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ChPDIA3 targeted by miR-126-x
and miR-21-y responds to
Vibrio harveyi infection in
Crassostrea hongkongensis
Yongkang Hou, Fangqi Zhang, Xiaokun Liu, Dongming Huang
and Zhimin Li*

College of Fishery, Guangdong Ocean University, Zhanjiang, Guangdong, China
Introduction: The Hong Kong oyster (Crassostrea hongkongensis), as the main

marine aquaculture shellfish in the South China Sea, not only has high economic

and ecological value, but also is an ideal model for conducting research on

pathogen-host interactions. In the cultivation process of C. hongkongensis,

there is a challenge posed by vibrios. To improve the antibacterial strains of C.

hongkongensis, we have studied the gene associated with immunity, PDIA3.

Methods and findings: In this study, we cloned the PDIA3 sequence of the C.

hongkongensis, using the RACE technique. It has a total of 2081 bp and contains

a 5'-UTR of 55 bp and a 3'-UTR of 547 bp. The ChPDIA3 gene sequence has an

ORF frame that is 1479 bp in length and encodes 492 amino acids. Analysis of the

phylogenetic tree constructed by Neighbor Joining method showed that

ChPDIA3 clustered with other shellfishes into a single unit, which was

consistent with the law of species evolution.

Discussion: The highest expression of ChPDIA3was detected in gill tissues of the

C. hongkongensis using RT-qPCR, and significantly higher expression in V.

harveyi and LPS infection than Poly(I:C) (P<0.05). This may indicate that

ChPDIA3 is primarily involved in the immune response against bacterial

infections in the C. hongkongensis. The binding sites of miR-126-x, miR-21-y

and ChPDIA3 were detected using dual luciferase experiments, respectively. The

results showed that both miR-126-x and miR-21-y inhibited the 3'-UTR region of

ChPDIA3. This suggested that both miR-126-x and miR-21-y inhibited ChPDIA3

expression. This study will help to further understand the function of ChPDIA3 in

response to pathogen infection, thus providing new ideas for understanding the

resistance and adaptation of the C. hongkongensis to Vibrio infection.
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1 Introduction

The Crassostrea hongkongensis is mainly distributed in the

coastal areas of the South China Sea, including the coastal areas

of South China and Vietnam (Peng et al., 2021). It is worth noting

that C. hongkongensis have been cultivated in the coastal areas of

southern China for nearly a thousand years. The C. hongkongensis is

a typical intertidal species whose living environment switches

between being exposed to air and being inundated by seawater on

a daily basis, thus it has a strong ability to adapt to the environment

(Zhang et al., 2012). In addition, C. hongkongensis not only has a

positive impact on the ecosystem, but also has high commercial

value. For example, it is a high protein, low-fat aquatic product, rich

in various vitamins, glycogen, fatty acids, essential amino acids, and

micronutrients such as calcium, zinc, copper, selenium, etc., so it is

highly popular in the market (Grabowski et al., 2012; Loaiza, 2023).

However, the rapid development of the aquaculture industry has

been accompanied by a gradual deterioration of the aquaculture

environment, and shellfish aquaculture has been challenged by

pathogenic microorganisms such as bacteria and viruses

(Fehrenbach et al., 2024; Li et al., 2023; Shingai, 2024). Due to

environmental influences, violent deaths occur frequently, causing

huge economic losses to the entire farming industry. The sustained

development of oyster farming has brought pressure to the marine

environment, especially the spread of Vibrio disease in oysters has

had a negative impact on the development of oyster farming

(Dégremont, 2021; Oyanedel, 2023; Yu et al., 2023).

Vibrio harveyi, a Gram-negative bacterium, was first isolated from

Carcharhinus plumbeus and Negaprion brevirostris, which was very

widely distributed in the oceans (Colwell and Grimes, 1984; Grimes

et al., 1984; Muthukrishnan et al., 2019). V. harveyi is a common

conditional pathogen in aquaculture and has beenwidely recognized as a

common pathogen of many commercially farmed fish (Angthong et al.,

2023; Dong et al., 2017; Firmino et al., 2019;Wang et al., 2022), mollusks

(Liu et al., 2014; Morot et al., 2021) and crustaceans (De Souza Valente

and Wan, 2021; Rungrassamee et al., 2016) in warm waters. Some

studies have shown that V. harveyi spreads mostly during the hot

summer months, mainly attacking damaged body surfaces or the

digestive tract of animals. V. harveyi infection causes ulcers, tissue

necrosis and massive epithelial cell death in animals (Yuan et al.,

2023). In addition, it triggers the generation of oxidative stress,

apoptosis, and inflammatory responses in the body (Angthong et al.,

2023; Chen et al., 2023; Hao et al., 2023). In summary, V. harveyi kills

large numbers of marine vertebrates and invertebrates (Austin and

Zhang, 2006; Travers et al., 2008).

