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University School of Public Health, New Haven, CT, United States, 5Department of Neurology, Xi’an
Children’s Hospital, Xi’an,, China, 6Department of Pediatrics, Xi’an Central Hospital, Xi’an, China
Background: This study used a nontargeted metabolomic approach to

investigate small molecular metabolites in the peripheral blood of pediatric

patients with influenza. By comparing these metabolites with those in healthy

children, potential biomarkers for the early detection and diagnosis of influenza

were explored.

Methods: Plasma samples were collected from 47 children with H1N1 influenza,

40 with H3N2 influenza, and 40 healthy controls at Xi’an Children’s Hospital, Xi’an

Jiaotong University Second Affiliated Hospital, and Xi’an Central Hospital

between May and September 2023. Nontargeted metabolomic detection and

analysis were performed.

Results: In the H1N1 group, 14 glycerophospholipid metabolites were

significantly altered compared to controls, with 11 (78.5%) markedly

downregulated. These downregulated metabolites showed negative

correlations with inflammatory markers, including white blood cell (WBC)

count, neutrophils, C-reactive protein (CRP), and Procalcitonin (PCT), whereas

the upregulated metabolite PC(P-18:1(9Z)/16:0) showed positive correlations

with validation markers. In the H3N2 group, 12 glycerophospholipid metabolites

were significantly altered, with 9 being downregulated. The downregulated

LysoPC(20:0/0:0) showed a positive correlation with alanine aminotransferase

(ALT) but a negative correlation with WBC count, while the upregulated

metabolite LysoPA(18:1(9Z)0:0) correlated positively with ALT, aspartate

aminotransferase (AST), and lactate dehydrogenase (LDH).

Conclusions: Distinct metabolomic profiles were identified in pediatric H1N1 and

H3N2 influenza cases compared to healthy controls. Specific glycerophospholipid

metabolites were closely associated with inflammatory and liver function markers,

highlighting their potential as biomarkers for diseasemonitoring and early diagnosis.
KEYWORDS

influenza virus, plasma metabolomics, differentially abundant metabolites, biomarker,
early diagnosis
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1 Introduction

Influenza is an acute respiratory infectious disease caused by the

influenza virus that is highly pathogenic and has a highmortality rate.

As one of the major global public health threats, influenza viruses are

widely distributed worldwide. In particular, influenza A and B viruses

are the main causes of human respiratory infectious diseases (Jansen

et al., 2019). During the period from week 27 in 1996 to week 26 in

2021, 39,637,339 influenza samples were monitored worldwide

(Chen C. et al., 2023). Each year, 5–10% of adults and 20–30% of

children were infected, and 290,000–650,000 people died (Chen et al.,

2022). Among influenza A strains, the H1, H2 and H3 subtypes are

the main pathogens causing human influenza (Cui et al., 2016).

Currently, most cases of influenza in humans are caused by the avian

influenza viruses H1N1 and H3N2 (Flerlage et al., 2021). The severity

and mortality of influenza A virus in infants and older individuals are

significantly greater than in young andmiddle-aged people, who have

relatively mild symptoms (Worobey et al., 2014). In 1968, a new

subtype of influenza A virus, H3N2, emerged, causing a worldwide

pandemic and >1 million fatalities (Alymova et al., 2016). Recent

epidemiological data from China further highlight the seasonal

burden of H1N1 and H3N2 infections. According to the latest

influenza surveillance report from the Chinese Center for Disease

Control and Prevention (China CDC), as of December 29, 2024, the

influenza virus positivity rate in both northern and southern regions

has been increasing, with A(H1N1) pdm09 as the predominant

circulating subtype. A total of 171 influenza-like illness (ILI)

outbreaks have been reported nationwide. During the period from

April 1 to December 29, 2024, 97.0% of A(H1N1) pdm09 strains were

found to be genetically similar to A/Victoria/4897/2022, while 56.0%

of A(H3N2) strains were similar to A/Thailand/8/2022 (egg-

propagated strain) (China CDC Weekly, 2024).

Although the specific pathogenesis of influenza remains

unclear, it has been shown that the main mechanism is that the

virus invades respiratory epithelial cells to cause lung inflammation

and damage, while the body’s corresponding immune response also

affects lung inflammation (Kalil and Thomas, 2019). During the

progression of influenza, various small molecules in the host may

play important immunoregulatory roles. Children’s innate immune

recognition receptors, such as Toll-like receptor 3 and 7, can

influence the development of signal transduction pathways,

reducing the body’s ability to clear influenza virus, induce an

excessive inflammatory response, and increase the risk of

secondary infection (Coates et al., 2015). CD4+ T cells lacking

arginase (Arg)1 proliferate faster during the T helper (Th)1 life

cycle, produce the corresponding Th1 cytokines earlier, and enter

the contraction phase more rapidly after influenza virus infection.

