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Two factors frequently impede accurate bacterial identification using matrix-

assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-

TOF MS): inadequate bacterial abundance in real samples and bacterial

combinations. For MALDI-TOF MS analysis and libraries for bacterial

identification, time-consuming culture procedures are necessary to achieve

sufficient concentration and isolation of a single bacterium. When dealing with

hazardous bacteria like Brucella, which are more difficult to handle and cure, this

problem becomes even more crucial. To overcome these obstacles, Fe3O4

magnetic nanoparticles (MNPs) linked with Brucella-specific antibodies and

MALDI-TOF MS analysis have been used to create a quick and accurate

technique for direct bacterial separation and identification in complex samples.

This method allows MNPs to immune-selectively collect Brucella cells, which are

then deactivated and ready for MALDI-TOF MS analysis by a formic acid/

acetonitrile wash. Rabbits were used to manufacture brucella antibodies, which

have effectively adsorbed onto the MNPs–protein A. Any particular Brucella

bacteria found in the media might be absorbed by this MNPs–protein A–

antibody immunoprobe. The concentration of Brucella bacterial cells increases

the protein spectrum’s visibility by a factor of 103, making it possible to quickly

identify Brucella spp. without first growing them in cultural conditions. This

method has been successfully used to achieve a limit of detection (LOD) of 50

CFU/mL in an aqueous medium and genuine sample—milk. The diagnostic time

for this harmful bacterium is greatly decreased because the entire procedure

from bacterial isolation to species identification is finished in less than 60 min.

High sensitivity and specificity are demonstrated by the immunoassay–MS

approach, as the spectral pattern it produces matches well-known databases

like SPECLUST and Ribopeaks.
KEYWORDS

immunoassay-mass spectrometry, Brucella spp., magnetic nanoparticles, milk, MALDI-
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2025.1531018/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1531018/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1531018/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2025.1531018&domain=pdf&date_stamp=2025-02-04
mailto:a_ghassempour@yahoo.com
https://doi.org/10.3389/fcimb.2025.1531018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2025.1531018
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Sharif et al. 10.3389/fcimb.2025.1531018
GRAPHICAL ABSTRACT
1 Introduction

The world’s health is being threatened by infectious germs,

which have the capacity to start pandemics in the future (Nieto and

Salvetti, 2014; Cloeckaert, 2024). Bacteria have historically caused a

wide range of infectious diseases that impact people, animals, and

plants (Dharmarajan et al., 2022; Tiedje et al., 2022; Glajzner et al.,

2024). An estimated 420,000 deaths are attributed to foodborne

pathogens alone each year, with the largest burden occurring in

areas of poverty (Olivares et al., 2013; Schaumburg et al., 2019; de

Oliveira et al., 2024). Therefore, bacterial illnesses must be properly

diagnosed and treated in order to protect the public’s health (Zia

and Alkheraije, 2023). Brucellosis is also known as “Mediterranean

fever”, “undulant fever,” and “Malta fever”. Because of its low

infectious dosage and ability to spread through inhaling

contaminated aerosols, it is considered an infectious bacterial

zoonosis (Qin et al., 2023; Zhang et al., 2024). Rapid and accurate

identification of pathogenic microorganisms is necessary to

comprehend these diseases (Wang et al., 2022; Kang et al., 2024).

Matrix-assisted laser desorption ionization time-of-flight mass

spectrometry (MALDI-TOF MS) utilizes a mass spectrum library

derived from sufficient microbial proteins, allowing the matching of

the obtained mass spectrum of one bacteria with known profiles for

species identification (Cheng et al., 2016; Kurli et al., 2018; Rahi and

Vaishampayan, 2020; Han et al., 2021; Lorente-Leal et al., 2022;

Peng et al., 2022; Tsuchida and Nakayama, 2022; Becker and

Lupetti, 2023; Foster and Khaiboullina, 2023).

Notable commercial kits include the developed fast BACpro® II

kit (Nittobo Medical Co., Tokyo, Japan) (Wang et al., 2016; Oviaño

et al., 2021), the Vitek MS blood culture kit (bioMérieux, Inc.)

