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Tropical Medicine, Mahidol University, Bangkok, Thailand, 4Department of Pathogen Biology, College
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Background: Plasmodium vivax is a major cause of malaria, particularly outside

Africa, necessitating effective strategies for public health management.

Transmission-blocking vaccines (TBVs) have shown the potential to inhibit

malaria transmission by targeting antigens expressed in sexual-stage parasites.

Pbg37, a conserved protein expressed in sexual stages from gametocyte to

ookinete in the rodent parasite P. berghei, is a viable target for TBV development.

Methods and findings: In this study,weconstructed a transgenic strain,TrPvg37Pb,

expressing Pvg37 using the P. berghei DPbg37 strain. Initial findings demonstrated

that the replacement of Pbg37 with the exogenous Pvg37 did not impact parasite

growth or development. Notably, Pvg37 was expressed during the gametocyte to

ookinete development and was associated with the plasmic membrane, similar to

Pbg37. To evaluate the potential of Pvg37 as a TBV candidate, we synthesized two

Pvg37 polypeptides and immunized rabbits to generate antibodies. In vitro

experiments demonstrated that anti-Pvg37-P2 antibodies significantly inhibited the

formation of male gametes and ookinetes in the transgenic TrPvg37Pb parasite.

Additionally, in mosquito feeding assays, mosquitos feeding on TrPvg37Pb-infected

micepassively transferredwith anti-Pvg37-P2 antibodies showeda significant 80.2%

decrease in oocyst density compared to the control group. Furthermore, in direct

membrane feeding experiments using four clinical P. vivax isolates, the anti-Pvg37

antibodies significantly reduced oocyst density by 28.6–50.4%.

Conclusion: Pvg37 is a promising candidate for P. vivax TBV development,

deserving further research and optimization to enhance its immunogenicity

and transmission-blocking activity.
KEYWORDS

Plasmodium vivax, transmission-blocking vaccine, polypeptide, transgenic
parasite, gametocyte
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Introduction

Malaria is a severe parasitic disease caused by Plasmodium

parasites. According to the World Health Organization’s World

Malaria Report 2023, there were 249 million cases worldwide in

2022, an increase of 5 million cases compared with 2021 (WHO,

2023). Plasmodium vivax is a major cause of malaria outside of

Africa and accounts for about 72% of all cases in Southeast Asia and

the Americas (Flannery et al., 2019). Managing and treating P. vivax

malaria is more challenging than P. falciparum malaria, as it

produces dormant hypnozoites in the liver that are responsible

for relapse (Adams and Mueller, 2017; Flannery et al., 2022).

Currently, primaquine and tafenoquine are utilized to clear

hypnozoites, but they are contraindicated in individuals with

glucose-6-phosphate dehydrogenase (G6PD) deficiency due to the

risk of hemolysis (Lacerda et al., 2019; Llanos-Cuentas et al., 2019;

Thriemer et al., 2021). The Malaria Eradication Research Agenda

(MalERA) considers that interrupting malaria transmission is a key

measure for malaria elimination, with transmission-blocking

vaccines (TBVs) uniquely suited for this task.

In membrane-feeding assays, antibodies targeting antigens

consumed in a blood meal can suppress the growth of parasites

within mosquito vectors. TBV candidate antigens are primarily

expressed on the surface of the mosquito-stage malaria parasite

(Miura et al., 2019). Thus, they are less susceptible to selective

pressure from the vertebrate immune system and display lower

levels of polymorphism. According to their expression patterns,

TBV antigens fall into two categories. Pre-fertilization antigens

such as P48/45 and P230 are expressed in gametocytes and

gametes, while post-fertilization antigens such as P25 and P28 are

expressed on the surfaces of zygotes and the maturing ookinetes

(Hisaeda et al., 2001; van Dijk et al., 2001; Doi et al., 2011; Arévalo-

Herrera et al., 2015). Although TBV research has received

considerable attention, only a limited number of candidate antigens

have been identified (de Jong et al., 2020), especially for P. vivax.

