites were

calculated, which shows sixteen metabolites, namely, Gammacer-
Frontiers in Cellular and Infection Microbiology 06
16-en-3-b-ol, Swerta-7,9(11)-dien-3-b-ol, Pichierenol, Methyl

(3b,13a,14b,20a)-3-hydroxy-13-methyl-26-norolean-8-en-29-

oate, Olean-12-ene-18aH-3-one-9a-ol from S. chirayita (Roxb.)

H.Karst. [Gentianaceae], mallonin, putranjivain A, camphor,

borneol, methyl-4-hydroxybenzoate from P. emblica L.

[Phyllanthaceae], 3S,5R-Dihydroxy-6S,7-megastigmadien-9-one,

(6R,6aR) roemerine-N(b)-oxide, Dihydrophaseic acid 3’-O-b-D-
glucopyranoside from N. nucifera Gaertn. [Nelumbonaceae],

Rauwolfine, Ajmaline from R. serpentina (L.) Benth. ex Kurz

[Apocynaceae], Shatavarin-V from A. racemosus Willd .

[Asparagaceae], and Abromasterol from A. augustum (L.) L.f.

[Malvaceae] did not show any interaction with the CYP51 target

protein (Supplementary Table S1). This could be due to the

structural complexity and diversity of these metabolites, which

can cause hindrance in the generation of a suitable conformation

for docking. Hence, it is clear that these metabolites are not effective

as potential inhibitors for the CYP51 target protein.

The docking score of the reference ligand was observed as 9.69

kcal/mol (Supplementary Table S1). It was found that 169

metabolites exhibited a higher docking score than the reference

metabolite. Among them, the top 30 metabolites whose docking

scores ranged from -18.3 kcal/mol to -12.8 kcal/mol

(Supplementary Table S1). These top 30 metabolites were studied

for their drug-likeness and physicochemical properties before

proceeding with the interaction analysis. This approach ensured

the selection of not only strong inhibitors but also potentially

safe compounds.

The docking analysis indicates that the three most prominent

metabolites identified in our study, namely trans-p-coumaric acid

(-14.069), isoliensinine (-14.048), and MCPHB [(r)-n-(1’-

methoxycarbonyl-2’-phenylethyl)-4-hydroxybenzamide](-12.939),

exhibit considerably higher binding affinities to the target protein in

comparison to the standard, VNI (-9.691 kcal/mol) (Figure 1B).

Significantly, these metabolites exhibit greater performance

compared to other broadly investigated inhibitors of CYP51, such

as taraxasterol (-9.428), stepacidin A (-9.407), beta-amyrin (-8.963),

and isopomiferin (-8.696), suggesting a stronger interaction and

potential effectiveness. Therefore, the results emphasize the

potential of our leading compounds in producing superior

inhibitors, strengthening their ability to generate more favorable

therapeutic results compared to other identified inhibitors

of CYP51.
Docking protocol validation

For the docking validation process, the complexes of docked

and PDB reference compounds were prepared through MOE

software. The docked complex was superimposed on the reference

co-crystallized complex using PyMOL, and the root mean square

deviation (RMSD) was calculated. During the alignment, initially,

470 residues participated from both complexes with a MatchAlign

score of 2491.000. Afterwards, 7 residues were rejected during cycle

1 (RMSD=1.04) and 3 during cycle 2 (RMSD=0.99). Finally, the

executive RMSD of 0.980 (460 to 460 atoms) was obtained. The

observed RMSD for our docked complex is 0.980 A° within the
frontiersin.org
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optimal range, which signifies a high degree of alignment that

represents the accuracy and reliability of our docking protocol with

the reference PDB complex. The consistency in docking results of

our metabolite database using the same active site reinforces the

validity of our computational approach in ligand docking studies

(Supplementary Figure S1).
Drug likeness and physicochemical analysis

Based on their binding energy, the top 30 metabolites were

subjected to drug-likeness analysis through Swiss ADME (Table 1).

Among them, the top ten metabolites were selected based on their

adherence to the maximum drug-likeness rules, which can be

expla ined by their opt imal physicochemical profi le s
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(Supplementary Table S2). These selected metabolites: 4-

hydroxybenzoate follows (3 rules, namely Lipinski’s rule, Egan’s

rule, and Veber’s rule); methylcoumarate, 2,6-dihydroxy-4-

methoxyacetophenone (4 rules, Lipinski’s rule, Ghose’s rule,

Veber’s rule, and Egan’s rule); trans-p-coumaric acid (4 rules,

namely Lipinski’s rule, Ghose’s rule, Veber’s rule, and Egan’s rule);

these three metabolites, isoliensinine, neferine, and liensinine, follow

(3 rules, namely Lipinski’s rule, Veber’s rule, and Egan’s rule).

Another three metabolites, eudesmic acid, scoparone, and MCPHB,

followed all rules of drug-likeness (5 rules: Lipinski’s rule, Veber’s

rule, Egan’s rule, Ghose’s rule, and Muegge’s rule). These metabolites

followed all requirements of drug-likeness analysis, which plays a

significant role in drug development. These metabolites are probable

lead metabolites in drug discovery, and they increase the chances of

chemicals in clinical trials.
FIGURE 1

Panel (A) represents active site residues (green) of the target protein Lanosterol 14a demethylase (CYP51). Orange-highlighted residues, namely
HIS461, CYS463, and TRY122, are essential for the catalytic role of CYP51 in ergosterol production. HIS461 facilitates proton transport and acts as an
acidic/basic catalyst, while CYS463 serves as the heme iron ligand essential for catalytic activity. Tyr122 stabilizes the protein structure by forming a
hydrogen bond with the heme ring. Panel (B) represents the comparison of docking scores of our top 3 metabolites (green) against the standard
inhibitor VNI (red) and other known inhibitors (blue), demonstrating the superior binding affinity of our top metabolites to the target protein.
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TABLE 1 Drug likeness analysis of top metabolites by SwissADME webserver.

UG LIKENESS

uegge Comments Bioavailability
Score

– Not accepted in SwissADME
due to character length

exceeding 200

–

– Not accepted in SwissADME
due to character length

exceeding 200

–

No;
W>600,
OGP3<-2,
PSA>150,
otors>15,
acc>10,

H-don>5

Followed zero rules 0.17

No;
LOGP3>5,
oms<2Rotors>15

Followed zero rules 0.17

No;
00, TPSA>150,
#rings>7,
-acc>10,

H-don>5

Followed zero rules 0.17

No;
0, XLOGP3<-2,
PSA>150,
-acc>10,

H-don>5

Followed zero rules 0.17

No;
W<200

Followed three rules 0.85

No;
W<200

Followed four rules 0.55

No;
W<200

Followed four rules 0.55

No;
W<200

Followed four rules 0.85
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Sr. No. Metabolites DR

Lipinski Ghose Veber Egan M

1. Aristophyll-C – – – –

2. Pheophytin-a – – – –

3. Alamandine No;
MW>500,
NorO>10,
NHorOH>5

No;
MW>480,

WLOGP<-0.4,
MR>130,
#atoms>70

No;
Rotors>10,
TPSA>140

No;
TPSA>131.6

X
T

4. 1-Hentetracontanol No;
MW>500,

MLOGP>4.15

No;
MW>480,

WLOGP>5.6,
MR>130, #atoms>70

No;
Rotors>10

No; WLOGP>5.88
X

Heteroa

5. Racemoside B No;
MW>500,

NorO>10, NHorOH>5

No;
MW>480,

MR>130, #atoms>70

No;
TPSA>140

No; TPSA>131.6
MW>

6. Nelumboroside B No;
MW>500,

NorO>10, NHorOH>5

No;
MW>480, WLOGP<-

0.4,
MR>130, #atoms>70

No;
TPSA>140

No; TPSA>131.6
MW>6

T

7. 4-Hydroxybenzoate Yes No
MW<160,

MR<40, #atoms<20

Yes Yes

8. Methylcoumarate Yes Yes Yes Yes

9. 2,6-Dihydroxy-
4-methoxyacetophenone

Yes Yes Yes Yes

10. trans-p-coumaric acid Yes Yes Yes Yes
M
L

R
H

t

6

H

0

H

M

M

M

M
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TABLE 1 Continued

G LIKENESS

uegge Comments Bioavailability
Score

No;
0, XLOGP3>5

Followed three rules 0.55

No;
>5, Rotors>15

Followed one rules 0.55

No;
0, TPSA>150,
ings>7,
-acc>10,
-don>5

Followed zero rules 0.17

No;
W>600

Followed one rules 0.17

No;
>5, Rotors>15

Followed one rules 0.55

No;
0, XLOGP3>5

Followed three rules 0.55

No;
>5, Rotors>15

Followed one rules 0.55

No;
W>600

Followed one rules 0.17

No;
0, TPSA>150,
ings>7,
-acc>10,
-don>5

Followed zero rules 0.17

Yes Followed all five rules 0.85

No;
0, XLOGP3>5

Followed three rules 0.55

Yes Followed all five rules 0.55
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Sr. No. Metabolites DRU