(Nomura et al., 2020), and the Sepsityper® kit (Bruker Daltonics)

(Persě et al., 2022). For bacterial analysis in microbiology labs,

including cultivation, inactivation, isolation, and data

interpretation, the Food and Drug Administration (FDA) has
Frontiers in Cellular and Infection Microbiology 02
authorized MALDI-TOF MS (Bauermeister et al., 2022; Li et al.,

2022; Haider et al., 2023; Pastrone et al., 2023).

A potential method for quick and precise microbiological

identification is the combination of MNPs and MALDI-TOF MS

(Kumari et al., 2023). Detection limits as low as 10² CFU/mL are

made possible by MNPs (Xiao et al., 2022; Abafogi et al., 2024). This

technique improves operating speed and accuracy by streamlining

processes by doing away with the requirement to culture samples,

particularly for highly virulent pathogens such as Brucella (Ha and

Kim, 2022). Furthermore, MNPs’ capacity to functionalize and

attach selectively to bacterial cells enhances detection specificity

in complicated biological samples, contributing to their high

selectivity (Houser et al., 2024). Because of protein A’s high

affinity for the Fc region of immunoglobulins (IgGs), antibodies

on MNPs can be effectively immobilized, greatly enhancing their

ability to ensnare target microorganisms (Xu et al., 2019).

Serological tests are usually preferred because determining the

source of brucellosis is crucial due to its current threats and takes a

lot of time, often requiring highly qualified specialists (Padilla et al.,

2010). Serological techniques, however, frequently encounter

obstacles like a lack of standardization, validation issues, and

restrictions on precisely identifying the species and strain of

Brucella implicated (Yagupsky et al., 2019).

In our last study, we used bioinformatics in conjunction with

MALDI-TOF MS proteomics analysis to find biomarkers for

brucellosis (Hamidi et al., 2022). Additionally, we used MALDI-

TOF MS in conjunction with single-chain variable fragment (scFv)

antibody-conjugated MNPs as highly sensitive and selective probes

to quickly and precisely detect and identify the fig mosaic virus

(Soleimani Mashhadi et al., 2020).

Using Fe₃O₄ MNPs modified with protein A and particular

antibodies produced in rabbits, an immunoaffinity probe was

created in this study to selectively isolate Brucella bacteria from

contaminated samples at low concentration levels. This was
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followed by identification using the MALDI-TOF MS technique.

This proposed technique increased the limit of detection (LOD) of

Brucella bacteria by a factor of 1,000 in aqueous medium and

milk samples.
2 Materials and methods

2.1 Material

2.1.1 Chemicals and solutions
In this investigation, the following substances were used:

CHEM LAB Co. (Zedelgem, Belgium) provided the sodium

carbonate and sodium dodecyl sulfate (SDS). Sigma-Aldrich Co.

(Altenburg, USA) provided the magnetic iron oxide nanoparticles

(Fe3O₄ MNPs), acrylamide, N,N’-methylene bisacrylamide,

sinapinic acid, and a-cyano-4-hydroxycinnamic acid (CHCA).

The following additional reagents were obtained from Merck

Co. (Darmstadt, Germany): tetramethylethylenediamine (TEMED),

Tris (hydroxymethyl) aminomethane, silver nitrate, tetraethyl

orthosilicate (TEOS), N,N-dimethylformamide (DMF), succinic

anhydride, disodium phosphate, potassium dihydrogen

phosphate, glycine, ammonia solution (28%), acetonitrile (HPLC

grade), absolute ethanol, formic acid, and trifluoroacetic

acid (TFA).

The supplier of formaldehyde was Ghatranshimi Co. in Tehran,

Iran. The supplier of ammonium persulfate (APS) was GEHealthcare

Co. (Chicago, USA). We purchased 3-aminopropyltriethoxysilane

(APTES), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC),

and N-hydroxysuccinimide (NHS) from Exir GmbH Co. (Vienna,

Austria). Lastly, BIOCHEM Chemopharma Co. (Burgundy, France)

was the supplier of potassium chloride and sodium chloride.
2.2 Preparation of antibody immobilized on
magnetic iron oxide nanoparticles

Initially, 100 mg of MNPs was subjected to a 10-min sonication.