These include pre-fertilization antigens Pvs230, Pvs48/45, and

PvHAP2, post-fertilization antigens Pvs25 and Pvs28, and the

mosquito midgut antigen AgAPN1 (Malkin et al., 2005; Tachibana

et al., 2012, 2015; Tentokam et al., 2019). Recombinant Pvs25H

expressed in Saccharomyces cerevisiae has been evaluated in Phase I

clinical trials with alum or Montanide ISA51 as an adjuvant (Malkin

et al., 2005; Wu et al., 2008). It has been shown that >25% of endemic

populations showed natural antibody responses to the Pvs230

domain 1 (Tentokam et al., 2019). In P. falciparum, Pfs230

regarded as a homologue of Pvs230 is considered a more

promising TBV candidate (Healy et al., 2021). A vaccine targeting

the first domain of Pfs230 has demonstrated a stronger TBA than the
Abbreviations: TBVs, transmission-blocking vaccines; G6PD, glucose-6-

phosphate dehydrogenase; TBA, transmission-blocking activity; TRA,

transmission-reducing activity; DMFA, direct membrane feeding assay; iRBCs,

infected red blood cells; WT, wild-type; mAb, monoclonal antibody; KLH,

keyhole limpet hemocyanin; ELISA, enzyme-linked immunosorbent assay; IFA,

indirect immunofluorescence assay; GIMO, Gene insertion and marker out;

SMFA, standard membrane feeding assay; VLPs, virus-like particles; EPA,

exoprotein A.
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comparable Pfs25 vaccine and is currently in Phase II field trials in

Mali (Duffy, 2022). Another pre-fertilization antigen, PvHAP2,

showed transmission-reducing activity (TRA) of 40.3–89.7% in a

direct membrane feeding assay (DMFA) (Qiu et al., 2020). Therefore,

there is a clear priority in TBV antigen discovery for P. vivax.

We have identified Pbg37 as a conserved sexual-stage antigen

across the genus Plasmodium. It was expressed intracellularly in

gametocytes, but the protein became membrane-associated during

gametogenesis and zygote-ookinete development (Liu et al., 2018).

Pbg37 is essential for sexual development, as its deletion led to a

significant reduction in gametocytemia and oocyst numbers in

mosquitoes. Direct feeding of mosquitoes on mice immunized

with recombinant Pbg37 resulted in a 49.1% reduction in oocyst

density. This TRA and the conservation of Pbg37 in Plasmodium

prompted us to investigate the TB potential of its ortholog in P.

vivax, Pvg37. By replacing Pbg37 with Pvg37, we generated a

transgenic P. berghei parasite line expressing Pvg37. Using this

transgenic parasite and clinical P. vivax isolates, we conducted

mosquito-feeding assays and demonstrated that antibodies against

Pvg37 also possessed substantial TRA.
Materials and methods

Mice, parasites and mosquitoes

Female BALB/c mice and New Zealand white rabbits were

purchased from the Beijing Animal Institute. The P. berghei

ANKA strain 2.34 was maintained by serial passage and used for

challenge infection as described previously (Bai et al., 2023). The

Dpbg37 parasite used for generating a transgenic parasite expressing
Pvg37 was from an earlier study (Liu et al., 2018). Adult (3-5 days

old) Anopheles stephensi and An. dirus mosquitoes were fed on a

10% (w/v) glucose solution and kept in an insectary under 25°C ± 1°

C and 50 – 80% relative humidity, with a 12 h light and dark cycle.

All animal procedures were carried out per the welfare and ethical

review standards of China Medical University.
Construction of a P. berghei strain
expressing pvg37

The TrPv37Pb line was generated by inserting the complete

Pvg37 open reading frame (ORF, 1053 bp) tagged with 3×HA at its

C-terminus into the pL0034 vector at the ApaI and XhoI sites. The

Pvg37 ORF was flanked by the 5’ UTR and 3’ UTR of the Pbg37

gene. Ten micrograms of the plasmid were digested with ApaI and

XhoI and then electroporated into purified Dpbg37 schizonts using
a Nucleofector system. Subsequently, the parasites were injected

intraperitoneally into two mice. After 24 h, the TrPv37Pb line was

selected through gavage in mice using 5-fluorocytosine (20 mg/mL

in water). To confirm the proper integration of the Pvg37 gene at

the Pbg37 locus in the P. berghei genome, PCR analysis was

performed using specific primers (Supplementary Table S1).