Lipinski Ghose Veber Egan M

11. Isoliensinine Yes;
MW>500

No;
MW>480,

MR>130, #atoms>70

Yes Yes
MW>60

12. Tritriacontane-9,10-diol Yes; MLOGP>4.15 No;
MW>480,

WLOGP>5.6,
MR>130, #atoms>70

No;
Rotors>10

No; WLOGP>5.88
XLOGP3

13. Shatavarin-VII No;
MW>500,

NorO>10, NHorOH>5

No;
MW>480,

MR>130, #atoms>70

No;
TPSA>140

No; TPSA>131.6
MW>60

#
H
H

14. Rescinnamidine No;
MW>500, NorO>10

No;
MW>480,

MR>130, #atoms>70

No;
Rotors>10

Yes
M

15. Hentriacontane-12,15-diol Yes; MLOGP>4.15 No; WLOGP>5.6,
MR>130, #atoms>70

No; Rotors>10 No; WLOGP>5.88
XLOGP3

16. Neferine Yes;
MW>500

No;
MW>480,

MR>130, #atoms>70

Yes Yes
MW>60

17. Nonacosane-10,13-diol Yes; MLOGP>4.15 No; WLOGP>5.6,
MR>130, #atoms>70

No;
Rotors>10

No; WLOGP>5.88
XLOGP3

18. Rescinnamine No;
MW>500, NorO>10

No;
MW>480,

MR>130, #atoms>70

No;
Rotors>10

Yes
M

19. Shatavarin VI No;
MW>500,

NorO>10, NHorOH>5

No;
MW>480,

MR>130, #atoms>70

No;
TPSA>140

No; TPSA>131.6
MW>60

#
H
H

20. Eudesmic acid Yes Yes Yes Yes

21. Liensinine Yes;
MW>500

No;
MW>480,

MR>130, #atoms>70

Yes Yes
MW>60

22. Scoparone Yes Yes Yes Yes
r

r
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TABLE 1 Continued

DRUG LIKENESS

Muegge Comments Bioavailability
Score

No;
MW>600, TPSA>150,

#rings>7,
H-acc>10,
H-don>5

Followed zero rules 0.17

No;
MW>600, XLOGP3>5

Followed zero rules 0.17

No;
MW>600, TPSA>150,

#rings>7,
H-acc>10,
H-don>5

Followed zero rules 0.17

No;
MW>600, TPSA>150,

#rings>7,
H-acc>10,
H-don>5

Followed zero rules 0.17

No;
MW>600

Followed two rules 0.17

No;
MW>600, TPSA>150,
#rings>7, H-acc>10,

H-don>5

Followed zero rules 0.17

Yes Followed all five rules 0.55

No;
MW>600, TPSA>150,

#rings>7,
H-acc>10,
H-don>5

Followed zero rules 0.17
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Sr. No. Metabolites

Lipinski Ghose Veber Egan

23. Racemoside c No;
MW>500,

NorO>10, NHorOH>5

No;
MW>480,

MR>130, #atoms>70

No;
TPSA>140

No; TPSA>131.6

24. Glycine,
N-[(3.alpha.,5.beta.,12.alpha)

No;
MW>500,

MLOGP>4.15

No;
MW>480,

WLOGP>5.6,
MR>130, #atoms>70

No;
Rotors>10

No; WLOGP>5.88

25. Shatavarin - X No;
MW>500,

NorO>10, NHorOH>5

No;
MW>480,

MR>130, #atoms>70

No;
Rotors>10, TPSA>140

No; TPSA>131.6

26. Shatavarin-IV/Asparanin B No;
MW>500,

NorO>10, NHorOH>5

No;
MW>480,

MR>130, #atoms>70

No;
TPSA>140

No; TPSA>131.6

27. Reserpine No;
MW>500, NorO>10

No;
MW>480,

MR>130, #atoms>70

Yes Yes

28. Shatavarin-I No;
MW>500,

NorO>10, NHorOH>5

No;
MW>480, WLOGP<-

0.4,
MR>130, #atoms>70

No;
Rotors>10, TPSA>140

No; TPSA>131.6

29. (R)-N-(1’-methoxycarbonyl-
2’-phenylethyl)-
4-hydroxybenzamide

Yes Yes Yes Yes

30. Asparanin-A No;
MW>500,

NorO>10, NHorOH>5

No;
MW>480,

MR>130, #atoms>70

No;
TPSA>140

No; TPSA>131.6

Names of the thirty metabolites selected for druglikeness analysis are in bold.
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Protein-ligand interactions

The identification and evaluation of binding site interaction of

the ligands with the active pocket of the target receptor plays an

important role, as it involves ligand modification during the lead

optimization stage of drug discovery development (Abdul-Hammed

et al., 2022). Based on the drug-likeness analysis, the top ten

metabolites were selected for further interaction analysis with

receptor proteins. These metabolites include 4-hydroxybenzoate,

methylcoumarate, 2,6-dihydroxy-4-methoxyacetophenone, trans-p-

coumaric acid, isoliensinine, neferine, eudesmic acid, lisinine,

scoparone, and MCPHB (Table 2).
Frontiers in Cellular and Infection Microbiology 11
The standard metabolite VNI (Supplementary Figures S2A–C)

formed one carbon-hydrogen bond with HIS461, one amino-pi-

stacked bond with ILE464, and nine pi-alkyl bonds with PHE229,

HIS310, CYS463, ILE464, PHE504, LEU304, ALA307, ILE373, and

ILE376. This binding is favorable for CYP51 inhibition as it hinders

the activity of HIS461, which acts as an acidic and basic catalyst in

the active site (Tiwari et al., 2018).

Trans-p-coumaric acid (Figure 2A) formed two hydrogen bond

interactions with residues HIS461 and CYS463 with a bond distance

of 2.0Å and 2.8Å. These two important residues are highly

conserved in the active site of the target protein and involve

catalytic enzymatic activity. Disturbing this activity results in the
TABLE 2 Docking score, bonding interaction, and bond distance (Å) of the top selected metabolites.

Sr. No. Metabolites
Docking score

kcal/mol
Bond category Bond type Residues

Bond
distance

Ǎ

1 4-Hydroxybenzoate -14.726 Hydrophobic Pi-Alkyl ALA307 4.5

2 Methylcoumarate -14.377

Hydrogen Bond
Conventional

Hydrogen Bond
LEU503 3

Hydrophobic Alkyl LEU304 5.2

Hydrophobic Pi-Alkyl ALA307 4.9

3 2,6-Dihydroxy-4-methoxyacetophenone -14.145
Hydrogen Bond

Carbon
Hydrogen Bond

CYS463 3

Hydrophobic Pi-Alkyl ALA307 5.1

4 Trans-p-coumaric acid -14.069

Hydrogen Bond
Conventional

Hydrogen Bond
HIS461 2

Hydrogen Bond
Carbon

Hydrogen Bond
CYS463 2.8

5 Isoliensinine -14.048

Hydrogen Bond
Conventional

Hydrogen Bond
ARG378 2.1

Hydrogen Bond
Carbon

Hydrogen Bond
HIS461 2.8

GLN146 2.8

HIS461 2.9

ARG378 4.9

Electrostatic Pi-Cation CYS463 4

other Pi-Sulfur TYR122 4.5

Hydrophobic Pi-Pi Stacked LEU304 5.2

ALA307 4.9

Hydrophobic Alkyl ILE464 5.3

LEU109 4.7

Hydrophobic Pi-Alkyl ILE376 4

VAL135 4.7

VAL150 5.1

MET300 3.4

PRO372 4.6

ILE373 5.2

(Continued)
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TABLE 2 Continued