After adding ethanol (EtOH), water, ammonia, and TEOS, the

mixture was sonicated for 3 h at room temperature. After that,

ethanol was used to wash the MNPs. After adding APTES, water,

ammonia, and EtOH, the mixture was sonicated for an hour at

room temperature and then washed with ethanol to aminate

the MNPs.

After the MNPs were cleaned, succinic anhydride was added,

and the reaction was left to continue stirring all night. EDAC and

NHS were added to the succinylated MNPs after they had been

dissolved in 50 mM phosphate-buffered saline (PBS, pH 6.6) to

activate the carboxyl groups (Mahmoud et al., 2005).

Following washing, the suspension was vortexed for 3 h and 2

mL of 500 ppm protein A solution was added (Ramandi et al.,

2022). Two milliliters of 50 mM PBS (pH 6.6) was used to wash the

MNPs three times for 10 min each time. For the SDS-PAGE

analysis, 30 mL of each sample was kept. A Tris-HCl buffer

(pH 8) was used to quench the MNPs’ unreacted sites.
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The buffer was switched out for 50 mM PBS (pH 7.4) in order to

encapsulate the antibody. After adding 2 mL of a 500 ppm Brucella

antibody solution to the MNPs–protein A complex, the mixture was

vortexed for 3 h. Two milliliters of 50 mM PBS (pH 7.4) was used to

wash the MNPs three times for 10 min each time. Once more, 30 mL
of every sample was saved for SDS-PAGE examination. For

bacterial enrichment, the resultant MNPs–protein A–antibody

complex was utilized (Figure 1).
2.3 SDS-PAGE analysis

Using the Bio-Rad system (Hercules, CA, USA), one-

dimensional SDS-PAGE was performed. A 15% polyacrylamide

gel made with Tris-glycine buffer was loaded with protein samples.

For the best protein band separation, electrophoresis was carried

out at a steady voltage.

To see the separated proteins, a silver nitrate staining procedure

was used on the gel following electrophoresis. In short, the gel was

sensitized in a sodium thiosulfate solution after being fixed in a

methanol, acetic acid, and water solution to maintain the protein

bands. After staining the gel with silver nitrate, it was developed

with a developer solution based on formaldehyde until protein

bands were visible. The gel was submerged in a stop solution to stop

the reaction. High-sensitivity protein band detection was made

possible by this procedure, guaranteeing that the separated proteins

could be seen for further examination.
2.4 Brucella culture

The reference strain Brucella melitensis 16M was obtained from

the Razi Vaccine and Serum Research Institute (Karaj, Iran). The

bacteria were cultured on Brucella agar plates (BBL Microbiological

Systems, Cockeysville, MD, USA), a selective medium specifically

designed to support the growth of Brucella species. The plates were

incubated under aerobic conditions at 37°C for 6 days to allow for

sufficient bacterial growth.

To ensure optimal bacterial proliferation, the agar plates were

prepared fresh and maintained in sterile conditions. Colony

morphology was observed daily to confirm the growth

characteristics of B. melitensis 16M, and any contamination was

ruled out through visual inspection. After the incubation period,

bacterial colonies were harvested under aseptic conditions and

prepared for downstream applications, such as protein extraction,

immunoassay development, or mass spectrometric analysis.
2.5 Produce antibody in rabbit

A fresh overnight culture was diluted in PBS to create a bacterial

solution with a concentration of 108 CFU/mL to generate antibodies

against B. melitensis. Two doses of this suspension were administered

to New Zealand White rabbits, with a 3-week gap between the first

and booster shots. Two weeks following the booster injection, jugular
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vein blood samples were taken to extract antibody production. MNPs

were employed to extract B. melitensis antibodies from the serum,

which were then utilized for the following procedures.
2.6 Extraction of bacteria from samples
with MNPs–protein A–antibody