The TrPv37Pb parasites were then cloned using a limiting

dilution technique.
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Phenotypic analysis of the
TrPvg37Pb parasites

To investigate the impact of Pvg37 on parasite development, we

compared the development among the (wild-type) WT P. berghei,

TrPvg37Pb, and Dpbg37 lines. Three groups of BALB/c mice (3 mice

per group) were intraperitoneally injected with 1×106 infected red

blood cells (iRBCs) of the respective parasite clones. Asexual

parasitemia levels were monitored on days 3, 5, 7, 9, and 11 post-

infections by examining Giemsa-stained thin blood smears. The

number of mature gametocytes per 100 parasites was determined

during the parasitemia range of 10–20%. In each mouse, 100 mature

gametocytes were differentiated into male and female gametocytes

based on morphological characteristics to establish the gametocyte

sex ratio. Following induction for gametogenesis at 25°C for 15 min,

the culture was transferred onto a coverslip, and exflagellation

centers were counted under a phase-contrast microscope at 400×

magnification. To observe ookinete formation, 10 mL of infected

blood containing equal gametocyte counts were mixed with the

ookinete culture medium in a total volume of 50 mL and maintained

at 19°C for 24 h. The gametocyte counts were normalized according

to gametocytemia. The ookinete number in 0.5 mL of culture was

counted using an IFA, with ookinetes stained with a monoclonal

antibody (mAb) against Pbs21.
Pvg37 polypeptide synthesis and polyclonal
antibody generation

The Pvg37 protein fragments spanning amino acids 25 to 38 and

55 to 68 were synthesized as polypeptides (Genescipt, China), namely

Pvg37-P1 and Pvg37-P2, respectively, which were conjugated to

keyhole limpet hemocyanin (KLH) for immunization. Three

rabbits were subcutaneously immunized with 500 mg of Pvg37

peptides emulsified in Freund’s complete adjuvant. Three booster

immunizations were performed at weeks 2, 5, and 8 after

emulsification with 250 mg of Pvg37 peptides and incomplete

Freund’s adjuvant. The immune serum was collected 10 days after

the last immunization. IgGs were purified from Pvg37 immune and

pre-immnue sera, respectively, using Protein A columns. The

concentrations of anti-Pvg37 and pre-immune control antibodies

were determined using the BCA Protein Assay kit.
Enzyme-linked immunosorbent assay

ELISA was utilized to determine antibody titers of sera. A 96-

well plate was coated with polypeptides Pvg37-P1 and Pvg37-P2 in

0.05 M sodium carbonate buffer (pH 9.6) and incubated overnight

at 4°C. The samples were then washed three times with PBST

(0.05% Tween-20, 0.1 M PBS) and incubated with 1% BSA (Sigma)

for 1 h at 37°C. Following another round of washing with PBST, the

anti-Pvg37 peptide sera and negative control sera were diluted in

PBS containing 1% BSA at multiple proportions ranging from

1:1000 to 1:512000. The samples were incubated at 37°C for 2 h

and washed three times with PBST. HRP-labeled sheep anti-rabbit
Frontiers in Cellular and Infection Microbiology 03
IgG, diluted in 3% BSA (1:5000), was added to the 96-well plates,

and the samples were incubated at 37°C for 1 h. Subsequently, the

plates were washed five times, and tetramethyl-benzidine was added

for color development in the dark for 10 min. The reaction was

stopped by adding 2 mM H2SO4, and the absorbance value at 490

nm was measured. The final dilution value was considered to be

higher than the mean + 3 × standard deviation (cut-off value) of the

pre-immune control sera.
Indirect immunofluorescence assay

IFA was performed on gametocytes, gametes, zygotes, retorts,

and ookinetes. TrPvg37Pb parasites were fixed with 4%

paraformaldehyde and 0.0075% glutaraldehyde in PBS for 30 min

at room temperature. Then, the parasites were washed twice with

PBS. After being permeabilized with 0.1% Triton X-100, parasites

were blocked with PBS containing 3% BSA for 1 h at 37°C. The

rabbit anti-Pvg37-P2 sera (1:200) in PBS containing 3% BSA were

added into parasites for 1 h at 37°C. All parasites were co-incubated

with mouse antisera against PbMSP1 (1:500), Pbs47 (1:500), Pba-
tubulin (1:500), and Pbs21 (1:500) as specific markers for schizonts,

female gametocytes/gametes, male gametocytes/gametes, and

zygotes/ookinetes, respectively. These antisera were self-made and

have been previously reported (Zheng et al., 2024). After washing

the slides with PBS, Alexa Fluor 488-conjugated anti-rabbit IgG

secondary antibodies (1: 500, Invitrogen) and Alexa-555 conjugated

goat anti-mouse IgG secondary antibodies (1: 500, Abcam) were

added into the parasites for 1 h at 37°C. WT ookinetes were used as

the negative control. Images were acquired using a Leica SP8

confocal laser scanning microscope. For comparison, mouse anti-

HA mAb (1:500, abclone) was also used to probe parasites to

determine the expression stage of Pvg37. Furthermore, the

localization of Pvg37 protein on the P. vivax gametocytes was

confirmed using anti-Pvg37-P2 IgGs and isolating gametocytes

from clinical samples of P. vivax.
Purification of TrPvg37Pb parasites at
different stages