Sr. No. Metabolites
Docking score

kcal/mol
Bond category Bond type Residues

Bond
distance

Ǎ

ALA307 4.7

ILE373 5.1

ILE376 5.2

ALA303 5.2

LEU304 5

ALA307 5.4

6 Neferine -13.749

Hydrogen Bond
Conventional

Hydrogen Bond
HIS461 2.5

Hydrogen Bond
Carbon

Hydrogen Bond
GLY457 2.7

LEU503 2.9

PRO455 2.9

PRO455 2.9

Hydrophobic Pi-Sigma ILE373 2.6

Other Pi-Sulfur CYS463 3.2

Hydrophobic Alkyl ALA307 3.7

ILE373 4.3

ILE376 5

CYS463 5

VAL135 3.5

LEU143 4.5

LYS147 4.5

ILE373 4.5

ILE376 4.5

Hydrophobic Pi-Alkyl ILE373 4

CYS463 4.1

ALA307 3.5

VAL135 4.8

ALA303 4.7

LEU304 4.9

ILE376 4.8

7
Eudesmic acid/3,4,5-
Trimethoxybenzoic acid

-13.255 Hydrophobic Alkyl ALA307 4

8 Liensinine -13.243

Hydrogen Bond
Conventional

Hydrogen Bond
PRO455 1.9

Hydrogen Bond
Carbon

Hydrogen Bond
LEU304 3

SER311 2.6

Other Pi-Sulfur CYS463 5.2

Hydrophobic Alkyl ALA307 4.9

(Continued)
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TABLE 2 Continued

Sr. No. Metabolites
Docking score

kcal/mol
Bond category Bond type Residues

Bond
distance

Ǎ

ILE373 4.8

CYS463 4.7

ILE464 5.2

ALA469 4.3

LEU205 4.7

LEU304 4.3

CYS463 4.9

Hydrophobic Pi-Alkyl TYR122 4.7

PHE229 4.8

HIS310 4.7

PHE468 4.4

ILE373 4.8

ILE376 5.4

ALA307 3.6

LEU304 5.4

ALA307 4.3

CYS463 4.8

9 Scoparone -13.205

Hydrogen Bond
Carbon

Hydrogen Bond
CYS463 2.8

LEU503 2.8

Unfavorable
Unfavorable
Acceptor-

HIS461 2.8

10
(R)-N-(1’-methoxycarbonyl-2’-
phenylethyl)-4-hydroxybenzamide

-12.939

Hydrogen Bond
Carbon

Hydrogen Bond
CYS463 2.4

Hydrophobic Alkyl LEU304 5.2

Hydrophobic Pi-Alkyl ALA307 4

ILE373 5.4

11 VNI standard -9.691

Hydrogen Bond
Carbon

Hydrogen Bond
HIS461 2.7

Hydrophobic Amide-Pi Stacked ILE464 5.5

Hydrophobic Pi-Alkyl PHE229 4.3

HIS310 4.3

CYS463 5

ILE464 4.7

PHE504 4.9

LEU304 5.4

ALA307 4.4

ILE373 5.1

ILE376 4.4
F
rontiers in Cell
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Names of the top ten drug-like metabolites with the standard compound (VNI) are in bold.
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inhibition of ergosterol synthesis that leads to stopping fungal cell

growth. This metabolite has previously been identified to exhibit

antimicrobial, antioxidant, antitumor, and anti-inflammatory

properties. This provides a strong foundation for further

invest igat ion into i ts predic ted ant i fungal potent ia l

(Tungmunnithum et al., 2018).

Surprisingly, the three bisbenzylisoquinoline alkaloids

(Neferine, Liensinine, and Isoliensinine) have formerly been

shortlisted as leads in our previous publication (Shah et al., 2024).

In the previous study, they were isolated from N. nucifera Gaertn

and presented dual-active behavior against the main protein and

spike glycoprotein of COVID-19. In the current study, these

metabolites formed various hydrogen bonds and hydrophobic

bonds with different bond lengths with our target protein CYP51

(Table 2). Isoliensinine formed one conventional hydrogen bond

with ARG378 (2.1°C) and four carbon-hydrogen bonds with

HIS461 (2.8°C), GLN146 (2.8°C), HIS461 (2.9°C), and ARG378

(4.9°C) residues. It also forms one pi-cation bond with CYS463 (4.0

Å), one pi sulfur bond with TYR122 (4.5 Å), two pi-pi stacked

bonds with LEU304 (5.2 Å) and ALA307 (4.9 Å), eight alkyl bonds
with ILE464 (5.3 Å), LEU109 (4.7 Å), ILE376 (4.0 Å), VAL135 (4.7
Å), VAL150 (5.1 Å), MET300 (3.4 Å), PRO372 (4.6 Å) and ILE373

(5.2 Å), and six pi-alkyl bonds with ALA307 (4.7 Å), ILE373 (5.1

Å), ILE376 (5.2 Å), ALA303 (5.2 Å), LEU304 (5.0 Å), and ALA307

(5.4 Å) (Supplementary Figures S3A–C). Tyr122 residues in the

CYP51 family of target proteins form hydrogen bonds with the

heme ring, which is important for the stability of protein structure,

but binding with isoliensinine inhibitors often disrupts this
Frontiers in Cellular and Infection Microbiology 14
hydrogen bond formation in structure, resulting in the death of

fungi (Hargrove et al., 2015).

Liensinine formed a conventional hydrogen bond with the

PRO455 residue at a shortest bond distance of 1.9Å that

indicated a strong binding with the target protein. Additionally, it

formed two carbon-hydrogen bonds with LEU304 (3.0Å) and

SER311 (2.6Å). Liensinine also established other interactions,

including one pi-sulfur bond with CYS463 (5.2Å), seven alkyl

bonds with ALA307 (4.9Å), ILE373 (4.8Å), CYS463 (4.7Å),
ILE464 (5.2Å), ALA469 (4.3Å), LEU205 (4.7Å), and LEU304

(4.3Å), and eleven pi-alkyl bonds with CYS463 (4.9Å), TYR122
(4.7Å), PHE229 (4.8Å), HIS310 (4.7Å), PHE468 (4.4Å), ILE373
(4.8Å), ILE376 (5.4Å), ALA307 (3.6Å), LEU304 (5.4Å), ALA307
(4.3Å), and CYS463 (4.8Å) (Supplementary Figures S4A–C).

Neferine forms one conventional hydrogen bond with HIS461

(2.5Å) and four carbon-hydrogen bonds with GLY457 (2.7Å),
LEU503 (2.9Å), and PRO455 (two at 2.9Å). It also forms one pi-

sigma bond with ILE373 (2.6Å) and one pi-sulfur bond with

CYS463 (3.2Å). Additionally, Neferine forms nine alkyl bonds

with ALA307 (3.7Å), ILE373 (4.3Å), ILE376 (5.0Å), CYS463
(5.0Å), VAL135 (3.5Å), LEU143 (4.5Å), LYS147 (4.5Å), and two

more with ILE373 (4.5Å) and ILE376 (4.5Å). It also forms seven pi-

alkyl bonds with ILE373 (4.0Å), CYS463 (4.1Å), ALA307 (3.5Å),
VAL135 (4.8Å), ALA303 (4.7Å), LEU304 (4.9Å), and LEU376

(4.8Å) (Supplementary Figures S5A–C).

These three metabo l i t e s be long to the c la s s o f

bisbenzylisoquinoline alkaloids, which are significant due to their

highest binding affinities with the target protein. The strong affinity
FIGURE 2

Protein-Ligand Interaction analysis of trans-p-coumaric acid and MCPHB; (A) 2D and 3D interactions of trans-p-coumaric acid and (B) 2D and 3D
interactions of MCPHB in the binding pocket of target protein CYP51.
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of these metabolites for the active site of the target protein is

evidenced by the extensive number of bonds formed with various

residues, namely ILE376, LEU304, CYS463, ALA307, HIS461, and

ILE464. Consequently, these bisbenzylisoquinoline alkaloids show

potential as effective inhibitors for the target protein. Previous

studies have demonstrated that bisbenzylisoquinoline alkaloids

possess a diverse range of pharmacological effects. According to

Zhu et al. (2016), these metabolites exhibit significant anti-

depressant, anti-arrhythmic, anti-pulmonary edema, and anti-

HIV properties (Zhu et al., 2016). Additionally, research by Liu

et al. (2021) has identified potent anti-cancer activity among these

alkaloids (Liu et al., 2021). This broad spectrum of pharmacological

actions represents the potential therapeutic applications of

bisbenzylisoquinoline alkaloids across various medical conditions.