Accelerated Th1-induced transformation can control the virus to

some extent, enhance the production of interleukin-10, and prevent

excessive tissue damage (West et al., 2023). Therefore, it is necessary

to study the regulatory effects of various small molecule substances

in the body.

As an emerging technology, metabolomics has played an

increasingly important role in revealing the metabolic response of

the body under physiological and pathological conditions. This
Frontiers in Cellular and Infection Microbiology 02
approach involves the measurement of small molecule chemical

substances, including endogenous and exogenous compounds.

Endogenous compounds are usually produced by endogenous

synthesis or degradation and are critical for the growth and

development of the body and participate in important

physiological functions (Wishart , 2019). In addit ion,

metabolomics studies do not need sample types and are suitable

for studies of most samples (Liu and Locasale, 2017). To date,

metabolome research techniques include chemical analysis of

metabolites and data analysis. The main techniques used are

divided into two parts: nuclear magnetic resonance and mass

spectrometry (MS), l iquid chromatography (LC), gas

chromatography, or capillary electrophoresis (Miggiels et al.,

2019). Currently, metabolomics is applied to evaluate the

therapeutic effect of drugs on influenza virus infection (Beale

et al., 2019; Feng et al., 2023) and to explore abnormal metabolic

pathways after influenza virus infection through cell and animal

experiments (Karimi et al., 2022).

Lipid metabolism plays a crucial role in influenza virus infection

and replication. As an enveloped RNA virus, influenza virus heavily

relies on host lipid metabolic pathways to complete its life cycle.

Lipids are essential for viral entry, membrane fusion, replication,

and virion assembly, making lipidomic alterations a key factor in

disease pathogenesis. Recent studies have demonstrated that host

lipid metabolism, particularly glycerophospholipid metabolism, is

significantly altered during influenza infection, affecting both

immune response modulation and viral propagation (Chen X. Y.

et al., 2023; Kawabata et al., 2023). Several metabolic pathways,

including fatty acid metabolism, cholesterol biosynthesis, and

phospholipid remodeling, have been identified as potential targets

for influenza pathogenesis research (Zhou et al., 2021).

Given the critical involvement of lipid metabolism in influenza

progression, this study applies untargeted metabolomics analysis to

investigate plasma metabolic alterations in peripheral blood

samples of Chinese Han children after influenza virus infection.

The identification of biomarkers may contribute to early diagnosis,

predicting prognosis, disease risk, disease progression and

treatment outcomes, and providing new insights into the

continuous pathophysiological process of viral pneumonia.
2 Methods

2.1 Study subjects and sample collection

Peripheral blood samples were collected from 47 children with

influenza A (H1N1) and 40 children with influenza A (H3N2) who

were hospitalized at Xi’an Children’s Hospital, Xi’an Jiaotong

University Second Affiliated Hospital, and Xi’an Central Hospital

between May and September 2023, Additionally, 40 healthy control

children were included during the same period. Influenza cases

were diagnosed according to the Expert Consensus on the Diagnosis

and Treatment of Children Influenza (2020 Edition) and were

further classified into mild and severe groups based on clinical

severity (Zhou et al., 2021).
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Mild cases exhibited influenza-like symptoms with systemic

manifestations more pronounced than the common cold but without

complications. Severe cases were defined as thosemeeting at least one of

the following criteria: (1) persistent high fever lasting more than three

days, accompaniedby severe cough, purulent orbloody sputum, or chest

pain; (2) significant respiratory distress, including markedly increased

respiratory rate, dyspnea, or cyanosis; (3)neurological symptomssuchas

altered mental status, lethargy, irritability, or convulsions; (4) severe

gastrointestinal symptoms, including frequent vomiting, diarrhea, or

signs of dehydration; (5) complications such as pneumonia or

encephalitis; or (6) exacerbation of pre-existing underlying medical

conditions (National Clinical Medical Research Centre for Respiratory

Diseases, Respiratory Group of the Paediatrics Branch of the Chinese

Medical Association, 2020).

Throat swab samples were collected from all children in the case

group after admission to hospital. The throat swab samples were

tested for influenza virus antigen or viral RNA by the hospital

laboratory department or the Centers for Disease Control and

Prevention. The families of all the children tested were informed

of the purpose of the study and provided written informed consent.

This study was approved by the Medical Ethics Committee of Xi’an

Children’s Hospital, Xi’an Jiaotong University Second Affiliated

Hospital and Xi’an Central Hospital.
2.2 Clinical data collection and analysis

All clinical data were obtained from the original medical records

of patients and relevant laboratory test results after admission.