The initial sample was diluted to reach a concentration of 50 billion

bacteria after bacterial growth, then subsequent dilutions (50 to 5×108

CFU/mL) were made. Different concentrations of MNPs–protein A–

antibody were applied to 5×106 CFU/mL of bacterial suspension to

maximize bacterial separation. Bacteria attached to the MNPs–protein

A–antibody conjugates were collected after 30 min of incubation at 37°

C with constant shaking. They were then rinsed for 10 min with 1,000

mL of PBS (pH 7.4) and then again for 10 min with 1,000 mL of

deionized water. After resuspending the particles in 15 mL of 70%

formic acid andMS-grade acetonitrile, they were shaken to break down

the bacterial cell walls and extract the proteins. The supernatant was

spotted on a MALDI plate using the CHCA matrix for analysis.
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2.7 MALDI-TOF MS analysis

An Applied Biosystems 4800 MALDI-TOF MS equipped with a

Nd laser (200 Hz, AB Sciex, Canada) was used to obtain the mass

spectra of bacterial proteins. CHCA (10.0 mg/mL in 2.5% TFA and

50% acetonitrile). The sample solution was added to the MALDI

plate after 1 mL of the matrix solution. With a mass range of 2–20

kDa, the analysis was carried out in positive ion linear mode. Each

sample received between 600 and 1,000 laser pulses, and the Data

Explorer software (version 4.0) was used to create the average

mass spectrum.

For bacterial inactivation and extraction, we employed a formic

acid–ethanol extraction strategy. A bacterial suspension containing

6 to 10 colonies in 600 mL of water was vortexed for 10 s, followed

by the addition of 1,000 mL of absolute ethanol. The mixture was

carefully mixed and incubated at 20–25°C for 30 min and then

centrifuged at 10,000 rpm for 10 min. The supernatant was

removed, and the pellet was resuspended in 10 mL of 70% formic

acid. Ten microliters of acetonitrile was added to ensure

thorough mixing.
FIGURE 1

Activation of MNPs and immobilization of protein A and adsorption of antibody on it: TEOS (tetraethyl orthosilicate) and APTES
(3-aminopropyltriethoxysilan).
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After centrifuging the mixture for 2 min at 11,000 rpm and 20–

25°C, the supernatant was gathered and placed in a separate tube.

The supernatant was put onto Brucella agar and cultured for 6 days

at 37°C in order to evaluate the vitality of the bacteria. The

effectiveness of the chemical procedures in deactivating Brucella

spp. was validated by the lack of bacterial colonies.
3 Results

The SDS-PAGE analysis revealed successful immobilization of

protein A on MNPs. The presence of protein A was confirmed in

the supernatant, wash 1, and wash 2, indicating that protein A was

effectively fixed on the MNPs and was ready for antibody binding to

capture specific antigens (S1). Additionally, Brucella antibodies are

produced in rabbits and purified via MNPs–protein A. The SDS-

PAGE gel demonstrating the MNPs–protein A–antibody compared

to pure antibodies is illustrated (S2). The non-covalent bond

formed between protein A and the Brucella antibody allows for

the potential purification of the Brucella antibody through elution

from the MNPs–protein A–antibody surface.

A dilution of 5×10³ CFU/mL of Brucella bacteria was incubated

with the antibody-coated substrate, and the results were compared

to a substrate devoid of antibodies to verify the development of the

antibody–antigen bond. The proteins of the Brucella bacteria that

were isolated from the antibody-coated substrate produced the

anticipated protein spectrum, while no such spectrum was seen

from the substrate without antibodies. Additionally, MNPs–protein

A–antibody was given to 5×10³ CFU/mL of Escherichia coli to verify

its specificity, and no peaks were observed. Considering the

necessity to optimize the amount of MNPs–protein A–antibody

for isolation, we tested different substrate concentrations (0.5, 1, 2,

and 5 mg/mL) using 5×103 CFU/mL of Brucella bacteria (Table 1).

Significant variations in protein spectrum intensity across the

different substrate amounts led to the conclusion that 2 mg/mL

was the ideal substrate concentration.