Protein Disulfide Isomerase Family A Member 3 (PDIA3), also

known as ERp57, is one of the members of the PDI family and is

located mainly in the endoplasmic reticulum (Luo et al., 2008). PDIA3

is thought to be a protein disulfide isomerase involved in the proper

folding and processing of proteins within the endoplasmic reticulum. It

can maintain protein structure and function by catalyzing the

formation and rearrangement of disulfide bonds (Hetz et al., 2006;

Yoneda et al., 2001). PDIA3 may be involved in intracellular redox

homeostasis. It can interact with other oxidoreductases to regulate

intracellular oxidative stress and protect cells from oxidative damage
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(Chamberlain et al., 2019). Alternatively, PDIA3 may play a role in

endoplasmic reticulum stress response, helping cells to cope with

endoplasmic reticulum stress and maintain their homeostasis

(Mahmood et al., 2021). Abnormal expression or function of PDIA3

has been found to be associated with certain diseases, such as

inflammatory response (Wang, 2019), neurodegenerative diseases

(Zhu et al., 2024), and cancer (Wang et al., 2023). In aquatic

animals, the PDIA1 and PDIA3 of Dicentrarchus labrax, L. have

been cloned entirety (Pinto et al., 2013). Moreover, ERp57 of

Oncorhynchus mykiss was cloned and expressed in various tissues

(Sever et al., 2013). Furthermore, it has been shown that PDIA3 is

differentially expressed in O. mykiss in the presence of Vibrio

anguillarum infection (Yang, 2023). In our previous study, we

sequenced the transcriptome and miRNAome of the C.

hongkongensis under V. harveyi infection, and the results showed

that miR-126-x with miR-21-y had a regulatory effect on PDIA3

(Hou et al., 2023, 2024). To verify the regulatory relationship

between miR-126-x and miR-21-y on PDIA3 in more depth, in this

study, it is proposed to clone the full length of PDIA3 from the C.

hongkongensis, using RACE technology, and their sequences were

analyzed by bioinformatics. The expression pattern of PDIA3 was

analyzed using RT-qPCR technology and RNA interference. Validation

of miR-126-x and miR-21-y as having regulatory effects on PDIA3

using a dual luciferase reporter. This will provide new ideas for

understanding the improvement of the resistance and adaptability of

the C. hongkongensis to Vibrio infections, as well as for realizing the

scientific culture and industrial development of the C. hongkongensis.
2 Materials and methods

2.1 Collection of C.
hongkongensis samples

The C. hongkongensis used in the experiment were all of 2 years

old, purchased from the seafood market in Xiashan District, Zhanjiang

City, and temporarily reared for one week in the Shellfish Genetics and

Enrichment Laboratory of Guangdong Ocean University.Chlorellawas

fed during the temporary incubation period, the water temperature was

28°C, the salinity was 20 ppt, continuous aeration was maintained. 108

C. hongkongensis were randomly selected, with a mean weight of

201.65 ± 22.20 g and a mean shell height of 117.03 ± 11.16 mm. They

were divided into 4 groups, i.e., PBS group, Vibrio group, LPS group,

and Poly(I:C) group, and each group was set up in 3 parallels, with 15

C. hongkongensis placed in each parallel group. C. hongkongensis in the

Vibrio group were injected with 200 mL of V. harveyi solution at a

concentration of 1×108 CFU·mL-1. The LPS group was injected with

200 mL of LPS (Solarbio, purity≥98%) solution at a concentration of 10

mg·mL-1. The Poly(I:C) group was injected with 200 mL of Poly(I:C)

solution at a concentration of 5 mg·mL-1. The control group was

injected with an equal amount of PBS. At 0, 12, 24, 48 and 72 h after

injection, 2 C. hongkongensiswere randomly selected from each parallel

group and their hemolymph, gill, mantle, digestive diverticulum,

adductor muscle, and gonad were sampled. All tissue samples were

collected under strict sterile conditions. After collection, the samples
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were rapidly immersed in liquid nitrogen for snap-frozen to preserve

their biological activity. They were then transferred to a -80°C low-

temperature environment for storage in preparation for

subsequent experiments.
2.2 Total RNA extraction and
cDNA synthesis

At each time point within each group, three C. hongkongensis

individuals were randomly selected, and RNA was extracted from

the hemolymph, gill, mantle, digestive diverticulum, adductor

muscle, and gonad. The extraction was performed using the

TransZol Up Plus RNA Kit (TransGen Biotech), following the

manufacturer’s instructions. RNA concentration and purity were

assessed using a NanoDrop 2000 spectrophotometer. RNA integrity

was determined by agarose gel electrophoresis. All RNA samples

were reverse transcribed using the EasyScript® One-Step gDNA

Removal and cDNA Synthesis SuperMix kit (TransGen Biotech),

following the instructions.
2.3 Cloning of ChPDIA3

We screened the intermediate sequence of the ChPDIA3 gene

based on the available transcriptome data (GenBank project
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accession PRJNA999463), and then used this sequence to design

5’RACE and 3’RACE specific primers for this gene using Primer

Premier 5 (Table 1). Full-length amplification was performed using

the SMARTer® RACE 5’/3’ Kit Protocol-At-A-Glance (TaKaRa),

following the instructions. PCR products were detected by agarose

gel electrophoresis, then cut and recovered using the NucleoSpin®

Gel and PCR Clean-Up kit (TaKaRa), and the recovered products

were ligated into pEASY-Blunt (TransGen Biotech) vector. Trans1-

T1 competent cell (TransGen Biotech) were used for

transformation, and the products were placed in solid medium

and incubated for 12 h in a 37°C incubator. Single colonies were

screened and placed in liquid culture at 37°C, 200 rpm for 12 h.