Clinical physicians obtained the medical records through face-to-

face interviews with the patients or their family members, and

relevant laboratory test results were obtained from the patients’

blood samples. SPSS 23.0 software was used for statistical analysis,

and the distribution characteristics of influenza were analyzed using

descriptive epidemiological methods. Measurement data were

expressed as mean ± standard deviation (SD) or median (Q25,

Q75) and were compared by t-test (normally distributed data) and

Mann–Whitney U test (non-normally distributed data). The c2 test
was used for numerical data, a=0.05.
2.3 Collection and preparation of
plasma samples

Blood samples (2 mL/tube) were collected in EDTA

anticoagulant tubes under fasting conditions in the morning.

After gentle mixing, the samples were centrifuged at 4°C, and the

supernatant was transferred into enzyme-free EP tubes. All plasma

samples were stored in a -80°C medical freezer.
2.4 Metabolite chemical analysis and
data analysis

Test solutions were prepared by mixing 100 μL of plasma with

400 μL of methanol/acetonitrile (1:1) extraction solution containing
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isotope-labeled internal standards, followed by vortexing and

centrifugation at 3500 RPM for 10 minutes at 4°C. The

supernatant was collected for further analysis. QC samples were

prepared by pooling equal volumes of supernatant from all samples.

Target compound separation was conducted using a Waters

ACQUITY UPLC BEH Amide column (Thermo Fisher

Scientific), and mass spectrometry was performed with an

Orbitrap Exploris 120 system (Thermo), with primary and

secondary MS data acquired using Xcalibur software (version 4.4).

Process QC ensured minimal differences in internal standard

peaks between QC samples and blank samples. Data QC involved

analyzing the PCA scores, PCA-X distribution, and correlation of

QC samples. Data quality was confirmed by QC variation within ±2

SD and correlation coefficients close to 1.

Raw data were converted into mzXML format using ProteoWizard

and analyzed using an in-house R package for peak extraction,

alignment, and integration. Metabolites were identified through

KEGG and MetaboAnalyst databases and screened using OPLS-DA

(VIP>1.000, P<0.05). Metabolic pathway enrichment was performed

using MetaboAnalyst (https://www.metaboanalyst.ca/). Cytoscape

software (version 3.7.1) was used to visualize differences in

metabolite expression between groups.
2.5 Correlation analysis of metabolites and
clinical indicators

We conducted Pearson correlation tests to analyze the

relationship between the most prevalent type of differential

metabolites (glycerophospholipids in this study) and clinical test

indicators [including blood routine, liver function, C-reactive

protein (CRP), procalcitonin (PCT), etc.] in patients sampled

from the H1N1 group versus normal control group and the

H3N2 group versus normal control group. P<0.05 was considered

statistically significant.
3 Results

3.1 Clinical characteristics of H1N1 and
H3N2 influenza patients

This study included 47 H1N1 influenza patients, 40 H3N2

influenza patients, and 40 healthy controls, with cases divided into

severe and mild groups. Among H1N1 cases, there were 10 severe

and 37 mild, while the H3N2 group comprised 11 severe and 29

mild cases. Blood samples were collected for untargeted

metabolomic analysis.

Forty-seven H1N1 cases were included (61.7% male). Ages

ranged from 3 months to 14 years (median: 3.83 years). Patients

predominantly lived in urban areas (72.3%) and exhibited

symptoms such as fever (100%), cough (83%), and vomiting

(40.4%). Fever duration ranged from 1 to 8 days, with an average

peak temperature of 39.44°C. Immune profiling revealed

significantly lower white blood cell (WBC) and neutrophil counts,

with elevated monocyte percentages compared to controls (P<0.01)
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(Supplementary Table 1). Forty H3N2 cases were analyzed (57.5%

male), with an age range of 5 months to 12 years (average: 4.66

years). Symptoms mirrored those of H1N1, with fever (100%) and

cough (82.5%) being most prevalent. Fever duration ranged from 1

to 15 days, with an average peak temperature of 39.6°C in Table 1.

Immune parameters showed reduced WBC, neutrophil, and

lymphocyte counts, with elevated monocyte percentages

compared to controls (P<0.01) (Supplementary Table 1).

However, no significant statistical differences were observed in

immune cell counts between the H1N1 and H3N2 groups (P>0.05).

In comparison, the control group (40 healthy individuals) had

an age range of 2 months to 8 years, with a gender distribution of

55% male and 45% female. There were no significant differences in

age and gender between the case groups and the control group. For

liver function clinical indicators, a comparison between the

influenza groups and the control group showed that ALT, AST,

CK, CK-MB, and LDH levels were significantly different between

the H1N1 group and the control group, and the H3N2 group and

the control group (P<0.05).
3.2 Glycerophospholipid metabolism
pathway in H1N1 patients

Plasma samples from 47 H1N1 patients and 40 healthy controls

underwent untargeted metabolomics analysis. A total of 563

metabolites were detected and analyzed using orthogonal PLS-DA

(R²Y=0.965, Q²=0.91; P<0.01), as shown in Figures 1A, B,

demonstrating clear separation between the H1N1 and control

groups. Differentially abundant metabolites (n=81) were identified

based on criteria of VIP>1, P<0.05, fold change >1.5 or <2/3, and

M2 score >0.7. Among these, 27 metabolites were upregulated, and

54 were downregulated (Figure 1C).