The antibody-coated substrate was also kept in PBS buffer at 4°C

for 3 months to evaluate its shelf life. Effective contact with bacteria was

validated by post-storage analysis, which also showed that the

produced MNPs–protein A–antibody remained functional for a

minimum of 3 months.

To assess the pre-concentration effectiveness of the MNPs–

protein A–antibody, both with the optimal quantity of MNPs–

protein A–antibody after extraction using MALDI-TOF MS and
Frontiers in Cellular and Infection Microbiology 05
without trapping the bacteria on the substrate, bacterial proteins

were examined at various dilutions. The colony count in the initial

suspension was 5×108 CFU/mL. To extract the Brucella bacteria,

several aqueous bacterial suspensions were made at dilutions

ranging from 5×10⁸ to 50 CFU/mL. A LOD of 5×104 and 50

CFU/mL in the aqueous environment without and with pre-

concentration, respectively, was found in the mass spectra derived

from these investigations.

To verify the analysis of B. melitensis 16M, the obtained mass

spectra were compared to reference spectra, which showed a sizable

number of similar peaks. They were generated in an aqueous

medium to continue a series of dilutions that interacted with 2

mg/mL of the substrate, ranging from 5×10⁸ to 50 CFU/mL of the

original bacterial suspension. After the proteins from the Brucella

bacteria were extracted, the data were examined and are shown in

Table 2. The average standard deviation (SD) was 12.3, and the

linear discriminating range (LDR) was 107, signifying a noteworthy

103-fold increase in the concentration coefficient.

We referred to the average total viable count in urban samples,

which is reported to be between 108 and 105 CFU/mL (Berhe et al.,

2020; Mukhopadhyay et al., 2024), in order to further modify this

method for biological applications. Therefore, we made bacterial

dilutions ranging from 5×104 to 50 CFU/mL and added them to

low-fat pasteurized milk as an actual sample analysis. Following the

established procedure, we extracted the protein after permitting

contact with the substrate. Figure 2 displays the outcome of the 50

CFU/mL dilution analysis.

The mass spectrum displayed significant interference from

milk proteins (Šebela, 2022; Cuccato et al., 2022), prompting the

exploration of several strategies to enhance the detection of

bacterial protein peaks. The approaches employed included

centrifugation of contaminated milk, followed by dilution of the

sediment in water prior to interaction with the substrate

(Punyapornwithaya et al., 2009; Tiedje et al., 2022), washing

with a Tween-20-containing buffer, and adding additional
TABLE 2 Evaluate the pre-concentration efficacy of the MNPs–protein
A–antibody, without trapping the bacteria on the substrate and with the
optimized amount of MNPs–protein A–antibody following extraction via
MALDI-TOF MS.

Bacterial dilution
(CFU/mL)

Intensity
Non-interaction

± SD

Intensity
Interaction ± SD

5×108 2923.4 ± 12.2 3536.1 ± 12.8

5×107 1978.7 ± 11.4 2488.5 ± 13.7

5×106 1696.0 ± 13.1 2430.4 ± 11.8

5×105 1589.2 ± 12.6 1886.6 ± 12.3

5×104 1071.1 ± 11.9 1785.7 ± 12.6

5×103 – 1553.0 ± 11.2

5×102 – 1433.9 ± 10.9

50 – 537.0 ± 13.4
TABLE 1 Comparison amount of the ability of MNPs–protein A–
antibody to achieve bacteria.

MNPs (mg/mL) Intensity

0.5 64.3

1 264.0

2 987.5

5 1,085.8
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washing steps (Barreiro et al., 2012). These methods were applied

to bacterial dilutions of 5×104 to 50 CFU/mL, resulting in notable

improvements, as shown in Figure 3. Ongoing efforts are focused

on optimizing the analysis of smaller bacterial quantities. It means

that the LOD of this technique is 50 CFU/mL and we can detect

bacteria in milk samples. The significance of this method lies in its

potential for rapid and accurate pathogen identification, thereby

aiding medical professionals and contributing to public health.