Positive cloning was performed, and the positive cloning products

matching the target bands were sent to Sangon Biotech Ltd.

for sequencing.
2.4 Bioinformatics analysis

We used ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/)

to identify open reading frame as well as sequence translations. The

physicochemical properties of the amino acids were queried by the

online software ProtParam (https://web.expasy.org/protparam/).

The conserved domains were analyzed according to the protein

information resource InterPro (https://www.ebi.ac.uk/interpro).

The full-length protein sequences of the PDIA3 homologues were
TABLE 1 Primer information.

Primer name Sequence Application

ChPDIA3-3’ CAGCCAGAGACGAGAGAGACCGCA RACE

ChPDIA3-5’ CATCATTGGCTGTGGCGTCCATTT RACE

ChPDIA3-Sense TGGAATGGGGGATGTCAGTGGA RNA i

ChPDIA3-Anti Sense CCCTTAGGAGCAAAATAGATTGTAGGGA RNA i

ChPDIA3-F AAAATGGACGCCACAGCC RT-qPCR

ChPDIA3-R CACGATCAAAGCCCGACAG RT-qPCR

CALR-F CTTTGGCAGGTGAAATCGG RT-qPCR

CALR-R CTCTTCTTTCTTTCTTCCTCATCCT RT-qPCR

LMAN1-F CATCCGATTAGCCCCGTCT RT-qPCR

LMAN1-R ACTGGTCCCTCCTGTCCCTT RT-qPCR

LMAN2-F ACCTACAGTAACCACAATGGACCT RT-qPCR

LMAN2-R TTTCGGAACTTAGCCTCGC RT-qPCR

b-actin-F CTGTGCTACGTTGCCCTGGACTT RT-qPCR

b-actin-R TGGGCACCTGAATCGCTCGTT RT-qPCR

ChPDIA3-DLR-F TGTTTAAACGAGCTCGCTAGCGTGAGGGGAGCAAGTTGTATAATTG Vector construction

ChPDIA3-DLR-R TGCCTGCAGGTCGACTCTAGAAAAAAAAAAAATAATTAAATTTATTTCCCA Vector construction

miR-126-x mimics CAUUAUUACUUUUGGUACGCG CGUACCAAAAGUAAUAAUGUU Dual luciferase experiment

miR-21-y mimcis CAACACCAGUCGAUGGGCUGU AGCCCAUCGACUGGUGUUGUU Dual luciferase experiment

N.C mimics UUGUACUACACAAAAGUACUGGUACUUUUGUGUAGUACAAUU Dual luciferase experiment
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downloaded at NCBI, and multiple sequence comparisons were

performed using DNAMAN 5.0 with default parameters.

Phylogenetic tree was constructed using Neighbor Joining in

MEGA (v11.0.13).
2.5 Detection of ChPDIA3 expression by
RT-qPCR

Based on the sequences obtained from RACE cloning, primers

were designed for RT-qPCR using Premier 5.0 (Table 1). Reactions

were performed in Light Cycler 96, as described in the instructions

for the PerfectStart® Green qPCR SuperMix kit (TransGen

Biotech). Each sample was processed in triplicate in Light Cycler

96. The 2-DDCt method was used to calculate the relative expression

of the ChPDIA3 gene in tissues of the C. hongkongensis such as

hemolymph, gill, mantle, digestive diverticulum, adductor muscle,

and gonad, with b-actin as the reference gene. The cDNAs of Vibrio

group, LPS group, Poly(I:C) group and PBS group were taken as

templates, and the rest of the conditions were the same as those

mentioned above, to verify the expression of ChPDIA3 at different

time points in each group.
2.6 dsRNA synthesis

Based on the sequences obtained by RACE cloning, primers

were designed using Premier 5.0 (Table 1) and PCR amplification

was performed using Seq Amp DNA Polymerase (TaKaRa). Cutting

gel recovery, ligation, transformation, positive cloning, and

bacteriophage sequencing were performed as in Section 2.3. After

the bacterial fluids were sequenced, a pair of forward and reverse

sequences were selected for amplification. Plasmids obtained from

amplification were extracted using the GeneJET Plasmid Miniprep

Kit (Thermo). The plasmids were digested using Past I-HF enzyme

and the digested products were detected by agarose gel

electrophoresis. Products from single bands were purified using

the GeneJET PCR Purification Kit (Thermo). The purified products

were transcribed in vitro using the T7 RNAi Transcription Kit

(Vazyme Biotech) as described in its instructions. The products of

in vitro transcription were extracted by phenol-chloroform-ethanol

absolute, then precipitated by ethanol absolute and finally dissolved

in DEPC water.
2.7 RNA interference experiments and
sample collection

The C. hongkongensis used in the experiment were temporarily

reared for one week. Chlorella was fed during the temporary

incubation period, the water temperature was 28°C, the salinity

was 20 ppt, continuous aeration was maintained. 90 C.