Different gradient Nycodenz was used to isolate and purify

TrPvg37Pb parasites at various stages. When the parasitemia

reached 3-5%, mouse blood was collected and mixed with

schizont culture medium (RPMI 1640, 50 mg/L penicillin, 50 mg/

L streptomycin, 100 mg/L neomycin, 25% fetal bovine serum, and 6

U/mL heparin). The mixture was cultured at 37°C for 20 h.

Schizonts were subsequently isolated and purified on a 56% (v/v)

Nycodenz gradient. For purifying sexual stages, mice were treated

with sulfadiazine (Sigma, Burlington, USA, 20 mg/L) for 2 days to

eliminate asexual blood stages when the parasitemia ranged

between 10 and 20%. When parasites reached the gametocyte

stage, blood was collected and mixed with PBS at 4°C to prevent

gametocyte activation. Gametocytes were then isolated and purified

on a 48% (v/v) Nycodenz gradient. To obtain ookinetes, 1 mL of

blood was mixed with 9 mL of ookinete medium (50 mg/L
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penicillin, 50 mg/L streptomycin, 100 mg/L neomycin, 20% fetal

bovine serum, 1 mg/L heparin, pH 8.3) and cultured at 19°C for 24

h. Ookinetes were then isolated and purified using a 62% (v/v)

Nycodenz gradient. Finally, purified parasites from each stage

mentioned above were washed twice with PBS.
Western blot analysis

To determine the expression of Pvg37 at different stages, purified

schizonts, gametocytes, and ookinetes were treated with 0.2% saponin

to lyse erythrocytes. After three washings with PBS, parasites were

treated with RIPA lysis buffer containing phenylmethylsulfonyl

fluoride three times to extract total proteins. Protein concentrations

were determined using the BCA Protein Assay kit. Equal parasite

proteins (20 mg/lane) were separated by 10% SDS-PAGE and

transferred to a 0.22 mm PVDF membrane. Then, the PVDF

membrane was blocked with TBST containing 5% skim milk for 1

h at 37°C. After blocking, the PVDFmembrane was probed with anti-

Pvg37 rabbit immune sera (1:200) and anti-rHSP70 sera (1: 1000),

and after three washing with TBST, HRP-conjugated goat anti-rabbit

IgG antibodies (1: 10000, Invitrogen) as the secondary antibodies

were added. The blots were then detected by an ECL Western

Blotting Kit (Beyotime).
Quantification of TB activity

The TB potential of Pvg37 was evaluated using two assays: an in

vitro ookinete formation assay and a direct mosquito feeding assay.

The in vitro assay employed various dilutions of the immune sera.

Groups of BALB/c mice (three mice per group) were injected

intraperitoneally with 1×106 iRBCs of the TrPv37Pb line. The

exflagellation of male gametocytes was quantified using the method

mentioned above. Purified pre-immune IgGs or anti-Pvg37-P2 IgGs

were added into the ookinete culture medium at a final concentration

of 0.2, 1.0, and 2.0 µg/µL and mixed with 10 mL of blood from mice

infected with the TrPvg37Pb parasites, resulting in a total volume of

50 mL. The number of exflagellation centers was observed in each

microscope field at 400x magnification. Ookinete cultures were

incubated at 19°C for 24 h, and mature ookinetes in 0.5 mL of

culture were counted using a fluorescence microscope (100× oil

objective). For antibody transfer experiments, 150 µL of purified

anti-Pvg37-P2 IgGs were injected into the tail veins of the mice one

hour prior toAn. stephensimosquito direct feeding. Twelve days after

feeding, mosquitoes were dissected to assess the number of oocysts

using a compound microscope at 200× magnification.
Direct membrane feeding assay

We conducted DMFA using blood samples from volunteers

infected with P. vivax. Prior to participation, informed written

consent was obtained from four volunteers. Parasitemia was

estimated using Giemsa-stained films. The anti-Pvg37-P2 antibody

and the negative control antibody were diluted 1:1 with 90 ml of
Frontiers in Cellular and Infection Microbiology 04
heat-inactivated (complement negative) healthy human AB+ serum,

resulting in a total volume of 180 ml. The diluted antibodies were then
mixed with RBCs collected from P. vivax malaria patients in a 1:1

ratio. Pooled blood samples were incubated at 37°C for 15 min and

then introduced into a membrane feeder. Approximately 100 An.