This report details our progress to date, with continued work

aimed at validating the method for practical applications in

clinical settings.
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4 Discussion

We found that 2 mg/mL of MNPs–protein A–antibody is the

ideal concentration for efficiently isolating pathogens in complex

matrices like milk, where proteins and lipids can make isolation

difficult. Our findings concur with those of Xiao et al (Xiao et al.,

2022), who emphasized the significance of optimal MNP

concentrations for raising the sensitivity of detection. Using

MNPs in conjunction with immunoassay methods, we were able

to detect B. melitensis in milk and water samples with an LOD of

50 CFU/mL. The application of polydopamine-coated MNPs for
FIGURE 3

Mass spectrum of B. melitensis in 50 CFU/mL dilution in milk after interaction with MNPs–protein A–antibody and improvement.
FIGURE 2

Mass spectrum of B. melitensis in 50 CFU/mL dilution in milk after interaction with MNPs–protein A–antibody.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1531018
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Sharif et al. 10.3389/fcimb.2025.1531018
automated sepsis detection was recently demonstrated by Zhang

et al., who achieved remarkable sensitivity with detection limits as

low as 10² CFU/mL across a variety of bacterial species in blood

samples (Houser et al., 2024).

Similar to our strategy of using MNPs for bacterial collection

frommilk, this degree of sensitivity highlights how well MNPs work

to capture and concentrate germs from complicated matrices.

Furthermore, Chen et al. reported that MNPs grafted with

antibodies can greatly increase detection sensitivity (Chen et al.,

2022). Our findings that antibody-functionalized MNPs improve

the overall sensitivity of bacterial protein spectra by a factor of 10³

detection and expedite the isolation procedure are corroborated by

this evidence. When compared to traditional culture methods, our

method of using MALDI-TOF MS in conjunction with MNPs

provides rapid identification capabilities in less than 60 min,

which is a significant reduction in the time needed for bacterial

identification. For prompt clinical decision-making and efficient

patient care, this quick turnaround is essential.

Additionally, the significant problem of low bacterial

abundance in samples is resolved by integrating MNPs with

MALDI-TOF MS. Furthermore, new research highlights the

adaptability and efficiency of iron oxide-based MNPs in the

identification and management of bacteria (Svadlakova et al

(Svadlakova et al. , 2020)). Improvements in magnetic

nanoparticle-based microfluidic systems that allow for the quick

and accurate identification of harmful bacteria in a variety of sample

types, including food and water, were covered by Han et al (Han

et al., 2021). Furthermore, Ha et al. described methods that increase

sensitivity and specificity even in complex food matrices (Ha and

Kim, 2022) and demonstrated how magnetic nanoparticles improve

immunoassays for pathogen detection.

By offering prompt and precise bacterial identification that is

essential for efficient patient care and treatment, this quick

turnaround has the potential to completely transform clinical

microbiology. Although this approach may have a significant

impact on clinical microbiology, its wider application will require

additional verification of its precision and consistency across a

range of bacterial strains and clinical settings.

Adapting this technique to a range of diseases requires high-

affinity antibodies that target specific pathogen indicators, such as

lipopolysaccharides or cell wall proteins for bacteria and capsid or

envelope proteins for viruses. These antibodies ensure the

sensitivity and specificity of the immunoaffinity enrichment. The

high-throughput, rapid, and cost-effective technique of MALDI-

TOF mass spectrometry enhances bacterial identification. However,

in settings with limited resources, its high initial costs, maintenance

needs, and reliance on skilled personnel may make it less accessible.

Continuous sample preparation and efficient processes are

necessary for scalability. Despite these challenges, MALDI-TOF

offers scalable, cost-effective diagnostics with exceptional mass

accuracy and precision.