hongkongensis of similar growth condition and free from disease

and injury were randomly selected. They were divided into three

groups, i.e., RNA interference group, Vibrio group and control

group, and three parallels were set in each group. From the pre-
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experiment, dsRNA acted 24 h after injection, so the experimental

group was first injected with 100 mL of dsRNA (at a concentration

of 1 mg·mL-1). After 24 h, 100 mL of V. harveyi was injected. The

Vibrio group was injected with an equal amount of V. harveyi

solution at a concentration of 1×108 CFU·mL-1, and the control

group was injected with an equal amount of 5 × PBS. 2 C.

hongkongensis were randomly selected from each parallel group

for sampling 12, 24 48 and 72 h after the completion of injection,

respectively. The samples were first snap-frozen in liquid nitrogen

and later stored at -80°C for later RNA extraction.
2.8 ChPDIA3 expression pattern after
RNA interference

At each time point in each group, three samples were randomly

selected for RNA extraction and reverse transcription, which was

performed in the same way as in Section 2.2. The cDNA at each

time point was used as a template for RT-qPCR to detect the

expression of ChPDIA3 in V. harveyi infection after

RNA interference.
2.9 Dual luciferase experiments

The relationship between ChPDIA3 and miR-126-x and miR-

21-y binding sites were selected for vector construction,

respectively. The vector was prepared by Wuhan Zhibo

Biotechnology Co., Ltd. and its sequence accuracy was verified.

HEK293T cells were inoculated in 96-well plates at 2×104 cells/well,

with 3 replicate wells per group. The medium was 100 ml of DMEM-

High Sugar medium containing 10% FBS, which was incubated

overnight in a 5% CO2, 37°C incubator. The transfection system was

configured according to Table 2. Solution A and solution B were

mixed and left to stand for 20 min at common temperature. 20 mL
of transfection complex was added to each well and then placed in

5% CO2, 37°C incubator. After 48 h of transfection, the old medium

was aspirated and 100 mL of PLB (Passive Lysis Buffer) was added to

each well of cells. Lysis was performed on a shaker at common

temperature for 15 min. After adding 20 mL of cell lysate to the

luminescent plate, background values were read for 2 s using

Promega’s GloMax®-Multi multifunctional enzyme marker. Add

20 mL of LAR II working solution to each well, mix quickly, and

read values for 2 s. After the reading is complete, add another 20 mL
of Stop & Glo® Reagent to each sample and mix quickly. Place in a
TABLE 2 Transfection systems for dual luciferase experiments.

Clusters Dosage

A solution

Reporter plasmid 50 ng

Mimics (20 mM) 0.5 ml

Opti-MEM 10 ml

B solution
Opti-MEM 10 ml

Lipofectamine2000 1 ml
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luminescence detector, run the program and read the fluorescence

value for 2 s. After completing the reading, save the data.
2.10 Statistical analysis

All data analyses were performed using Origin 2024 and IBM

SPSS Statistics 26.0. Samples from different groups at the same time

were analyzed for statistical significance using Duncan’s Multiple

Range Test, the significance level was set at 0.05.
3 Results

3.1 Bioinformatics of ChPDIA3

The cDNA sequence of the PDIA3 gene of the C. hongkongensis,

named ChPDIA3, has been cloned using the RACE technique.

ChPDIA3 has a total of 2081 bp, containing 55 bp of 5’-

untranslated region (UTR) and 547 bp of 3’-UTR. The sequence

of ChPDIA3 has an ORF with a length of 1,479 bp, encoding 492

amino acids (Figure 1A). The molecular weight is 55530.92 Da, the

theoretical pI is 5.48, and the grand average of hydropathicity is

-0.551<0, which makes it a hydrophilic protein. The results of the

phylogenetic tree showed that the C. hongkongensis was clustered

with other shellfish and was genetically distant from crustaceans

and vertebrates. The predicted conserved structural domains of the

ChPDIA3 sequence showed that the PDI_thioredoxin-like_dom are

located at 23-123 aa and 368-470 aa (Figure 1B). Thioredoxin_CS in

the ChPDIA3 protein has the closest homology to the C.gigas and

the Ostrea edulis compared to homologs from other species

(Figure 1C).The cDNA sequence of ChPDIA3 has been submitted

to NCBI (GenBank: PP530092).
3.2 Expression of ChPDIA3 in
different tissues

The expression of ChPDIA3 in different tissues was examined

using RT-qPCR, and the results are shown in Figure 2. ChPDIA3

was expressed in tissues such as hemolymph, gill, mantle, digestive

diverticulum, adductor muscle and gonad. And the highest

expression was found in gill (P<0.05). Therefore, gills were

targeted for subsequent studies.
3.3 Expression pattern of ChPDIA3 in gill

The relative expression of ChPDIA3 in the gill tissues of the C.

hongkongensis under PBS, V. harveyi, LPS and Poly (I:C)

treatments, at different time points, was examined using RT-

qPCR. The results are shown in Figure 3, under V. harveyi and

LPS treatments, the expression of ChPDIA3 was significantly higher

that of the other groups (P<0.05). And the highest expression at 12h

after treatment, after which the expression of ChPDIA3 gradually

decreased. The expression of ChPDIA3 in the gills of C.
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hongkongensis treated with Poly(I:C) was significantly lower than

that of the PBS group (P<0.05), but showed a gradually

increasing trend.
3.4 ChPDIA3 expression in V. harveyi
infection after RNA interference

The expression of ChPDIA3 after silencing by dsRNA was

detected by RT-qPCR. The results showed that the expression of

ChPDIA3 was significantly lower than that of C. hongkongensis

injected with PBS and V. harveyi at all four time points (P<0.05).