MCPHB (Figure 2B) and Scoparone (Figure 3A) metabolites

formed one carbon-hydrogen bond with the same residue, CYS463,

but with different bond lengths of 2.44 Å and 2.80 Å, respectively.
2,6-Dihydroxy-4-methoxyacetophenone (Figure 3B) and
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methylcoumarate (Figure 3C) metabolites formed one hydrogen

bond with LEU503 and CYS463 with a bond distance of 3.05Å and

3.07Å , respect ively (Table 2) . Eudesmic acid (3,4 ,5-

trimethoxybenzoic acid) (Figure 3D) formed one alkyl bond with

ALA307. It showed the highest antibacterial activity (Bisignano

et al., 2000) and antioxidant properties. It possesses various

biological and pharmacological effects, such as triggering the self-

destruction of cancer cells, neutralizing free radicals, and disrupting

the signaling processes that involve calcium ions and reactive

oxygen species (Atewolara-Odule et al., 2020). 4-hydroxybenzoate

(Figure 3E) has not formed any interactions with the H bonds, but it

shows interactions with the pi-alkyl bond with the residue

of ALA307.

Catalytically important active site residues LEU503, HIS461,

ARG378, and PRO455 that involve the formation of conventional

hydrogen bonds in protein-ligand interaction, along with the residues

that formcarbon-hydrogen bonds, i.e, CYS463, HIS461, GLN146,

ARG378, GLY457, LEU503, PRO455, LEU304, and SER311, were
FIGURE 3

3D interaction profiles of (A) 1 Scoparone, (B) 3 2,6-Dihydroxy-4-methoxyacetophenone, (C) 2 Methylcoumarate, (D) 4 Eudesmic acid, and (E) 5 4
Hydroxybenzoate in the binding pocket of CYP51.
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prominent in the interaction profiles of the studied metabolites. The

residues involved in hydrophobic interactions with ligands are

ALA307, LEU304, ILE464, LEU109, ILE376, VAL135, VAL150,

MET300, PRO372, ILE373, ALA303, CYS463, VAL135, LEU143,

LYS147, ALA307, ALA469, LEU205, TYR122, PHE229, HIS310,

PHE468, HIS461, and PHE504. The maximum number of

interactions with the hydrophobic residues was observed with

isoliensinine, neferine, and liensinine metabolites. Hydrophobic

interaction was prominent in the interaction profile of most of the

inhibitors, highlighting the significance of hydrophobic residues in the

active site of the CYP51 target protein (Table 2). The most favorable

profiles were observed with trans-p-coumaric acid andMCPHB, which

were selected for detailed analysis in the further sections. In Table 2,

docking scores were reported with three decimal places for precision,

while bond lengths were recorded with one decimal place, following

standard conventions in the literature.
MD simulation

Among the top 10 drug-like compounds (following all rules), 2

metabolites for MD were chosen for structural uniqueness, full

compliance with Lipinski’s rule, and potential as small, promising

drug molecules. Standard VNI was also simulated alongside. To derive

rational conformational samplings of the selected leads, their complexes

with the CYP51 enzyme were subjected to 100 ns MD simulations.
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Root-mean-square deviations

To assess the stability of MD simulations, RMSDs of backbone

atoms in the selected ligands with respect to the crystal structures

were computed as a function of the simulated time (Figure 4). MD

simulation of non-ligand-bonded protein, apoprotein (CYP51), was

also performed for the same duration of time (100 ns) using the

same parameters and protocol as that used for the PN-LIG (protein-

ligand) complex (Figure 5).

The RMSD plot shows that the apoprotein reached stability after

approximately 20 ns, with minor fluctuations observed throughout

the simulation (Figure 5A). The overall RMSD values remained

within an acceptable range. The binding pocket also exhibited a

similar trend with slightly lower deviations. These results suggest that

both the protein and pocket maintained its structural integrity and

stability during simulation. This can be further illustrated by the

snapshots taken at different time intervals during MD simulations

and the superimposition of these snapshots (Figure 6).

For the VNI-protein complex, the average RMSD values for

both the protein and ligand remained below 2.5 Å throughout the

simulation. While minor deviations occurred in the VNI

conformation, these fluctuations remained within an acceptable

range, which indicated the structural integrity of the co-crystalized

complex over time (Figures 4A, B).

In the case of the trans-p-coumaric acid complex, the RMSD

values for the protein remained stable, but the binding pocket displayed
FIGURE 4

Root mean square deviation (RMSD) analysis for (A, B) co-crystallized VNI, (C, D) trans-p-coumaric acid, and (E, F) MCPHB complexes. (A, C, E)
RMSD plots showing the time evolution of the protein, pocket, and ligand across 100 ns of MD simulations. RMSD values for protein (black), pocket
(purple), and ligand (blue) were monitored to assess structural stability. (B, D, F) 3D representations of the protein-ligand complexes, with insets
highlighting different conformations of the ligands bound in the protein pocket.
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some conformational instability beyond 50 ns, with transient

deviations in RMSD that exceeded 3 Å. These fluctuations reflect

flexibility in the binding pocket, which may influence the strength or

stability of the ligand binding. However, the system re-equilibrated and

remained stable over extended timescales (Figures 4C, D).

The MCPHB complex exhibited the most stable binding, with

average RMSD values for both protein and ligand remaining around

2 Å throughout the 100 ns simulation. The pocket also demonstrated

minimal fluctuations, indicating a strong and stable interaction

between the ligand and the protein binding site (Figures 4E, F).

Overall, all three complexes reached equilibrium after some initial

fluctuations, with RMSD values staying below 3 Å. This suggests that

the systems are sufficiently stable for further analysis.
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Root-mean-square fluctuations

To evaluate and compare the structural flexibility of the protein

in the presence of different ligands, we computed the root-mean-

square fluctuations (RMSF) of the C-alpha atoms across the three

systems of each selected ligand (Figure 7A). The RMSF analysis

demonstrates a largely similar fluctuation pattern for all three

complexes. This similarity suggests that the protein maintains

consistent conformational dynamics, whether unbound

(Figure 5B) or bound to any of the three ligands (Figure 7A).

The RMSF profile of the apoprotein (unbound state) highlights

regions with high flexibility, particularly around residues 188, 235,

and 376, which show prominent peaks. These fluctuations are
FIGURE 5

Root mean square deviation (RMSD) (A), root-mean-square fluctuation (RMSF) (B), radius of gyration (Rg) (C), and solvent-accessible surface area
(SASA) (D) analyses of apoprotein (CYP51). The x-axis represents residue numbers/time in nanoseconds (ns), while the y-axis indicates the RMSF, Rg,
or SASA values (in Å).
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primarily located in loop regions, whereas the core residues remain

stable. These results indicate that the apoprotein retains its overall

structural framework during the simulation.

In the bound state, the majority of residues show RMSF values

below 2 Å, indicating high structural stability in these regions.

Notably, significant fluctuations occur in a few specific regions, with

the highest peaks observed around residues 225 and 375, regardless

of the ligand bound. These peaks correspond to flexible loops or

regions distant from the binding site, which are generally expected

to exhibit higher mobility.

The comparable RMSF values across systems further confirm

that ligand binding does not introduce significant conformational

disruption in the protein. Such results indicate that the system

remains folded and stable throughout the simulation. These

findings highlight the stability of the protein-ligand complexes in

solution, suggesting that the ligands (trans-p-coumaric acid and

MCPHB) do not negatively impact the protein’s structural integrity

or folding over the simulation period.
Radius of gyration

To evaluate the impact of ligand binding on the structural

compactness of the protein, the radius of gyration (Rg) was

monitored over 100 nanoseconds of simulation for the three ligand-

bound systems (Figure 7B). The Rg values for all systems remained

stable throughout the simulation, indicating that the overall protein

structure maintained its compactness in bound and unbound states.
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The Rg plot demonstrates that the apoprotein remains compact

throughout the simulation (Figure 5C), with values fluctuating

within a narrow range (~22.3 Å). Overall, the results indicated no

significant expansion or collapse of the protein structure.

For the VNI-protein complex, the Rg values fluctuated between

22.2 Å and 22.6 Å (Figure 7B). The trans-p-coumaric acid complex

exhibited similar behavior, with Rg values mostly between 22.3 Å

and 22.7 Å. The MCPHB complex showed the highest Rg range,

fluctuating between 22.4 Å and 23.0 Å (Figure 7B). All these

variations remained within acceptable limits and indicated stable

structural integrity. This stability implies that the protein retains its

original folded state, which is essential for maintaining the

architecture required for effective ligand interaction.
Solvent-accessible surface area

To investigate the effect of ligand binding on the solvent

accessibility of the protein, the solvent-accessible surface area

(SASA) was monitored throughout 100 nanoseconds of molecular

dynamics simulation for the three systems (Figure 7C). SASA

provides insights into the degree of protein surface exposure to

the solvent, reflecting possible structural changes or ligand-induced

compactness variations.

For the apoprotein (unbound state), SASA values remain

relatively stable, fluctuating between 760 and 860 Å² (Figure 5D).

