The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Cell. Infect. Microbiol.
Sec. Antibiotic Resistance and New Antimicrobial drugs
Volume 15 - 2025 |
doi: 10.3389/fcimb.2025.1533177
This article is part of the Research Topic Synergistic Approaches to Managing Gram-negative Bacterial Resistance View all 11 articles
Optimizing Polymyxin B Dosing Strategies Monte Carlo Simulation to Optimize Polymyxin B Dosing Regimens for the Treatment of Gram-Negative Bacteremia
Provisionally accepted- Qilu Hospital of Shandong University (Qingdao), Qingdao, China
Objective: This study aimed to predict and evaluate the efficacy of various polymyxin B dosing regimens for Gram-negative bacteremia using Monte Carlo simulation, with a specific focus on assessing the efficacy in patients receiving continuous renal replacement therapy (CRRT). The goal was to optimize clinical dosing regimens and guide rational polymyxin B use in practice. Methods: A total of 1,939 Gram-negative bacterial strains were analyzed, collected between April 2019 and December 2021 through the China Bloodstream Gram-negative Pathogens Antimicrobial Resistance and Virulence Surveillance Network (CARVIS-NET). Pharmacokinetic parameters of polymyxin B from existing literature were used to conduct a Monte Carlo simulation based on pharmacokinetic/pharmacodynamic (PK/PD) theory. The probability of target attainment (PTA) and cumulative fraction of response (CFR) were evaluated across various dosing regimens. Results: The main pathogens of Gram-negative bacteremia were Escherichia coli, Klebsiella Optimizing Polymyxin B Dosing Strategies pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, all of which demonstrated high susceptibility to polymyxin B. For pathogens with a minimum inhibitory concentration (MIC) ≤1 mg/L, all regimens achieved PTA >90%.However, when the MIC increased to 2 mg/L, the PTA for the 500,000 IU q12h regimen decreased to 77.53%, and at an MIC of 4 mg/L, none of the dosing regimens achieved a PTA >90%. For P. aeruginosa and K. pneumoniae with MIC ≤0.5 mg/L, all regimens demonstrated effectiveness. However, at MIC ≥1 mg/L, significant declines in PTA were observed, with the 500,000 IU q12h and 1.25 mg/kg q12h regimens yielding suboptimal outcomes. In CRRT patients, PTA values declined further, particularly against K. pneumoniae, raising concerns about potential treatment failure. Conclusion:Polymyxin B demonstrates high efficacy for Gram-negative bacteremia with MIC ≤1 mg/L. However, efficacy diminishes as MIC increases, particularly for P. aeruginosa and K. pneumoniae, where 500,000 IU q12h and 1.25 mg/kg q12h regimens may result in suboptimal outcomes. For CRRT patients with K. pneumoniae bacteremia, therapeutic drug monitoring and dose adjustments are crucial to mitigate treatment failure risks.
Keywords: Polymyxin B, Monte Carlo simulation, Gram-Negative Bacteria, Bacteremia, Pharmacokinetics/Pharmacodynamics (PK/PD)
Received: 23 Nov 2024; Accepted: 06 Feb 2025.
Copyright: © 2025 He, Yu and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Chengcheng Wang, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.