The inhibitory effect was most significant at 12 h of V. harveyi

injection (P<0.05), and the inhibitory effect gradually failed after 72

h of injection, when the expression started to increase (Figure 4A).

In the protein processing in endoplasmic reticulum pathway, the

expression of its downstream genes was also downregulated when

ChPDIA3 was silenced by dsRNA. Except for LMAN2, the

expression levels of the other two genes did not show significant

differences at 12 hours (P>0.05). It was not until 48 hours that the

expression level of CALR exhibited significant differences (P<0.05).

Furthermore, the expression levels of LMAN1 and LMAN2 became

progressively less significant compared to the control group

(P>0.05) (Figures 4B–D).
3.5 Dual luciferase report

The luciferase activities of miR-126-x mimics, miR-21-y mimics

and their pmirGLO-PDIA3-3’-UTR co-transfected HEK293T cell

lines were assayed by dual luciferase experiments to validate the

targeting relationship between miR-126-x, miR-21-y and ChPDIA3,

respectively. The results showed that both miR-126-x and miR-21-y

inhibited ChPDIA3. In the miR-126-x group, compared with

mimics NC (control group), luciferase activity extremely

significantly decreased (P<0.01), being 74.93% of the mimics NC

(control) group’s level. Mutating the predicted site, the luciferase

activity was restored to 99.13% of the control (P>0.05) (Figure 5A).

In the miR-21-y mimics group, dual luciferase activity extremely

significantly (P<0.01), dropping by 76.94% compared to the control

group. Mutating the predicted site restored the luciferase activity to

100.68% of the control (P>0.05) (Figure 5B).
4 Discussion

4.1 Bioinformatics analysis of ChPDIA3

PDIA3, also known as 1,25D3-MARRS or ERp57, is a member

of the PDI family, which functions as an endoplasmic reticulum-

based redox chaperone protein that interacts with various fibrosis-

related proteins. In the endoplasmic reticulum, PDIA3 acts as a

molecular chaperone and redox catalyst to regulate glycoprotein

folding (Oliver et al., 1999). In our previous study, PDIA3 was

significantly enriched in the protein processing in endoplasmic

reticulum pathway (Hou et al., 2023). In this study, the cDNA
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sequence of PDIA3 from the C. hongkongensis, was obtained by

RACE cloning technology. The homogeneous analysis

demonstrated that the nucleic acid sequence and amino acid

sequence of this gene are relatively conserved, especially

conserved site Thioredoxin_CS (Fritz-Wolf et al., 2011; Yang

et al., 2024). It was hypothesized that ChPDIA3 was identified as

a homologous gene of PDIA3 in the C. hongkongensis. Therefore,

the mechanism of ChPDIA3might be similar to that of other species

that have been studied. In addition, in shellfish and crustaceans, the

ChPDIA3 sequence contains the PDI_thioredoxin-like_dom
Frontiers in Cellular and Infection Microbiology 06
conserved domain, whereas the PDIA3_PDI_b conserved domain

is also present in fish and mammals. This difference may indicate

some evolution and differentiation in the structure and function of

the PDI_thioredoxin-like_dom conserved domain in the PDIA3

sequences of different species. The PDI_thioredoxin-like_dom

conserved domain is usually associated with the function of

protein disulfide isomerase (PDI), which plays an important role

in the endoplasmic reticulum, helping proteins to fold correctly and

form disulfide bonds (Mahmood et al., 2021). However, differences

in the conserved domains in the PDIA3 sequences of different
FIGURE 1

A PDIA3 gene in C. hongkongensis and phylogenetic tree of the ChPDIA3 protein. (A) Schematic presentation of ChPDIA3. Black line, structure of
the gene in the genome. Dark red and dark green boxes, ChPDIA3 transcript and its coding region. (B) Phylogenetic tree and structural information
of selected PDIA3 protein. GenBank accession number (NCBI): Homarus americanus (XP_042223300.1), Penaeus vannamei (XP_027212336.1),
Penaeus monodon (XP_037788996.1), Cyprinus carpio (XP_018979324.2), Poecilia formosa (XP_007566541.1), Takifugu rubripes (XP_029700442.1),
Mus musculus (NP_031978.2), Homo sapiens (NP_005304.3), Puma concolor (XP_025774328.1), Canis lupus familiaris (XP_535453.3), Sepia
pharaonic(CAE1328800.1), Octopus bimaculoides (XP_014785522.1), Octopus sinensis (XP_029643538.1), Mytilus galloprovincialis (VDI57500.1),
Ostrea edulis (XP_048735080.2), Crassostrea gigas (XP_011453191.2). (C) Alignment of partial PDIA3 domain containing active conserved
site Thioredoxin_CS.
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species may reflect differences in their functional requirements or

adaptive strategies for this conserved domain during evolution.