These results suggest minor conformational changes during the

solvent exposure.
FIGURE 6

MD snapshots of the apoprotein were captured at different time intervals (left panel). Superimposed MD snapshots highlighting the similarity
between poses observed during the MD analysis (right panel).
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For the VNI-protein complex, SASA fluctuated primarily

between 700 Å² and 800 Å². These values are in the acceptable

range and indicate stable solvent accessibility throughout the

simulation. Similarly, the trans-p-coumaric acid complex

exhibited SASA values within a comparable range, though it

showed slightly more frequent dips in surface exposure,

indicating minor fluctuations in protein conformation. The

MCPHB complex maintained the highest SASA values,

fluctuating between 750 Å² and 900 Å², suggesting that this

system had the largest surface area exposed to the solvent. The

consistent SASA patterns observed across the three complexes

reflect that ligand binding did not cause significant changes in the

protein’s overall folding or surface exposure.
Dynamic Cross-Correlation Map

To investigate the impact of ligand binding on the internal

dynamics of the protein, cross-correlation maps were computed

for the selected three ligand-protein systems (Figure 8). The

diagonal elements of these maps represent intra-residue

motions, indicating the movement of individual residues relative

to themselves. In contrast, the off-diagonal regions reflect inter-

residue motions, showing the relative movements between

different residues.
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The color coding reveals the degree of correlation between

residue pairs. Red regions represent highly positive correlations,

indicating synchronized motion between residues, while blue areas

reflect strong anti-correlations, signifying that residues move in

opposite directions. The cross-correlation analysis shows that

ligand binding influences the internal dynamics of the protein by

modifying the correlated and anti-correlated movements of specific

regions (Figures 8A–C). Although each ligand introduces unique

patterns of motion, the preservation of positive correlations in key

regions highlights the stability of these interactions, which could be

crucial for maintaining the functional conformation of the protein.

On the other hand, no significant correlation or anti-correlation

was observed in the DCCM results of the apoprotein, indicating its

stable confirmation throughout the simulation (Figure 8D).
Principal component analysis and free
energy landscape

Principal Component Analysis (PCA) identified key motion

patterns in the protein-ligand systems (Figures 9, 10). The

eigenvalues reflect the variance in movement, where higher values

correspond to larger conformational shifts. The PCA projections

reveal different clustering patterns, indicating distinct dynamics for

each complex.
FIGURE 7

Root-mean-square fluctuation (RMSF) (A), radius of gyration (Rg) (B), and solvent-accessible surface area (SASA) (C) analyses of protein (CYP51)
bound with VNI (purple), trans-p-coumaric acid (blue), and MCPHB (black) over the 100 ns simulation period. The x-axis represents residue
numbers/time in nanoseconds (ns), while the y-axis indicates the RMSF, Rg, or SASA values (in Å).
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The VNI-protein complex (Figure 9A) shows tight clustering,

which suggests minimal conformational shifts. The FEL indicates

deep basins (blue regions), which represent stable low-energy states.

This implies that VNI forms a stable interaction with the protein and

limits structural variability. The trans-p-coumaric acid complex

(Figure 9B) shows more scattered clusters, reflecting greater

conformational flexibility. The FEL highlights broader low-energy

regions with small high-energy peaks, indicating that this ligand

induces more dynamic movements while maintaining some stable

states. The MCPHB complex (Figure 9C) shows intermediate

clustering with multiple low-energy basins. The FEL suggests

smooth transitions between stable states, indicating dynamic yet

stable interactions.

For the apoprotein, the PCA plot (Figure 10A) shows how the

protein explores different conformations. The clusters of points

represent stable states, while the spread of points indicates transitions

between these states. The densest regions (yellow) highlight the most

frequent conformations. The presence of multiple low-energy basins

suggests that the apoprotein adopts different stable conformations

during the simulation (Figure 10B). Structural representations in
Frontiers in Cellular and Infection Microbiology 20
Figure 10C highlight conformational variations throughout the

simulation for apoprotein. Thicker ribbons indicate areas of higher

mobility, and thinner ribbons indicate more rigid regions.

The overall results reflect moderate flexibility and adaptable

binding while preserving structural stability.
Binding free energy

This free energy decomposition reveals how various energetic

contributions affect the binding stability of the three ligand-

protein systems. Each ligand displays a unique balance of van

der Waals, electrostatic, and solvation energies, which influence

the overall interaction strength. The VNI-protein complex shows

strong van der Waals forces (DEvdW) and stable electrostatic

energy (DEele). These forces, along with favorable solvation

energy, contribute to highly negative predicted binding energies

(DGpred) in both Poisson-Boltzmann (PB) and Generalized Born

(GB) models.This suggests that VNI forms a stable interaction

with the protein (Figure 10D).
FIGURE 8

Cross-correlation plots of residue motions in the protein in complexes with (A) VNI, (B) trans-p-coumaric acid, and (C) MCPHB. The x- and y-axes
represent the residue sequence, and the color scale on the right indicates the correlation coefficients, ranging from -1 (anti-correlated, blue) to +1
(positively correlated, red). These plots show the degree of correlated and anti-correlated motions between residues throughout the 100 ns
MD simulation.
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The trans-p-coumaric acid complex relies more on solvation

energy (DGsol) for stability. Although its van der Waals

contributions are lower compared to the other ligands, favorable

solvent interactions help maintain a stable complex. The overall

predicted binding energy is less negative than that of VNI,

indicating a weaker binding affinity (Figure 10D).

The MCPHB complex achieves stability through a balanced

contribution of van der Waals and electrostatic forces. Its solvation

energy also supports the stability of the complex. The predicted

binding energy remains highly negative, suggesting that MCPHB

binds effectively to the protein while maintaining stable interactions

with the solvent. In summary, VNI depends heavily on van der

Waals forces, trans-p-coumaric acid benefits more from solvent

interactions, and MCPHB achieves a balanced interaction through

multiple energy components. All three systems maintain sufficiently

stable binding for potential biological function (Figure 10D).
Per-residue energy decomposition

The per-residue energy decomposition was calculated for the

lead compounds in comparison to the cocrystalized ligand (CCL),

namely VNI, to gain insight into the contribution of each residue of
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the binding pocket to the BFE of each complex. The contribution of

each residue was further broken down into van der Waals,

electrostatic, polar solvation, and non-polar solvation.

The total energy decomposition of trans-p-coumaric acid

shown in Supplementary Table S3 illustrated that Val86, Ile415,

Gln97, and Cys414 were observed as hotspot residues with major

contributions in the binding affinity due to their strong vdW

interactions as well as balanced polar and non-polar solvation.

The residues Leu94 and Met257 slightly contributed with minimal

electrostatic effects. However, destabilizing factors were also

observed due to the major contribution of polar solvation rather

than non-polar solvation. Notably, pronounced flexibility and polar

interaction were noted at the Gln97 and Lys98 residues due to high

variation in electrostatic as well as solvation contribution.

The energy decomposition of residues for the MCPHB complex

highlighted in Supplementary Table S4 presented that Tyr87,

His412, Ala69, and Val86 made a significant contribution in

stabilization due to strong vdW and electrostatic interactions.

However, the Lys98 residue was involved in destabilizing effects

due to high polar solvation, as observed in the trans-p-coumaric

acid complex. Moreover, both Cys414 and Ile415 residues made a

balanced contribution in vdW and electrostatic interactions with

polar solvation effects. Supplementary Table S5 represents the per-
FIGURE 9

Principal Component Analysis (PCA) and Free Energy Landscape (FEL) representations for the dynamics of the protein-ligand complexes with (A) VNI,
(B) trans-p-coumaric acid, and (C) MCPHB. Left panels: PCA projections show the movement trajectories along the first two principal components
(PC1 and PC2). Middle panels: FELs reveal energy variations across different conformational states, with red indicating high-energy states and blue
indicating low-energy (stable) states. Right panels: Structural representations highlight conformational variations throughout the simulation for each
complex. Thicker ribbons indicate areas of higher mobility, and thinner ribbons indicate more rigid regions.
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residue energy decomposition of binding residues of the VNI

complex, revealing the highest total energy values due to the

maximum contribution of hydrophobic interactions by the

following residues: Leu454, Leu76, Phe185, and Ala258. These

residues were mainly involved in significant vdW interactions as

well as electrostatic interactions with Tyr73 and Cys414, signifying

the importance of hydrophobic interactions and electrostatic

stabilization with the VNI. Simultaneously, polar solvation effects

were observed by the Lys45 residue playing a role in the

destabilization of the complex.