Of the 81 differentially abundant metabolites, 14 (17.2%) were

glycerophospholipids, with 78.5% of them significantly

downregulated in H1N1 patients. The top 20 metabolites with the

highest VIP scores in the OPLS-DA model are depicted in

Figure 1D, while the top 30 differential metabolites are visualized

as a heatmap in Figure 1E.

KEGG pathway analysis revealed that the differentially abundant

metabolites were primarily enriched in glycerophospholipid

metabolism, pyruvate metabolism, glycine, serine, and threonine

metabolism, and primary bile acid biosynthesis (Figure 1F). These

findings strongly suggest that H1N1 influenza disrupts the

glycerophospholipid metabolism pathway, potentially contributing to

the disease’s pathophysiology.
3.3 Glycerophospholipid metabolism
pathway in H3N2 patients

Plasma samples from 40 H3N2 patients and 40 healthy controls

revealed 562 metabolites. OPLS-DA analysis (Figures 2A, B)

showed clear group separation, with R²Y=0.916 and Q²=0.878

(P<0.01). A total of 79 differentially abundant metabolites were
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identified (VIP>1, P<0.05), including 26 upregulated and 53

downregulated metabolites (Figure 2C). Of these, 12 (15.1%) were

glycerophospholipids, with 75% significantly downregulated in

H3N2 cases.

The top 20 metabolites with the highest VIP values are shown in

Figure 2D, while the top 30 differential metabolites are displayed in

a heatmap (Figure 2E). KEGG pathway analysis indicated that the

differentially abundant metabolites were primarily involved in

glycerophospholipid metabolism, primary bile acid biosynthesis,

glycine, serine, and threonine metabolism, pyruvate metabolism,

glyoxylate and dicarboxylate metabolism, ether lipid metabolism,

and the citrate cycle (Figure 2F; Supplementary Table 2).

Of the 12 glycerophospholipid metabolites with differences, 9

(75%) were significantly downregulated in H3N2 cases. These

findings suggest that the metabolic disruptions observed in H3N2

are similar to those in H1N1, with predominant downregulation of

glycerophospholipid pathways in both groups.
3.4 Comparative analysis of
glycerophospholipid metabolism between
H1N1 and H3N2

To further explore the metabolic differences between H1N1 and

H3N2 influenza, a direct comparative analysis of metabolomic

profiles was conducted between the two groups (47 H1N1 vs. 40

H3N2 cases). PCA and OPLS-DA analyses revealed that the overall

metabolite distributions between H1N1 and H3N2 cases were

highly similar, indicating that global metabolic changes induced

by both viral strains share a common pattern. However, differential

expression analysis identified one significantly different metabolite,

Bergapten (Fold change=1.6668, p=0.024771), which was elevated

in the H3N2 group relative to H1N1 cases (Supplementary

Figure 1). Among the 562 detected metabolites, the concentration

distribution was largely overlapping between the two groups,

making it difficult to distinguish H1N1 from H3N2 based on

metabolomic profiles alone. As shown in the volcano plot

(Supplementary Figure 1), only a single metabolite reached the

predefined differential threshold (Fold Change >1.5, p<0.05). Due

to the small number of severe cases (10 in total), statistical power

was insufficient to detect significant lipidomic differences between

severe H1N1 and H3N2 cases. Future studies with a larger cohort of

severe cases will be necessary to further explore the metabolic

distinctions between these influenza subtypes and their

implications for disease progression.
3.5 Association between
glycerophospholipid metabolites and
clinical indicators

In H1N1 patients, 14 glycerophospholipid metabolites

exhibited significant differences compared to healthy controls,

with 11 (78.5%) being markedly downregulated. LysoPC(20:0/

0.0), among the downregulated metabolites, negatively correlated
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with inflammatory markers (WBC, neutrophil count, CRP, and

PCT), while the upregulated metabolite PC(P-18:1(9Z)/16:0)

showed a positive correlation with validation markers (Figure 3A).

Similarly, in H3N2 patients, 12 glycerophospholipid metabolites

differed significantly,with9 (75%)beingdownregulated.LysoPC(20:0/
Frontiers in Cellular and Infection Microbiology 05
0:0) showed a positive correlation with alanine aminotransferase

(ALT) and a negative correlation with WBC count. Conversely,

LysoPA(18:1(9Z)0:0), an upregulated metabolite, positively

correlated with ALT, aspartate aminotransferase (AST), and lactate

dehydrogenase (LDH) (Figure 3B).
TABLE 1 Clinical information for the H1N1 and H3N2 patients.