Differences in the conserved domains in the PDIA3 sequences of

different species may imply that they have diverged in functions

such as protein folding and endoplasmic reticulum stress response.

These species may have evolved specific PDIA3 structures and

functions during adaptation to different environments and

lifestyles (Liu et al., 2022; Trnková et al., 2013). When they are

exposed to specific endoplasmic reticulum stress conditions or

protein folding requirements, which contribute to the alteration

of the PDIA3 sequence and the evolution of the conserved domains

(Huang et al., 2009; Pinto et al., 2013).

Hydrophilicity plays an important role in the immune response

(Boquet et al., 1995). It was found that there was a significant

hydrophilic complementation between the complementary

determining regions (CDR) of anti-neuropeptide substance
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monoclonal antibody (mAb SP31) and the C-terminal

pentapeptide epitope of SP. Peptides that retained the

hydrophilicity feature were recognized by mAb SP31 with

reduced affinity even though the sequence differed from that of

SP, whereas peptides with altered hydrophilicity feature showed a

significant decrease in antibody binding affinity or even failed to

bind. In addition, the degree of hydrophilic complementarity was

closely related to the binding affinity, with peptides with similar

ydrophilic profiles having a higher binding affinity to mAb SP31,

while peptides with large differences in hydrophilicity showed

significantly lower affinity (Hanin et al., 1997). Kinetic studies

also suggest that hydrophilic complementarity is important in

maintaining the stability of antigen-antibody complexes and may

regulate binding affinity by affecting conformational changes and

interaction stability after complex formation (Bhat et al., 1994; Van

Oss, 1995). hydrophilicity also plays an important role in the

immunomodulation of viral infections. The b-convex trigger loop

region (QGEESND) of interleukin-1b (IL-1b) is hydrophilic and

complementary to specific peptides (e.g., LITVLNI) in the

interleukin-1 type I receptor (IL-1R1), and this complementarity

influences viral binding to the receptor as well as the subsequent

immune response (Heal et al., 1999). In the present study,

ChPDIA3 is a hydrophilic protein, and we speculated that

ChPDIA3 may play important roles in immune responses

through various mechanisms, such as participating in antigen

processing and presentation, regulating immune cell activity,

influencing cytokine production and secretion, and interacting

with other immune-related molecules, thus positively affecting the

body’s immune defenses and maintenance of immune homeostasis.

However, these roles still need further experimental validation and

in-depth studies.
4.2 Expression patterns of ChPDIA3

Due to its function as a molecular chaperone, PDIA3 expression

rises when cells are stressed. It has been reported that PDIA3 can

trigger Bak-dependent apoptosis by affecting mitochondrial outer

membrane permeability (Zhao et al., 2015). Moreover, PDIA3 has

functions such as regulating inflammation and oxidative stress

(Wang, 2019) and inhibiting cancer cells (Yang et al., 2024).

PDIA3 also plays an important role in immune activity in aquatic

animals. Immunity-related proteins such as PDIA3 were

significantly up-regulated in the intestine of Cynoglossus

semilaevis in response to Shewanella algae infection (Han et al.,

2020). The expression level of ERp57 protein in O. mykiss was

elevated in peripheral blood leukocytes and RTS11 macrophage-like

cell lines in response to stimulation with double-stranded RNA and

phytohaemagglutinin, which also suggests a possible conserved

function of ERp57 in the endoplasmic reticulum and activation of

immune responses in O. mykiss (Sever et al., 2013). This may be due

to the respiratory, filter feeding and immunological effects of the

gills of the C. hongkongensis (Xie et al., 2023; Yue et al., 2024). This

makes it possible for C. hongkongensis to be frequently exposed to

externally supported disease-causing microorganisms such as

bacteria and viruses. The gills of the C. hongkongensis, as
FIGURE 2

Expression of ChPDIA3 in different tissues of the C. hongkongensis.
Different lowercase letters indicate significant differences between
treatment groups (P<0.05).
FIGURE 3

Expression pattern of ChPDIA3 in different treatment groups.
Different lowercase letters indicate significant differences between
treatment groups (P<0.05).
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FIGURE 4

Expression patterns of genes after RNA interference. (A) shows the expression of the ChPDIA3 gene at different time points (12h, 24h, 48h, 72h)
in the RNA interference group, the Vibrio group (injected with Vibrio harveyi), and the control group (injected with PBS) after RNA interference.
(B–D) display the expression trends of downstream genes of ChPDIA3 (such as CALR, LMAN1, and LMAN2) in the endoplasmic reticulum protein
processing pathway at different time points when ChPDIA3 is silenced by dsRNA. Different lowercase letters indicate significant differences between
treatment groups (P<0.05).
FIGURE 5

Dual luciferase detection of miR-126-x and miR-21-y regulation of ChPDIA3. (A) represents the miR - 126 - x mimics group, showing the luciferase
activity of HEK293T cell lines co - transfected with miR - 126 - x mimics and pmirGLO - PDIA3 - 3’ - UTR. (B) represents the miR - 21 - y mimics
group, indicating the luciferase activity of HEK293T cell lines co - transfected with miR - 21 - y mimics and pmirGLO - PDIA3 - 3’ - UTR. “*”
indicates an extremely significant difference between groups (P < 0.01).
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respiratory organs, are the first to come into contact with the

outside world, which also makes the gills of the C. hongkongensis

play an irreplaceable role in its immune defense activities. The

expression of ChPDIA3 was significantly higher in V. harveyi and

LPS infections relative to controls.