Overall, the per-residue energy decomposition analysis showed

that Val86, Tyr73, and Leu76 were crucial residues of binding

pockets across all ligands, majorly involved in hydrophobic

interactions with high stabilizing contributions. Additionally, the

polar solvation effects could be mitigated by the incorporation of

non-polar or aromatic functional groups.
Essential pharmacophores of CYP51

This analysis aims to find the specific pharmacophore

patterns of the standard VNI (Supplementary Figure S6) and

the 2 metabolites (trans-p-coumaric acid, MCPHB) of the

Ayurvedic medicinal plant library (Figures 11A, B). This

method maximizes the ability of these metabolites to bind and

effectively inhibit the CYP51 target protein, hence increasing

their potential as drugs.
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These metabolites offer some distinct interactions that could

potentially enhance the selectivity and potency of the drugs by

offering other interaction points. The features labeled as G7 and G8

in trans-p-coumaric acid have the descriptor “Don2&Acc2” that

form bonds with residues CYS463 and HIS461 (Figures 11A, 2A)

and G9 in MCPHB (Figures 11B, 2B) “Acc” with residues CYS463,

indicating the presence of hydrogen bond acceptor sites that are

important for forming specific interactions with hydrogen bond

donors within the active site of CYP51. The radius of G7, G8, and

G9 is 0.50, respectively. These features emphasize the significance of

hydrogen bond interactions forming C-C and C-H bonds that

contribute to structural stability and are essential for binding to the

target protein. The presence of “Hyd” in G1 with residue LEU304 and

““Hyd|Aro” in G3 with ALA307 and G4 with ILE373 residues

(Figure 2B) suggests a region in the metabolites that can participate

in both hydrophobic interactions and p-p stacking interactions with

radii of 0.50 in both G1 and G3, and 0.55 in G4, offering a dual role in

enhancing the binding affinity with the target protein. Comparatively,

in the pharmacophoric profile of VNI, G9, G10, and G11 with

descriptor “ACC2” and residues ILE464, CYS463, and ILE376; G12

and G13 with descriptor “ACC” and residues HIS4612 and ILE373,

indicate the critical hydrogen bond acceptor features for the

inhibition of CYP51 (Supplementary Figure S6). Furthermore, the

“Hyd|Aro” feature in G6 with residues LEU304 and ALA307 offers a

dual role in enhancing the binding affinity with the target protein.

By identifying these pharmacophoric properties, we can

comprehend the multifaceted connection between the metabolites
FIGURE 10

Principal Component Analysis (PCA) (A) Free Energy Landscape (FEL) (B) and Principal Component (PC1) (C) of the apoprotein during the 100
simulations. Structural representations highlight conformational variations throughout the simulation for apoprotein. Thicker ribbons indicate areas
of higher mobility, and thinner ribbons indicate more rigid regions. Binding free energy decomposition analysis (D) for the protein-ligand complexes
with VNI (purple), trans-p-coumaric acid (blue), and MCPHB (black). The y-axis represents binding free energy in kcal/mol for each term. Key
components shown include van der Waals energy (DEvdW), electrostatic energy (DEele), gas-phase energy (DGgas), and solvation energy (DGsol). The
graph also shows predictions of binding free energy with both Poisson-Boltzmann (DGpred(PB)) and Generalized Born (DGpred(GB)) methods.
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and their biological target. This emphasizes the importance of each

interaction site and spatial arrangement in obtaining the intended

therapeutic effect.
Bioavailability score analysis

The six physicochemical properties that predict the

bioavailability of the metabolite are LIPO (lipophilicity), SIZE,

POLAR (polarity), INSOL (insolubility), INSATU (unsaturation),

and FLEX (flexibility), respectively. The optimal range of

physicochemical properties includes lipophilicity: XLOGP3

between −0.7 and +5.0, size: MW between 150 and 500 g/mol,

polarity: TPSA between 20 and 130 Å2, solubility: log S not higher

than 6, saturation: fraction of carbons in the sp3 hybridization not

less than 0.25, and flexibility: no more than 9 rotatable bonds

(Daina et al., 2017) (Supplementary Table S6). It should be
Frontiers in Cellular and Infection Microbiology 23
mentioned here that an algorithmic value of the bioavailability

score is also taken into account from the SwissADME webserver.

These values have been mentioned in Table 1 for the top 30

compounds and discussed under the section on drug-likeness and

physicochemical properties.

Lipophilicity (logP) is a crucial parameter in determining the

physicochemical properties of drugs. It measures a metabolism’s

ability to stay in the aqueous phase, influencing its transport across

membrane barriers. Lipophilicity also describes the intermolecular

forces between the solute and solvent, which include various types of

interactions such as ion-dipole interactions, charge transfer

interactions, hydrogen bonds, ion-ion interactions, hydrophobic

bonds, and van der Waals interactions. These interactions

collectively impact the drug’s absorption, distribution, metabolism,

and excretion (ADME) properties (Lewis et al., 2008; Plisǩa et al.,

2008). ADME and toxicity profiles will be addressed in subsequent

sections of this study. The optimal value of lipophilicity (XLOGP3) is
FIGURE 11

Essential pharmacophoric features of (A) trans-p-coumaric acid and (B) MCPHB for the inhibition of target protein. With variable radii, the identified
features are G1, G2, G4, G7, and G8, and G9, with the descriptors of Hyd, Hyd|Aro, Don2&Acc2, and Acc indicating the hydrophobic, aromatic, and
hydrogen bond donor-acceptor sites, respectively. Bioavailability Radar graphs by the SwissADME platform for (C) trans-p-coumaric acid and
(D) MCPHB.
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between −0.7 and +5.0, and the MW of the metabolite is between 150

and 500 g/mol. All the metabolites, including trans-p-coumaric acid,

MCPHB, and isoliensinine, lie in the optimal range of lipophilicity

and molecular size of the metabolite (Supplementary Table S6). The

polarity of metabolites describes the ability to cross the cell

membrane. The optimal range of polarity (TPSA) is between 20

and 130 Å2. All our top metabolites follow the optimal range of

polarity. Different metabolites show different solubility values (LogS).

Metabolites with solubility values of 0 and above are extremely

soluble; those in the range of 0 to −2 are soluble; those in the range

of −2 to −4 are sparingly soluble; and those metabolites below −4 are

insoluble (Chen et al., 2018). The solubility values of the metabolites

isoliensinine, neferine, and liensinine are below −4 and are insoluble,

and other metabolites are in the range of −2 to −4 and are sparingly

soluble. The saturation of metabolites is the fraction of carbons in the

sp3 hybridization that should not be less than 0.25. The metabolites

isoliensinine, neferine, and liensinine are being Fsp3 hybridized. The

flexibility of the metabolite shows the number of rotatable bonds. It

should have no more than nine rotatable bonds. Most of our top

metabolites, including trans-p-coumaric acid and MCPHB, followed

the optimal range of rotatable bonds (Figures 11C, D). Overall, the

metabolites, specifically methylcoumarate, 2,6-dihydroxy-4-

methoxyacetophenone, trans-p-coumaric acid, isoliensinine,

eudesmic acid, and MCPHB, were found to possess optimal

bioavailability characteristics. This implies that they are likely to be

efficiently absorbed, distributed, metabolized, and excreted within the

body, maximizing their therapeutic potential and effectiveness as

drug candidates. These characteristics ensure that the metabolites,

including trans-p-coumaric acid and MCPHB, achieve the desired

concentration in the bloodstream and target tissues, enhancing their

efficacy and safety profiles.
Medicinal chemistry analysis

The important parameters of medicinal chemistry include PAINS

(pan-assay interference metabolites), Brenk (structural alerts), lead-

likeness, and synthetic accessibility. These parameters help identify

metabolites that may provide false-positive results in assays. PAINS

predict the substructure of metabolites that may exhibit biological

activity, and all the metabolites show 0 alerts for PAINS. Brenk

structural alerts were identified with none of the metabolites except

trans-p-coumaric acid, methylcoumarate, and scoparone showing 1

alert. Lead-likeness, which predicts the probability of a metabolite

being a lead in drug discovery and increases the chances of success in

clinical trials, was observed only in MCPHB among all the

metabolites. Synthetic accessibility scores, which range from 1 to 10

and indicate the complexity of the synthetic process, showed that all

our top metabolites have simple synthetic processes with scores

ranging from 1 to 5 (Supplementary Table S7).