Residence type

H1N1 group H3N2 group Control group P1 value P2 value P3 value

Nursery 10 (21.3%) 7 (17.5%) – 0.409 – –

Diaspora 18 (38.3%) 21 (52.5%) –

Student 19 (40.4%) 12 (30%) –

Residence 0.810 – –

Towns 34 (72.3%) 28 (70%) –

Rural or township 13 (27.7%) 12 (30%) –

Gender 0.690 0.527 0.822

male, male 29 (61.7%) 23 (57.5%) 22 (55%)

women, women 18 (38.3%) 17 (42.5%) 18 (45%)

Age, years 3.83 (2.25,6.00) 4.17 (2.38,6.77) 5 (3.25,6.00) 0.624 0.138 0.472

Thermal history, day 3 (2,5) 3 (2,5) – 0.398 – –

Highest temperature 39.44 ± 0.59°C* 39.36 ± 0.67°C* – 0.576 – –

Fever 47 (100%) 40 (100%) –

Cough 39 (83%) 33 (82.5%) – 0.953 – –

Twitching 7 (14.9%) 9 (22.5%) – 0.361 – –

Sore throat 1 (2.1%) 3 (7.5%) – 0.233 – –

Muscle soreness 2 (4.3%) 1 (2.5%) – 0.655 – –

Vomiting 19 (40.4%) 15 (37.5%) – 0.780 – –

Abdominal pain 4 (8.5%) 5 (12.5%) – 0.543 – –

Diarrhea 3 (6.4%) 1 (2.5%) – 0.389 – –

dizziness 3 (6.4%) 4 (10%) – 0.536 – –

Headache 4 (8.5%) 2 (5%) – 0.467 – –

Highly sensitive C-reactive protein 1.7 (<0.5, 8.21) 5.25 (0.70,11.07) – 0.279 – –

ALT 16 (14.75, 21) 15 (12,22) 11.20 ± 3.31 0.240 0.000 0.000

AST 41 (33, 55) 39.50 (30.0, 50.50) 23.20 ± 4.22 0.421 0.000 0.000

CK 97.0 (59.75, 168.25) 101.00 (76.25, 142.50) 80.70 ± 31.12 0.649 0.031 0.002

CK-MB 21.0 (16.0, 27.0) 17.50 (15.0, 23.0) 14.08 ± 3.98 0.059 0.000 0.000

LDH 268.0 (237.0, 304.0)
240.50
(212.50, 284.25)

219.50 (206.50,242.00) 0.032 0.000 0.033

Creatinine 34.43 ± 8.69* 34.80 ± 10.26* 32.68 ± 7.26 0.859 0.316 0.289

Uric acid 254 (216.0, 302.50) 258 (209.25, 296.25) – 0.736 – –

PCT 0.15 (0.08, 0.27) 0.12 (0.05, 0.25) – 0.339 – –

Erythrocyte sedimentation rate 11 (7, 14) 11 (6,15) – 0.770 – –
*Normally distributed data. P1 value, H1N1 patients compared with H3N2 patients; P2 value, H1N1 patients compared with control patients; P3 value, H3N2 patients compared with control patients.
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3.6 Metabolomic analysis of severe and
mild cases

The H1N1 cohort included 47 patients (10 severe, 37 mild).

OPLS-DA score plots (Figures 4A, B) showed a cumulative R²Y of

0.962 and Q² of 0.113, indicating minimal distinction between severe

and mild cases. Among 561 detected metabolites, 102 showed
Frontiers in Cellular and Infection Microbiology 06
significant differences (P<0.05, Figure 4C), with 45 being further

identified (43 upregulated, 2 downregulated, Figure 4D). Details of

these differential metabolites are provided in Supplementary Table 3.

The H3N2 cohort comprised 40 patients (11 severe, 29 mild).

OPLS-DA score plots (Figures 4E, F) yielded R²Y=0.961 and

Q²=0.328, insufficient for clear differentiation between severity

groups, potentially due to the small sample size. Of 561
FIGURE 1

Metabolomic analysis of patients in the H1N1 group. OPLS-DA score diagram of pediatric H1N1 influenza patients and healthy controls (A, B);Volcano plot of
differential metabolites between children with H1N1 influenza and the healthy control group (C); Top 20 metabolites with the highest VIP values (D);
Heatmap of the top 30 different metabolites between children with H1N1 influenza and healthy controls (E); Enrichment analysis of the differentially
abundant metabolite pathways in the H1N1 group vs. healthy controls (F).
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metabolites, 83 differed significantly (P<0.05, Figure 4G), with 30