Mollusks typically possess a relatively unsophisticated adaptive

immune system, thus relying predominantly on their innate

immunity to counteract against foreign pathogens (Chakroun

et al., 2021; Tincu and Taylor, 2004; Yang et al., 2021). The

innate immune response is characterized by its swift activation,

commencing promptly during the initial phase of acute infections

(L. Li et al., 2024; Olasard et al., 2024). V. harveyi, a Gram-negative

bacterium, and LPS, a component of the Gram-negative bacterial

cell wall, are both potent activators of the innate immune response

(Shi et al., 2024; Yao et al., 2024). They can stimulate pattern

recognition receptors (PRR), such as Toll-like receptors (TLRs)

(Kawai and Akira, 2010). This recognition mechanism can trigger a

rapid inflammatory response, which may include the upregulation

of ChPDIA3 as part of the cellular stress response to invading

pathogens (Mahmood et al., 2021).In our study, focusing on the C.

hongkongensis, we had observed the highest expression levels of

ChPDIA3 at 12 hours post-infection with V. harveyi and LPS. This

had suggested that during the incipient stages of infection, C.

hongkongensis may have bolstered its defense mechanisms by

enhancing the proper folding and maturation of proteins critical

for immune function, such as antimicrobial peptides (Yoo et al.,

2019). Additionally, the early phase of bacterial invasion was likely

to have provoked oxidative stress, which in turn, may have activated

the unfolded protein response (UPR). Given that ChPDIA3 had

played a role in modulating oxidative stress through its interactions

with other oxidoreductases (Chamberlain et al., 2019), its

heightened expression during the early infection stages may have

served as a cellular protective response to oxidative challenges.

However, our sampling regimen, initiated at 12 hours post-

infection, precluded a more precise determination of the peak

expression timing of ChPDIA3. In future related studies, we will

consider collecting samples at earlier time points after infection.

This will help us more accurately depict the changing trend of the

expression level of ChPDIA3, so as to evaluate the importance of

ChPDIA3 in the early immune response. Furthermore, we observed

a significant downregulation of ChPDIA3 expression in C.

hongkongensis that had been treated with Poly(I:C). This

phenomenon may have been associated with the immune

pathways activated by viral infections, which might not have

relied on the function of ChPDIA3. For instance, RNA sensing

pathways played a primary role in response to viral infections

(Kourko et al., 2023; Yue et al., 2023), while ChPDIA3 may have

been more involved in the immune response to bacterial infections.

These findings suggested that ChPDIA3 may have played distinct

roles in response to different immune challenges, and its expression

regulation could have been closely linked to signaling pathways

specific to certain pathogens.

The endoplasmic reticulum protein processing pathway is of

crucial significance in the folding, modification, and transport of

proteins within cells. PDIA3, being a vital member of this pathway,
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interacts with downstream genes that are indispensable for

maintaining the normal physiological functions of cells. In this

study, when the ChPDIA3 was silenced, the expression of the

downstream genes of the ChPDIA3 in the endoplasmic reticulum

protein processing pathway was successively down-regulated. We

hypothesized that in response to V. harveyi infection, ChPDIA3

might have adjusted the protein processing and folding process by

regulating the expression of downstream genes to enhance cellular

defenses or adapt to infection-induced stress responses. For

example, CALR (calreticulin), which was involved in protein

folding and quality control, and changes in its expression might

have affected the correct folding and stability of intracellular

proteins, thereby influencing the cellular immune response and

stress resistance (Galluzzi and Kroemer, 2022; Ziffels et al., 2019).

LMAN1 (mannose-binding lectin-associated serine protease 1) and

LMAN2 (mannose-binding lectin-associated serine protease 2),

which played a role in innate immunity, and the down-regulation

of their expression might have affected the ability of oysters to

recognize and clear pathogens (Kwon et al., 2016; Zhang et al., 2023;

Zheng et al., 2010). This further emphasized the importance of

ChPDIA3 in the immune defense system of the C. hongkongensis

and its critical position in the complex regulatory network in

response to V. harveyi infection.
4.3 Regulation of ChPDIA3 by miR-126-x
and miR-21-y