To summarize, our medicinal chemistry of the evaluated

metabolites generally lacks problematic structural alerts and

exhibits favorable properties for drug development. Notably, one

metabolite (MCPHB) shows high potential as a lead candidate, and

all metabolites possess simple synthetic routes, suggesting they are

promising candidates for further research and development.
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Pharmacokinetic analysis

The pharmacokinetic analysis focuses on evaluating the

absorption, distribution, metabolism, and excretion (ADME) profiles

of the metabolites under study. This section provides a detailed

assessment of the behavior of the metabolites within biological

systems to determine their potential efficacy, safety, and suitability

for further development as therapeutic agents (Shah et al., 2023). It

includes Caco-2 permeability (Caco-2), P-glycoprotein substrate

(P-gps), P-glycoprotein inhibitor (P-gpi), CYP substrates and

inhibitors (CYP1A2, CYP2C9, CYP2D6, CYP2C19, and CYP3A4),

human intestinal absorption (HIA), CYP inhibitory promiscuity

(CYPPRO), carcinogenicity (CARC), human ether-a-go-go-related

gene inhibition (hERG), and the organic cation transporter protein 2

inhibitor (OCT2i) (Supplementary Table S8).

All the top metabolites exhibit high values for human intestinal

absorption (HIA), indicating their strong potential for efficient

absorption from the gastrointestinal tract upon oral administration

(Nainwal et al., 2020). Moreover, all the top 10 metabolites exhibit

values within the range of −5 to −7.7 for skin permeability (LogKp),

indicating their potential to effectively permeate through the outer layer

of the skin. This suggests that these metabolites are well-suited for

transdermal delivery applications, offering an alternative administration

route for treating localized fungal infections (Chen et al., 2018).

All the top 10 metabolites exhibit a high probability of being P-

glycoprotein (P-gp) substrates, and most are also predicted to be P-gp

inhibitors, with the exceptions of isoliensinine, neferine, and liensinine

(Supplementary Table S8). This suggests that these metabolites are

likely to interact with P-gp, which may influence drug transport and

metabolism (Broccatelli et al., 2011; Thapa et al., 2023).

All the metabolites, except 2,6-Dihydroxy-4-methoxyacetophenone

and isoliensinine, exhibited plasma protein binding values below 90%,

indicating an optimal therapeutic index. Additionally, all metabolites,

except eudesmic acid, demonstrated the ability to penetrate the blood-

brain barrier (BBB), suggesting potential access to the central nervous

system (CNS) (Supplementary Table S8).WhileC. auris is not primarily

known as a CNS pathogen, it can cause severe systemic infections,

including CNS involvement, particularly in immunocompromised

individuals. The ability of these antifungal metabolites to cross the

BBB is therefore significant for treating rare but serious CNS infections

caused by C. auris.

Cytochrome P450 enzymes, particularly various isoforms, are

responsible for approximately 90% of oxidative metabolic reactions

(Guan et al., 2019). Among the studied metabolites, 4-

hydroxybenzoate, trans-p-coumaric acid, isoliensinine, neferine,

eudesmic acid, and linsinine showed no inhibitory potential against

cytochrome P450 enzymes. However, several metabolites acted as

inhibitors for specific isozymes: eudesmic acid, 2,6-dihydroxy-4-

methoxyacetophenone, scoparone, and MCPHB were identified as

inhibitors of CYP1A2, with MCPHB also inhibiting CYP2C19 and

CYP2C9. Notably, none of the top metabolites were predicted to

inhibit CYP2D6 or CYP3A4.Regarding substrate activity, CYP2C9

was identified as a substrate for methylcoumarate, 2,6-dihydroxy-4-

methoxyacetophenone, trans-p-coumaric acid, isoliensinine,

neferine, linsinine, and scoparone. Additionally, CYP1A2 served as

a substrate for 2,6-dihydroxy-4-methoxyacetophenone and eudesmic
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acid. The metabolites isoliensinine, neferine, linsinine, and scoparone

also acted as substrates for multiple cytochromes, including CYP1A2,

CYP2C9, CYP2D6, and CYP3A4. The results suggest that the studied

metabolites have favorable metabolic profiles, with minimal

cytochrome P450 inhibition, reducing the risk of drug-drug

interactions during antifungal therapy targeting C. auris.

Toxicity is one of the important properties of a metabolite to be

drug candidates. Most of the drug failures are due to the high

toxicity of the drugs because they damage different organs of the

human body. The important parameters of toxicity are studied as

human Ether-à-Go-Related Gene (hERG) blockers, human

hepatotoxicity (H-HT), AMES toxicity, skin sensitization, rat oral

acute toxicity, drug-induced liver injury (DILI), carcinogenicity, eye

corrosion, eye irritation, respiratory toxicity, and maximum

recommended daily dose (FDAMDD) (Kalyaanamoorthy and

Barakat, 2018). Metabolites such as 4-hydroxybenzoate,

methylcoumarate, 2,6-dihydroxy-4-methoxyacetophenone, trans-

p-coumaric acid, scoparone, and MCPHB have demonstrated

minimal activity as hERG blockers and align with acceptable

Maximum Recommended Daily Dose (FDAMDD) levels. These

results suggest that these metabolites are likely to have a lower risk

of cardiotoxicity and are safer for further development as antifungal

agents targeting C. aureus.

Based on the pharmacokinetic and safety analysis, 4-

hydroxybenzoate , methylcoumarate , 2 ,6-dihydroxy-4-

methoxyacetophenone, trans-p-coumaric acid, scoparone, and

MCPHB emerge as the most promising candidates. These

metabolites exhibit favorable absorption and distribution profiles,

minimal cytochrome P450 inhibition, and lower hERG blocker

activity, reducing the risk of cardiotoxicity. Their alignment with
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acceptable Maximum Recommended Daily Dose (FDAMDD) levels

further supports their potential for safe and effective use in

antifungal therapy targeting C. auris.
PBPK simulation analysis

The PBPK simulations generated concentration-time profiles

for the unbound fraction of the compounds, namely coumaric acid,

MCPHB, and VNI, in the plasma over 24 hours. These profiles

represented their potential efficacy and duration of action in

treating C. auris infections.

In this, the plasma concentration of coumaric acid peaked rapidly

at approximately 4 mmol/L within the first hour after post-

administration (Figure 12A). The concentration then declined to

approximately 2 mmol/L within an hour, then followed a gradual

pattern and maintained sustained levels over 24 hours. At 24 hours,

the concentration remained above 1.2 mmol/L due to a sustained level

that suggests a potential for once-daily dosing. Another metabolite,

MCPHB, showed a moderate profile compared to coumaric acid with

a lower peak concentration of about 1.1 mmol/L (Figure 12B). Its

elimination shows faster than coumaric acid, due to rapid

concentrations dropping to approximately 0.2 mmol/L by 24 hours.

This shows more frequent dosing due to rapid elimination compared

to coumaric acid. The plasma concentration profile of VNI shows an

initial rapid increase peaking at approximately 0.004 mmol/L within

the first hour after administration (Figure 12C). Following the peak,

the concentration gradually declined, reaching approximately 0.0002

mmol/L by 24 hours suggesting that it may have a moderate duration

of action. However, its comparatively low plasma concentration
FIGURE 12

Concentration time profile of metabolites shown in (A) coumaric acid, (B) (R)-N-(1’-methoxycarbonyl-2’-phenylethyl)-4-hydroxybenzamide
(MCPHB), and (C) VNI. The red solid line represents varying concentrations of these metabolites in the peripheral venous blood plasma over
24 hours.
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indicates the need for dose optimization or alternative formulations

to enhance efficacy.

Comparatively, the peak concentrations can be indicated as

coumaric acid > MCPHB > VNI. Coumaric acid shows more

sustained and higher plasma concentrations that suggest that it

may have the most promising pharmacokinetic profile for targeting

C. auris infections. It shows superior plasma retention due to its

moderate lipophilicity and high solubility. MCPHB shows a balanced

profile with initial concentrations and moderate sustained levels that

are potentially suitable for twice-daily dosing. Isolinsinine may

require significant dose adjustments or alternative formulation

strategies due to its extremely low plasma concentrations.

All three compounds demonstrate varying capabilities to

maintain plasma concentrations, while coumaric acid and

MCPHB show the most promising candidates. These results show

that our top compounds performed better than the standard

compound. Further experimental studies are required to confirm

the antifungal activity and safety profiles of these metabolites to

assess their potential as treatments for C. auris infections fully.
Target prediction analysis

An important analysis was performed to identify the human

possible targets and evaluate the comprehensive pharmacodynamic

profile of our top 10 metabolites for treating C. auris disease

subjected through the Swiss target prediction online tool.

Through this analysis, we can predict both beneficial and harmful

interactions within the body that help in evaluating the drug’s

efficacy and safety, as they can affect both the disease pathology and

the drug’s therapeutic potential.