identified as s ignificant ly al tered (2 upregulated, 28

downregulated, Figure 4H). Details of these differential

metabolites are provided in Supplementary Tables 3.
Frontiers in Cellular and Infection Microbiology 07
Pathway enrichment analysis of the 45 H1N1 and 30 H3N2

differential metabolites indicated no significant pathway

associations (P>0.05, Supplementary Tables 4, 5). This suggests

that glycerophospholipid metabolism disruption contributes to
FIGURE 2

Metabolomic analysis of patients in the H3N2 group. OPLS-DA score diagram of pediatric H3N2 influenza patients and healthy controls (A, B); Volcano plot
of differential metabolites between children with H3N2 influenza and the healthy control group (C); Top 20 metabolites with the highest VIP values (D);
Heatmap of the top 30 different metabolites between children with H3N2 influenza and healthy controls (E); Enrichment analysis of the differentially
abundant metabolite pathways in the H3N2 group vs. healthy controls (F).
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disease but lacks significant variation between severe and

mild cases.
4 Discussion

The influenza virus spreads widely around the globe, resulting

in seasonal epidemics. Influenza poses a significant threat not only

to the elderly and individuals with underlying health conditions but

also to children. Due to their immature immune systems, children

are more susceptible to complications following influenza infection,

posing a serious threat to human health. It is estimated that 3–5

million people are diagnosed with severe influenza annually, with

complications and hospitalizations, and 250,000–500,000 deaths

occur each year (Jané et al., 2019). During influenza seasons,

influenza A virus is the most common virus, affecting both

humans and animals. Influenza B, while highly contagious and

causing small-scale local outbreaks, is less common during the

epidemic season (Javanian et al., 2021). In the past 100 years, only

three HA subtypes of influenza A viruses have caused pandemics in

humans: H1N1, H2N2 and H3N2 (Webster and Govorkova, 2014).

This indicates the significant challenge in controlling influenza,

which causes substantial health and economic losses. Therefore, this
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research from the perspective of metabonomics is intended to

explore the mechanism of influenza, providing the basis for early

diagnosis and treatment.

In our study, clinical data from the H1N1, H3N2 and control

groups revealed that the case groups had lower WBC and

neutrophil counts compared with the control group, while the

monocyte percentage was significantly higher. However, no

significant differences were observed between the H1N1 and

H3N2 groups in these immune cell counts. Changes in WBC

count, neutrophil count and monocyte percentage suggest an

inflammatory response. Numerous studies of the influenza A

virus have shown that a decrease in peripheral blood leukocytes,

lymphocytes and lymphocyte subpopulations is an immune process

in the early stages of the disease (Ma et al., 2023). Neutrophils are

the earliest immune cells to indicate lung infection and are an early

significant feature of influenza virus infection (Gu et al., 2019).

Regarding liver function clinical indicators, we found significant

differences in ALT, AST, CK, CK-MB, and LDH levels between both

the H1N1 and H3N2 groups and the control group (P<0.05). The

elevated levels of ALT, AST, CK-MB, and LDH in the case groups

indicate widespread tissue damage. These alterations are likely

related to the immune response and the intensity of inflammation

following viral infection (Ma et al., 2023). Notably, LDH levels were
FIGURE 3

Association between differential glycerophospholipid metabolites and clinical indicators in children with influenza. Association between differential
glycerophospholipid metabolites and clinical indicators in children the H1N1 patient and healthy control groups (A); Association between differential
glycerophospholipid metabolites and clinical indicators in children the H3N2 patient and healthy control groups (B). * p < 0.05.
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also significantly higher in both the H1N1 and H3N2 groups

compared to controls. LDH levels in tissues are typically higher

than in serum, and during inflammatory damage, LDH is released

from tissues into the bloodstream, leading to increased serum levels

(Hong et al., 2021). The significantly higher LDH levels in the H1N1

group compared to the H3N2 group suggest that H1N1 infection

may cause more severe tissue damage.

The metabolomic results indicated significant differences in

metabolites between the H1N1 and control groups, as well as

between the H3N2 and control groups. These differences were

primarily concentrated in the glycerophospholipid metabolism

pathway, glycine, serine, and threonine metabolism pathways,

pyruvate metabolism pathway, and primary bile acid biosynthesis
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pathway. Specifically, in the H1N1 group, 14 glycerophospholipid

metaboli tes showed differences , with 11 significantly

downregulated. In the H3N2 group, 12 glycerophospholipid

metabol i tes showed di ff erences , wi th 9 s ignificant ly

downregulated. This indicates that glycerophospholipid

metabolism is downregulated in both H1N1 and H3N2 influenza.

Our results suggest a focus on the regulatory role of

glycerophospholipid metabolites in the course of influenza

infection, which could help in identifying accurate biomarkers for

early detection, diagnosis and treatment.