dirus mosquitoes (starved for 12 h before the experiment) were fed

with the blood samples for 30 min using the membrane feeder

maintained at 37°C. Unfed mosquitoes were subsequently removed,

and fed mosquitoes were allowed to feed on cotton pads dipped in a

10% sucrose solution at 27°C and 80% relative humidity for one week.

For each group, 20 mosquitoes were dissected to count oocysts.
Analysis of genetic polymorphisms

Genomic DNA from the four P. vivax isolates used in the

DMFA was extracted using a QIAamp DNA Blood Mini kit

(Qiagen, Germany). The pvg37 DNA fragment encoding aa 1–182

was amplified by PCR with primers designed based on the Sal-I

sequence (Supplementary Table S1). The purified PCR products

were sequenced using the ABI Prism BigDye™ cycle sequencing kit

(Applied Biosystems, Thermo Fisher Scientific). The sequences

were aligned using ClustalW in MEGA7.0.26.
Statistical analyses

Statistical analyses were conducted using SPSS software version

X (SPSS Inc., USA). Ordinary one-way ANOVA was used to

compare the groups in terms of asexual parasitemia, gametocytes,

sex ratio, exflagellation, and ookinete numbers. Mann-Whitney U

test was employed to analyze oocyst density (oocyst number per

midgut), while Fisher’s exact test was used to analyze infection

prevalence. The results are presented as the mean ± SD. A

significance level of 0.05 was considered statistically significant.
Results

Generation of transgenic P. berghei
parasite TrPvg37Pb

The TrPvg37Pb transgenic strain was constructed using the Gene

Insertion and Marker Out (GIMO) technique. This approach

involves replacing the drug resistance gene in the obtained Dpbg37
strain with the pvg37 gene, which is tagged with a 3×HA tag, under

negative selection with 5-fluorocytosine (Figure 1A). The genotypes

of WT, Dpbg37, and TrPvg37Pb were identified by PCR amplification

using primers 1 and 2, 1 and 3, and 1 and 4, respectively (Figure 1A).

Diagnostic PCR results confirmed successful recombination of the

pvg37 gene as specific bands were only amplified from corresponding

parasite gDNA samples (Figure 1B). Additionally, Pvg37-HA protein

expression in transgenic P. berghei parasite lines was confirmed by

Western blotting using the anti-HA mAb. A protein band of

approximately 39 kDa was detected in the TrPvg37Pb parasites but

not found in WT parasites (Figure 1C).
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Pvg37 expression restores the normal
development of Dpbg37 parasites

The impact of complementing Pvg37 on the growth and

development of P. beighei was assessed through phenotype

analysis performed on TrPvg37Pb, Dpbg37, and WT strains.

Equal numbers of parasite-infected RBCs for each strain were

injected into BALB/c mice via the tail vein. The results showed no

significant difference in asexual-stage parasitemia among

TrPvg37Pb, Dpbg37, and WT parasites (Figure 2A). However,

the Dpbg37 strain exhibited significantly lower gametocytemia

and a higher female/male gametocyte ratio (Figures 2B, C).

Furthermore, compared to WT parasites, the Dpbg37 strain

displayed a significant reduction of 27.8% in exflagellation

centers and 34.4% in ookinete formation (Figures 2D, E),

consistent with previously published data (Liu et al., 2018).

Notably, no significant differences were observed between the

TrPvg37Pb strain and WT strain in terms of gametocyte

formation, exflagellation centers, or ookinete production

(Figures 2B-E). These findings indicate that substituting Pbg37

with Pvg37 does not affect the development of both asexual and
Frontiers in Cellular and Infection Microbiology 05
sexual stages of P. berghei. Moreover, Pvg37 compensates for the

abnormal phenotype caused by pbg37 deletion, suggesting a

functional equivalence between Pvg37 and Pbg37.
Production of high titers of antibodies
against Pvg37

The Pvg37 protein possesses seven transmembrane domains

similar to Pbg37, and multiple sequence alignment revealed a high

degree of conservation among Plasmodium species. Two highly

conserved regions in Pvg37 were identified at amino acids 25-38

and 55-68, which showed abundant B-cell antigenic epitopes (Liu

et al., 2018). Therefore, we opted to utilize these two highly conserved

regions, namely Pvg37-P1 and Pvg37-P2, for peptide synthesis.