Among our top metabolites, 4-hydroxybenzoate (Supplementary

Figure S7A) shows a high probability of interaction with carbonic

anhydrase receptor protein (Supplementary Table S9). Among the
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top 15 results, it shows maximum interaction with this class of

carbonic anhydrase receptor protein (80%), according to the pie

chart. This receptor protein is involved in many biological processes

such as respiration, pH homeostasis, fungal growth, virulence, and

CO2 transport. The carbonic anhydrase (CA) is a metalloenzyme that

catalyzes the essential physiological reaction. It is efficiently involved

in the interconversion of carbon dioxide (CO2) and bicarbonate,

which is essential for fungal virulence in C. auris. By targeting CA,

it can be a potential target for developing new antifungal drugs

(Akhtar et al., 2023b). Previously, studies also proved that CA is a

crucial target for antifungal drug discovery (Schlicker et al.,

2009; Supuran and Capasso, 2021). These metabolites, trans-p-

coumaric acid (Supplementary Figure S7B), eudesmic acid/3,4,5-

trimethoxybenzoic acid (Supplementary Figure S7C), and

scoparone (Supplementary Figure S7D), have the maximum

probability (73.3%) to interact with the carbonic anhydrase

receptor protein, which belongs to the target class of the Lyase

family. Trans-p-coumaric acid metabolite also shows interaction

with AKR1B1 receptor protein, but this metabolite is not directly

linked with our target diseases.

Another top metabolite, methylcoumarate, shows maximum

interaction with the carbonic anhydrase receptor (66.7%) according

to the pie chart (Supplementary Figure S7E). Metabolite 2,6-

dihydroxy-4-methoxyacetophenone (Figure 13A) also shows

maximum interaction with the carbonic anhydrase receptor (40%).

It also can interact with other classes of target proteins, including

serine/threonine-protein kinase/endoribonuclease IRE1 (13.3%) and

cannabinoid receptor protein (13.3%). This IRE1 receptor protein

plays a vital role in the fungal pathogenesis mechanism (Akhtar et al.,

2023a). Cannabinoid receptor protein, which belongs to Family A G

protein-coupled receptor, is not related to our disease directly or

indirectly, but this shows the broad-spectrum activity of our

metabolite that it can also be used in other diseases or benefits for

other processes, but further validation is required to confirm its
FIGURE 13

Target prediction of molecules (A) 2,6-Dihydroxy-4-methoxyacetophenone, (B) Isoliensinine, (C) Liensinine, (D) Neferine, and (E) MCPHB with
different receptor proteins shown in the pie chart diagram.
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activity. Our metabolites Isoliensinine (Figure 13B), Liensinine

(Figure 13C), and Neferine (Figure 13D) show the maximum

probability of interaction with the dopamine receptor protein,

which belongs to the target class of a G protein-coupled receptor.

This receptor is also not directly linked with our disease, but this

shows the interactions with other diseases, including Parkinson’s

disease (Deeb et al., 2010). (R)-MCPHB (Figure 13E) shows

interaction with different classes of receptor proteins, including C-

C chemokine receptor type 3, cystinyl aminopeptidase, and protein-

tyrosine phosphatase 1B, but these receptors are not related to our

target disease. These top metabolites, methylcoumarate, 2,6-

dihydroxy-4-methoxyacetophenone, trans-p-coumaric acid,

eudesmic acid, scoparone, and 4-hydroxybenzoate, mostly interact

with the CA receptor protein, which is the part of metabolism related

to our disease. These metabolites could be beneficial for treating the

disease in various ways other than targeting the disease we selected in

our study. The results of our top metabolites demonstrated that they

have broad-spectrum activity, making them adaptable to treat

different infectious diseases.
Conclusions

This investigation is intended to explore the efficacy of traditional

Ayurvedic medicinal plants in treating fungal infections, particularly

targeting C. auris. Targeting CYP51 is important for maintaining the

integrity, fluidity, and permeability of cell membrane structure that

contributes a potential pathway for novel antifungal therapeutics.

Ayurvedic medicinal plants are well-known for their medicinal

activity, including antimicrobial activity, antioxidant, anti-

inflammatory, anti-cancer, antifungal, anti-diabetic, antibacterial,

and immunomodulatory properties. This study aimed to explore

the reported natural products of Ayurvedic medicinal plants against

the CYP51 of C. auris. A total of 469 reported secondary metabolites

of the plant, S. chirayita (Roxb.) H.Karst. [Gentianaceae], A. indicum

(L.) Sweet [Malvaceae], P. emblica L. [Phyllanthaceae], N. nucifera

Gaertn. [Nelumbonaceae], A. salviifolium (L.f.) Wangerin

[Cornaceae], R. serpentina (L.) Benth. ex Kurz [Apocynaceae], A.

racemosus Willd. [Asparagaceae], and A. augustum (L.) L.f.

[Malvaceae], were collected and virtually screened against the

CYP51, which is an essential component of the fungal cell wall.

Through virtual screening, 160 metabolites showed a binding affinity

higher than the standard metabolite. Key active site residues, namely

HIS461, CYS463, and TRY122, were observed in the interaction

patterns of the studied metabolites that predicted the potential to

inhibit the ergosterol synthesis, with VNI employed to benchmark

the findings. The results from RMSD, RMSF, Rg, and SASA analyses

confirmed that all three ligands, including our two metabolites,

namely trans-p-coumaric acid and MCPHB, and the co-crystallized

ligand VNI, achieved stable binding with the protein throughout the

MD simulations. The PCA and cross-correlation analyses revealed

distinct patterns of residue motion, where VNI constrained the
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protein structure, trans-p-coumaric acid promoted higher

flexibility, and MCPHB maintained a balance between stability and

flexibility. The binding free energy decomposition showed that VNI’s

interaction relied heavily on van der Waals forces, trans-p-coumaric

acid benefited from solvent interactions, and MCPHB exhibited a

balanced contribution from van der Waals, electrostatic, and

solvation energies. The per-residue energy decomposition analysis

showed that Val86, Tyr73, and Leu76 were crucial residues of binding

pockets across all ligands. These analyses highlight that each ligand

forms a stable complex in comparison with the standard VNI,

maintaining the protein’s structural integrity and making them

suitable candidates for further biological investigation. The

highlighted pharmacophoric features indicated the significant

structural features of the studied metabolites that were required for

stable binding with key active site residues. Further analysis indicates

that our top 10 metabolites followed the maximum rules of drug-

likeness. Pharmacokinetic, toxicity, and target prediction analyses

have demonstrated that the top metabolites exhibit low toxicity and

do not affect human proteins. Furthermore, our top metabolites

showed that they have broad-spectrum activity, making them

adaptable to treat different infectious diseases. Natural metabolites

explored in this study exhibit significant potential for experimental

validation in the search of innovative therapeutic approaches to

combat fungal infections.
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SUPPLEMENTARY FIGURE 1

Superimposing the docked complex (in red) onto the co-crystallized complex

(in gold) within the active site using PyMOL (RMSD = 0.980 A0).

SUPPLEMENTARY FIGURE 2

Protein-Ligand Interaction analysis of metabolite VNI; 2D schematic
interactions with bond distance (A); 3D interactions with amino acids

residues (B) and 3D conformation (C) in the binding pocket of the
target protein.

SUPPLEMENTARY FIGURE 3

Protein-Ligand Interaction analysis of metabolite Isoliensinine; 2D schematic

interactions with bond distance (A); 3D interactions with amino acids residues
(B) and 3D conformation (C) in the binding pocket of the target protein.

SUPPLEMENTARY FIGURE 4

Protein-Ligand Interaction analysis of metabolite Liensinine; 2D schematic
interactions with bond distance (A); 3D interactions with amino acids residues

(B); and 3D conformation (C) in the binding pocket of the target protein.

SUPPLEMENTARY FIGURE 5

Protein-Ligand Interaction analysis of metabolite Neferine; 2D schematic
interactions with bond distance (A); 3D interactions with amino acids residues

(B); and 3D conformation (C) in the binding pocket of the target protein.

SUPPLEMENTARY FIGURE 6

Essential pharmacophoric features of the co-crystallized ligand and the
standard compound, VNI, for the inhibition of target protein.

SUPPLEMENTARY FIGURE 7

Target prediction of molecules (A) 4-hydroxybenzoate, (B) trans-p-coumaric,
(C) eudesmic acid/3,4,5-Trimethoxybenzoic acid, (D) scoparone, and (E)
methylcoumarate with different receptor proteins shown in a pie chart diagram.
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