Our results indicate a significant difference in glycerophospholipid

metabolites between influenza patients and healthy controls, suggesting

a potential role for these metabolites in the pathophysiology of
FIGURE 4

Metabolomic analysis of severe and mild groups of influenza patients. OPLS-DA Score Plot of Metabolites in Severe and Mild Cases of H1N1
Influenza infected Children (A, B); Analysis of differential metabolites between H1N1 severe and mild pediatric patients (t-test) (C); Volcano plot of
differential metabolites between severe group and mild group in H1N1 patients (D); OPLS-DA Score Plot of Metabolites in Severe and Mild Cases of
H3N2 Influenza infected Children (E, F); Analysis of differential metabolites between H3N2 severe and mild pediatric patients (t-test) (G); Volcano
plot of differential metabolites between severe group and mild group in H3N2 patients (H).
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influenza. However, no significant differences were observed in

glycerophospholipid metabolites between mild and severe cases. The

observed differences in glycerophospholipid metabolites between

influenza patients and healthy controls highlight the impact of

influenza on lipid metabolism. Glycerophospholipids are essential

components of cell membranes and play crucial roles in cell

signaling and membrane fluidity. Increased expression of sPLA2 and

its activated form, sPLA2pS505, an enzyme that hydrolyzes sn-2 ester

bonds of phospholipids, has been reported following influenza

infection, causing metabolic damage to surfactants (Feng et al.,

2023). The alteration in glycerophospholipid levels may reflect

changes in membrane dynamics and immune cell function during

influenza infection. Previous studies have shown that viral infections

can disrupt lipid metabolism (Alketbi et al., 2021), which is consistent

with our findings . Although we observed that most

glycerophospholipid metabolites were downregulated in H1N1 and

H3N2 influenza groups, there was no significant correlation between

these metabolites and severity of influenza. This suggests that while

glycerophospholipidmetabolism is affected by the presence of the virus,

the severity of the disease might not further influence these specific

metabolic pathways. Additionally, metabolomic differences between

viral causes of ARDS (e.g., COVID-19 and H1N1) have been reported,

with significant alterations in glycerophospholipid metabolism.

However, distinct differences were observed between bacterial

pneumonia-associated ARDS and viral-associated ARDS in taurine

and hypotaurine, arginine and proline, and histidine metabolism (Lee

et al., 2024). These findings suggest that while viral infections,

including influenza, can impact lipid metabolism, the specific

metabolic responses may differ between viral and bacterial

respiratory infections.

The metabolic pathways altered in H1N1 and H3N2 infections

show considerable overlap, particularly in glycerophospholipid

metabolism. However, whether these metabolic changes are

influenza-specific or common across different respiratory

infections remains an open question. Previous studies have

reported that viral infections, including SARS-CoV-2 and

respiratory syncytial virus (RSV), also induce significant changes

in lipid metabolism, particularly in phospholipids, sphingolipids,

and fatty acid metabolism (Lee et al., 2024). For instance, COVID-

19 patients exhibit alterations in glycerophospholipid metabolism

similar to those observed in our study (Lee et al., 2024).

Additionally, bacterial pneumonia-associated metabolic changes

appear to differ from those observed in viral infections, with

major disruptions in taurine and hypotaurine metabolism, arginine

and proline metabolism, and histidine metabolism (Lee et al., 2024).

The similarity in metabolic alterations between H1N1 and H3N2

suggests that influenza viruses, regardless of subtype, may share

common metabolic regulatory mechanisms. These changes may

reflect a host metabolic adaptation to viral infection rather than a

response specific to a particular influenza strain. Based on our findings

and existing literature, we propose the following hypotheses:

Glycerophospholipid metabolism downregulation is a general

feature of influenza virus infection, rather than being subtype-

specific. Both H1N1 and H3N2 groups exhibited significant

downregulation in glycerophospholipid metabolites, suggesting that
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this pathway may be broadly affected by influenza viruses. However,

the lack of significant metabolic differences between mild and severe

cases in our study raises the possibility that while glycerophospholipid

metabolism is altered during influenza infection, it may not be the

primary determinant of disease severity.

Host small molecule metabolites play crucial roles in regulating

the disease process. Metabolites are essential for driving vital

cellular activities such as function and signal transduction.

Among all tangible molecular substances (genes, transcripts,

proteins and metabolites), metabolites have the closest

relationship to the expressed phenotype because they are the final

products of upstream biochemical processes (Rattray et al., 2018).