Polyclonal antibodies against Pvg37-P1 and Pvg37-P2 were

generated by immunizing rabbits separately. ELISA showed that

the final antibody titers for Pvg37-P1 and Pvg37-P2 reached 1:8000

and 1: 128000, respectively (Figure 3A). Remarkably, the anti-Pvg37-

P2 sera exhibited significantly higher antibody titers than the anti-

Pvg37-P1 sera. Thus, we selected the Pvg37-P2 antibodies for
FIGURE 1

Generation of the TrPvg37Pb parasites. (A) Schematic diagram illustrating the construction of the TrPvg37Pb transgenic parasite through double
homologous recombination, wherein the hdhfr::yfcu selection cassette in Dpbg37 parasites is replaced with the pvg37 gene. Primers 1 – 4 used for
diagnostic PCR are depicted. (B) PCR identification of the TrPvg37Pb transgenic line. Primers 1 + 2 were employed to confirm wild-type (WT) locus,
primers 1 + 3 were used to identify pbg37 deletion, while primers 1 + 4 were utilized to confirm successful replacement of pvg37 gene in P. berghei
line. The resulting PCR products showed distinct band sizes: lanes 1, PCR with primers 1 + 2 (1104 bp); lanes 2, PCR with primers 1 + 3 (868 bp);
lanes 3, PCR with primers 1 + 4 (796 bp). (C) Western blot analysis for identifying WT and TrPvg37Pb parasites using anti-HA monoclonal antibody
(top), while HSP70 was employed as a protein loading control (bottom).
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subsequent experiments. IgG concentrations purified from the

Pvg37-P2 immunized serum and pre-immunized serum were

11.667 and 14.168 mg/mL, respectively, which were adjusted to 10

mg/mL with PBS for transmission-blocking assessment.
Pvg37 is expressed and localized in
sexual stages

To confirm the expression and localization of the Pvg37 protein

in transgenic parasites, we purified TrPvg37Pb parasites at different

stages, including schizonts, gametocytes, gametes, and ookinetes.

Western blot using the rabbit anti-Pvg37-P2 sera detected a ~37

kDa protein band in TrPvg37Pb gametocytes and ookinetes but not

schizonts. The expression level in gametocytes appeared higher

than in ookinetes (Figure 3B).

We examined the subcellular localization of Pvg37 protein in

TrPvg37Pb parasites by IFA with rabbit anti-Pvg37-P2 IgGs.

Fluorescent signals were observed in the cytosol and at the plasma

membrane of gametocytes (Figure 3C). During the gametogenesis of

microgametocytes, signals were prominently observed along the

flagellas. In subsequent development, Pvg37 was specifically

associated with the plasma membranes of gametes, zygotes, retorts,
Frontiers in Cellular and Infection Microbiology 06
and ookinetes (Figure 3C). No signal indicating Pvg37 expression was

detected in TrPvg37Pb schizonts or WT ookinetes. Since the Pvg37

protein was C-terminally tagged with a 3×HA tag in the TrPvg37Pb

parasite, we also performed IFA with a mouse anti-HA mAb and

obtained similar results as with anti-Pvg37-P2 IgGs (Supplementary

Figure S1). Overall, these findings demonstrate that Pvg37 exhibited a

plasma membrane localization pattern during gamete–ookinete

transition, similar to Pbg37.
Anti-Pvg37 IgGs show transmission
reduction activity in TrPvg37Pb parasites

Initially, we investigated the inhibitory activity of anti-Pvg37 IgGs

on the formation of exflagellation centers and ookinetes using in vitro

assays. The inhibitory effects of the anti-Pvg37-P2 IgGs were

concentration-dependent. Compared with control IgGs, anti-Pvg37-

P2 IgGs at 0.2 mg/mL had no inhibitory effect on exflagellation or

ookinete formation (Figures 4A, B). However, at 1.0 and 2.0 mg/mL
concentrations, anti-Pvg37-P2 IgGs inhibited the number of

exflagellation centers by 28.6% and 60.0%, respectively (Figure 4A).