Although MNPs have several drawbacks when used in

therapeutic settings, they provide intriguing applications for

bacterial enrichment. It is difficult to achieve specificity across a

variety of bacterial populations; thus, current research attempts to
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improve the identification of mixed pathogens by developing

particular substrates based on patient clinical circumstances and

protein biomarkers (Sandrin and Demirev, 2018; Yang et al., 2018;

Han et al., 2021). The efficiency of magnetic separation is affected by

factors such as flux and magnetic field strength, which can be

improved by synthesizing smaller MNPs and their quantity

optimization for bacterial extraction (Socas-Rodrıǵuez et al.,

2020). Furthermore, complex biological matrices often interfere

with binding and enrichment processes, requiring preconcentration

methods such as centrifugation to clean up samples (Xu et al.,

2019). Moreover, implementing MNP-based methods in clinical

settings requires compliance with regulatory standards, which

presents challenges in standardizing protocols across laboratories

(Takallu et al., 2024). It will be essential to highlight these challenges

to advance the use of MNPs in routine microbiological diagnostics.

Using this method within the context of an automated

diagnostic platform or a field-deployable kit, MS is thus a viable

strategy for advancing microbial diagnostics. Future research

should involve the development of automated magnetic

separation techniques that will improve the method’s efficiency

as shown by various studies that have used vancomycin- and

allantoin-conjugated MNPs for the rapid concentration of

bacteria from the complex samples (Han et al., 2021; Abafogi

et al., 2024). In addition, the development of portable diagnostic

kits that contain MNPs will help in the identification of pathogens

in the affected regions (Wen et al., 2017). The specificity,

sensitivity, and selectivity of MNPs can be increased further to

capture a wider range of bacterial strains through the use of new

conjugation techniques (Gao et al., 2016). In general, these

developments can be viewed as having the capacity to enhance

microbial diagnostic capabilities in the clinical setting with speed

and efficiency.
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Haider, A., Ringer, M., Kotroczó, Z., Mohácsi-Farkas, C., and Kocsis, T. (2023). The
current level of MALDI-TOF MS applications in the detection of microorganisms: a
short review of benefits and limitations.Microbiol. Res. (Pavia). 14, 80–90. doi: 10.3390/
microbiolres14010008

Hamidi, H., Bagheri Nejad, R., Es-Haghi, A., and Ghassempour, A. (2022). A
combination of MALDI-TOF MS proteomics and species-unique biomarkers’
discovery for rapid screening of brucellosis. J. Am. Soc Mass Spectrom. 33, 1530–
1540. doi: 10.1021/jasms.2c00110

Han, H., Sohn, B., Choi, J., and Jeon, S. (2021). Recent advances in magnetic
nanoparticle-based microfluidic devices for the pretreatment of pathogenic bacteria.
Biomed. Eng. Lett. 11, 297–307. doi: 10.1007/s13534-021-00202-y

Houser, B. J., et al. (2024). Bacterial binding to polydopamine-coated magnetic
nanoparticles. ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.4c11169

Kang, H., et al. (2024). Rapid identification of bloodstream infection pathogens and
drug resistance using Raman spectroscopy enhanced by convolutional neural networks.
Front. Microbiol. 15, 1428304. doi: 10.3389/fmicb.2024.1428304

Kumari, M., Klodzinska, S. N., and Chifiriuc, M. C. (2023). Microbe-nanoparticle
interactions: a mechanistic approach. Front. Microbiol. 14, 1273364. doi: 10.3389/
fmicb.2023.1273364

Kurli, R., et al. (2018). Cultivable microbial diversity associated with cellular phones.
Front. Microbiol. 9, 1229. doi: 10.3389/fmicb.2018.01229

Li, B., et al. (2022). Performance evaluation and clinical validation of optimized
nucleotide MALDI-TOF-MS for mycobacterial identification. Front. Cell. Infect.
Microbiol. 12, 1079184. doi: 10.3389/fcimb.2022.1079184

Lorente-Leal, V., et al. (2022). MALDI-TOF mass spectrometry as a rapid screening
alternative for non-tuberculous mycobacterial species identification in the veterinary
laboratory. Front. Vet. Sci. 9, 827702. doi: 10.3389/fvets.2022.827702

Mahmoud, K. A., Long, Y., Schatte, G., and Kraatz, H. (2005). Rearrangement of the
active ester intermediate during HOBt/EDC amide coupling. Eur. J. Inorg. Chem. 2005,
173–180. doi: 10.1002/ejic.200400504