As a unique endothelial cell-associated miRNA, as well as a

novel tumour suppressor gene, miR-126 plays a key role in the

onset, progression and metastasis of various types of cancers,

including hepatocellular carcinoma, colorectal carcinoma,

melanoma and lung cancer. For example, cellular processing of

MPM-derived spheroids by exosomal delivery of miR-126 leads to

massive cell death and prevents tumour growth in vivo (Monaco

et al., 2022). Overexpression of miR-126-3p in ovarian cancer cells

inhibited cell proliferation and invasion as well as phosphorylation

of AKT and ERK1/2 (Xiang and Cheng, 2018). The miR-21 family

includes members such as miR-21-5p and miR-21-3p. These

miRNAs play important regulatory roles in cell growth,

differentiation, apoptosis and other processes, and play an

important role in the treatment of cancer. The exosome miR-21-

5p in hepatocellular carcinoma cells can affect hepatocellular

carcinoma cell development and patient prognosis by regulating

SP1/XBP1 and promoting M2 polarization in TAMs (Hu et al.,

2024). miR-21 is elevated in canine mammary tumors and

positively correlates with gene expression of IL-6 and TNF-a and

also with the proliferation index (Ki67 index) of tumour cells

(Abbate et al., 2023). In this study, the binding sites of miR-126-

x, miR-21-y and ChPDIA3 were detected using dual luciferase

experiments, respectively. The results showed that both miR-126-

x and miR-21-y inhibited the 3’-UTR region of ChPDIA3. This

suggested that they might be involved in the regulation of ChPDIA3

gene expression. And the expression of ChPDIA3 may be related to

the response of C. hongkongensis to V. harveyi infection. When
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faced with V. harveyi infection, the organism may affect the

expression of ChPDIA3 by regulating the expression levels of

miR-126-x and miR-21-y, thereby modulating the immune

response or other relevant physiological processes of the organism

in response to the infection. This regulatory mechanism helps the C.

hongkongensis to better resist V. harveyi infection and maintain the

health and homeostasis of the organism.
4.4 Potential applications in aquaculture

Our findings on the role of ChPDIA3 in C. hongkongensis and its

regulation by miR-126-x and miR-21-y offer potential applications

for the aquaculture industry, particularly in enhancing disease

resistance in oysters. One promising application is through selective

breeding programs. By identifying and selecting oysters with higher

levels of ChPDIA3 expression or those with genetic variants that

enhance the gene’s function, breeders can develop lines with greater

resistance to bacterial infections, such as those caused by V. harveyi.

This approach will enable the breeding of oyster strains that are more

resilient to disease outbreaks and reduce reliance on antibiotics,

thereby promoting more sustainable and environmentally friendly

aquaculture practices (Chamberlain et al., 2019; Wang et al., 2023).

Additionally, the manipulation of miRNA expression levels, such as

miR-126-x and miR-21-y, can be explored as a genetic engineering

strategy. By regulating these miRNA levels, it is possible to increase

the expression of ChPDIA3 and other immune-related genes, thereby

enhancing the overall immune response in oysters (Chu et al., 2021;

Pan, 2024; Qin et al., 2024). This could be particularly useful in

hatcheries and nurseries, where oysters are most susceptible to

infections. In conclusion, our study may contribute to the selection

of disease-resistant oyster strains and disease control. However, the

results of the current study are still some distance from direct

application in production and require further in-depth research.
4.5 Limitations of this study

While our study provides new insights into the role of ChPDIA3

and its regulation by miR-126-x and miR-21-y in the immune

response of C. hongkongensis against V. harveyi infection, several

limitations should be acknowledged. First, the experimental design

primarily focused on laboratory conditions, which may not fully

replicate the complex environmental factors encountered in natural

aquaculture settings. Factors such as water temperature, salinity, and

the presence of other pathogens can significantly influence the

expression and function of immune-related genes. Second, the study

utilized a limited number of time points for sampling, which may not

capture the complete dynamics of the immune response over the

entire course of infection. Future studies would likely necessitate more

frequent sampling to better understand the temporal changes in gene

expression and the potential involvement of other immune pathways.
Frontiers in Cellular and Infection Microbiology 10
Additionally, while the dual luciferase experiments provided evidence

of miRNA regulation, the study did not explore the downstream

effects of ChPDIA3 on other components of the immune system in

detail, such as signaling pathways. Further research is needed to

elucidate the broader network of interactions and pathways involved

in the immune response mediated by ChPDIA3.
5 Conclusion

The PDIA3 gene has been identified to play an important role in

the infection of C. hongkongensis infected under V. harveyi. In this

paper, the PDIA3 sequence of the C. hongkongensis was cloned. The

homogeneous analysis demonstrated that the nucleic acid sequence

and amino acid sequence of this gene are relatively conserved. It is

proved that ChPDIA3 has a similar mechanism to other

homologous genes. ChPDIA3 was most highly expressed in gill

tissues of the C. hongkongensis as detected by qPCR, and its

expression was higher than that of Poly (I:C) in the presence of

V. harveyi and LPS infections. This may indicate that ChPDIA3 is

primarily involved in the immune response against bacterial

infections in the C. hongkongensis. Dual luciferase reported that

both miR-126-x and miR-21-y inhibited the expression of

ChPDIA3. In practical application, the expression level or

gene sequence polymorphism of ChPDIA3 gene can be

used as an important molecular marker for disease resistance

selection, and it is expected to breed oyster varieties with stronger

disease resistance by selecting individuals with specific ChPDIA3

expression characteristics for breeding.
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