From genotype (or genome) predictions of future events in the body

to metabolotype (or metabolome) indications of ongoing small

molecule changes, metabolomic analysis can help researchers better

understand how viral infections affect host metabolism and

immune responses (Wishart, 2019). Our study found that

glycerophospholipid metabolism plays an essential regulatory role

in children with influenza. While both H1N1 and H3N2 infections

led to significant alterations in glycerophospholipid metabolism, we

observed differences in the specific types and quantities of affected

metabolites, suggesting virus-specific metabolic influences. LysoPA

(18:1(9Z)/0:0) identified in the glycerophospholipid metabolism

pathway screening, is a differential metabolite across all groups.

This simple glycerophospholipid is a precursor of PA biosynthesis,

significantly affecting various biochemical processes despite its low

level in animal tissues (Aoki, 2004). LysoPA is involved in

inflammatory lung diseases, acting as both a pro- and anti-

inflammatory mediator (Wang et al., 2021). It is also considered a

key product of glycolysis and glycerophospholipid metabolism,

functioning as a mitogen and contributing to signal transduction

through arachidonic acid provision (Hermansson et al., 2011).

Changes in the lipid composition of the viral envelope can

modulate viral fusion and thus correlate with infectivity. During

viral infection, the organization and structure of the membrane is

highly dependent on the lipid environment, suggesting that viral

replication can be influenced by altering its structure (Ivanova et al.,

2015). This suggests that differences in glycerophospholipids and

their metabolites may regulate inflammation and immune response.

Modulating these metabolites may inhibit influenza virus

replication or enhance antiviral capacity.

We can draw the following conclusions regarding the changes

in glycerophospholipid metabolites in influenza patients that most

glycerophospholipid metabolites are significantly downregulated in

the H1N1 patient group, suggesting that these metabolites may be

consumed or their synthesis inhibited during influenza infection.

However, the H3N2 patient group, while also showing a similar

downregulation trend, exhibited unique metabolic profiles. The

specific types and quantities of altered metabolites differed,

potentially due to the metabolic impacts specific to the H3N2 virus.

Specific glycerophospholipid metabolite LysoPC(20:0/0.0)

showed a negative correlation with various inflammatory markers

in H1N1 patients, indicating that it may play a crucial role in

regulating the inflammatory response. PC(P-18:1(9Z)/16:0) was

upregulated in H1N1 patients and positively correlated with
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validation markers, suggesting its possible association with the

course or prognosis of influenza. An unnamed downregulated

metabolite in H3N2 patients was positively correlated with ALT

but negatively correlated with WBC count, implying its potential

involvement in liver function regulation. LysoPA(18:1(9Z)0:0) was

upregulated in H3N2 patients and positively correlated with ALT,

AST and LDH, indicating its significant role in liver function and

cellular damage. Phosphatidylcholine (PC), a predominant

phospholipid in liver membranes, and its ratio when compared to

phosphatidylethanolamine are implicated in triacylglycerol

synthesis, potentially serving as a key regulator in the progression

of liver injury. Sphingomyelin, another lipid identified, is associated

with immune responses to infections.Changes in PC levels could affect

phosphatidic acidmetabolism, subsequently impacting the expression

of PIK3CA andPIK3CGgenes. This impacts the PI3Kpathway and its

associated upstream and downstream targets and regulates

inflammation (Wu et al., 2024). Moreover, differences in lipidomic

profiles between H1N1 and H3N2 suggest that while both subtypes

affect similar pathways, the degree and nature of these metabolic

alterations may depend on virus-specific factors such as viral

protein-host interactions and immune evasion strategies (Rashid

et al., 2023).

It hasbeenshownthat theparietalmembraneof thehost is enriched

in sphingolipids and cholesterol, while glycerophospholipids and

storage lipids are reduced after viral infection. Sphingolipids are

important components of the RNA virus envelope and are involved

in the inflammatory response during viral infection (Ma et al., 2022).

This is in general agreement with our results. By analyzing the

correlations between metabolites and disease markers, we can further

understand the roles of these metabolites in the disease process. Given

these virus-specific metabolic signatures, further comparative

studies are warranted to determine whether these differences in

glycerophospholipid metabolism contribute to variations in disease

severity, immune response, or potential therapeutic targeting. The

differential impact of various types of influenza virus infections on

metabolites may provide clues for developing specific diagnostic

markers and therapeutic targets in the future.
5 Conclusion

This study identified distinct metabolomic alterations in pediatric

H1N1 and H3N2 influenza cases, particularly in glycerophospholipid

metabolism. In H1N1 cases, most glycerophospholipid metabolites

were downregulated and negatively correlated with inflammatory

markers, while PC(P-18:1(9Z)/16:0) showed positive correlations

with disease markers. In H3N2 cases, LysoPC(20:0/0:0) and LysoPA

(18:1(9Z)/0:0) were associated with liver function markers (ALT, AST,

LDH), suggesting potential hepatic involvement. These findings

highlight the role of glycerophospholipid metabolism in influenza

pathophysiology and its potential as a biomarker for disease

monitoring and early diagnosis.
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