Mukhopadhyay, M., Malviya, J., Barik, A., and Asthana, N. (2024). Assessing the
microbial contamination levels in milk samples from rural and urban areas: A focus on
raisen and bhopal districts. Macromol. Symp. 413, 2300093. doi: 10.1002/
masy.202300093

Nieto, K., and Salvetti, A. (2014). AAV vectors vaccines against infectious diseases.
Front. Immunol. 5, 5. doi: 10.3389/fimmu.2014.00005

Nomura, F., Tsuchida, S., Murata, S., Satoh, M., and Matsushita, K. (2020). Mass
spectrometry-based microbiological testing for blood stream infection. Clin. Proteomics
17, 1–11. doi: 10.1186/s12014-020-09278-7
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fcimb.2025.1531018/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1531018/full#supplementary-material
https://doi.org/10.1038/s41598-024-54236-0
https://doi.org/10.1038/s41598-024-54236-0
https://doi.org/10.1002/pmic.201200053
https://doi.org/10.1038/s41579-021-00621-9
https://doi.org/10.3389/fmicb.2023.1204452
https://doi.org/10.3389/fmicb.2023.1204452
https://doi.org/10.1186/s12889-020-09016-6
https://doi.org/10.1016/j.bios.2022.114234
https://doi.org/10.1002/prca.201500086
https://doi.org/10.1002/prca.201500086
https://doi.org/10.3389/fmicb.2024.1443636
https://doi.org/10.3389/fvets.2022.1009928
https://doi.org/10.3389/fcimb.2024.1379188
https://doi.org/10.15212/ZOONOSES-2021-0028
https://doi.org/10.3389/fmicb.2023.1193841
https://doi.org/10.3389/fmicb.2016.01891
https://doi.org/10.3389/fphar.2024.1397602
https://doi.org/10.1007/s13206-022-00064-1
https://doi.org/10.3390/microbiolres14010008
https://doi.org/10.3390/microbiolres14010008
https://doi.org/10.1021/jasms.2c00110
https://doi.org/10.1007/s13534-021-00202-y
https://doi.org/10.1021/acsami.4c11169
https://doi.org/10.3389/fmicb.2024.1428304
https://doi.org/10.3389/fmicb.2023.1273364
https://doi.org/10.3389/fmicb.2023.1273364
https://doi.org/10.3389/fmicb.2018.01229
https://doi.org/10.3389/fcimb.2022.1079184
https://doi.org/10.3389/fvets.2022.827702
https://doi.org/10.1002/ejic.200400504
https://doi.org/10.1002/masy.202300093
https://doi.org/10.1002/masy.202300093
https://doi.org/10.3389/fimmu.2014.00005
https://doi.org/10.1186/s12014-020-09278-7
https://doi.org/10.3389/fcimb.2025.1531018
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Sharif et al. 10.3389/fcimb.2025.1531018
Olivares, J., et al. (2013). The intrinsic resistome of bacterial pathogens. Front.
Microbiol. 4, 103. doi: 10.3389/fmicb.2013.00103

Oviaño, M., et al. (2021). Multicenter evaluation of rapid BACpro® II for the accurate
identification of microorganisms directly from blood cultures using MALDI-TOF MS.
Diagnostics 11, 2251.

Padilla, P. F., Nielsen, K., Ernesto, S. L., and Ling, Y. W. (2010). Diagnosis of
brucellosis. Open Vet. Sci. J. 4, 46–60. doi: 10.2174/1874318801004010046

Pastrone, L., et al. (2023). Evaluation of two different Preparation protocols for
MALDI-TOF MS nontuberculous mycobacteria identification from Liquid and Solid
Media. Microorganisms 11, 120. doi: 10.3390/microorganisms11010120

Peng, J., Tang, Y.-W., and Xiao, D. (2022). Progress in pathogen identification based
on mass spectrometry. Front. Cell. Infection Microbiol. 11, 813133. doi: 10.3389/
fcimb.2021.813133
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