Similarly, these concentrations of the anti-Pvg37-P2 IgGs reduced the

number of ookinetes by 43. 7% and 69.7%, respectively (Figure 4B).
FIGURE 2

Phenotypic analysis of TrPvg37Pb parasites. (A) Parasitemia of mice infected with WT, Dpbg37, or TrPvg37Pb parasites. (B) Gametocytemia
(percentage of gametocyte in 100 RBC). (C) Female/male gametocyte ratios. (D) Number of exflagellation centers per field at 400× magnification.
(E) Quantification of ookinete numbers in 0.5 ml of in vitro culture through immunostaining with anti-Pbs21 mAb. All experiments were performed in
triplicate. Error bars indicate mean ± SD. *P < 0.05, **P < 0.01 (one way ANOVA). "ns" denotes no significance.
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The TB potential of anti-Pvg37 IgGs was further assessed

through mosquito feeding assays. In a passive antibody transfer

experiment, anti-Pvg37-P2 IgGs significantly reduced the number

of oocysts per midgut in mosquitoes by 80.2% compared to the

control group (Figure 4C), although we did not observe noticeable

TBA for the anti-Pvg37-P2 IgGs (Figure 4D).
Anti-Pvg37 IgGs exhibit TRA in P. vivax
clinical isolates

We studied Pvg37 expression and localization in clinical

P. vivax samples. In both male and female gametocytes, Pvg37

exhibited cytoplasmic localization and a punctate distribution along

the plasma membrane. In contrast, the control IgGs did not show

any staining in P. vivax gametocytes. These findings demonstrate

that anti-Pvg37-P2 IgGs specifically reacted with P. vivax

gametocytes (Figure 5A).

To investigate the efficacy of anti-Pvg37-P2 IgGs in blocking

P. vivax transmission, DMFA was performed using P. vivax samples
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collected from four Thai patients with P. vivax mono-infection, as

confirmed by PCR analysis targeting the 18S rRNA using species-

specific primers. In DMFA, An. dirusmosquitoes feeding on all four

blood samples mixed with pre-immune antibodies displayed a

mean midgut oocyst intensity of 4.3, 75.4, 111.2, and 69.4,

respectively (Table 1). In comparison, mosquitoes feeding on the

same blood samples mixed with the anti-Pvg37-P2 IgGs at a 2.5 mg/
mL concentration showed a mean infection intensity of 2.3, 50.6,

55.2, and 49.6 oocysts per midgut, corresponding to a respective

reduction in oocyst density by ~5.9%, 32.9%, 50.4%, and 28.6% (P <

0.05, Figure 5B; Table 1). However, compared to the control

antibodies, the anti-Pvg37-P2 IgGs did not show a significant

reduction in infection prevalence (Figure 5B; Table 1).
The Pvg37 sequences are conserved in
field P. vivax isolates

The genetic diversity of malaria vaccine candidates in endemic

parasites poses a challenge to vaccine development (Takala and
FIGURE 3

Pvg37 expression and localization in TrPvg37Pb parasites. (A) The total antibody titer of anti-Pvg37-P1 and anti-Pvg37-P2 sera at 10 days after the
final immunization was analyzed by ELISA. Mean of control pre-immune sera + 3 × SD is shown by the broken lines. IgG titers were determined as
the highest dilution of anti-Pvg37 sera where OD490 values were above the cut-off values. Cut-off value was defined as that of the pooled sera from
control mice. The error bar shows mean ± SD. *P < 0.05, **P < 0.01 (Student’s t-test). (B) Western blot analysis was performed on lysates containing
20 mg of protein per lane derived from the control WT parasites, as well as purified schizonts (Sch), gametocytes (Gam), and ookinetes (Ook) of the
TrPvg37Pb parasites. The proteins were probed with anti-Pvg37-P2 IgGs (top), while HSP70 served as a loading control for protein quantification
(bottom). (C) Immunofluorescence assays were conducted on TrPvg37Pb parasites at various stages using anti-Pvg37-P2 IgGs. The WT ookinete was
used as control. The scale bar represents 5µm.
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Plowe, 2009). To investigate whether the variability of TRA among

the different isolates might be attributed to genetic polymorphisms

of the pvg37 gene, we sequenced the pvg37 gene fragments from the

four P. vivax isolates used in DMFA. Our results showed that these

samples had identical amino acid sequences of Pvg37 with the Sal-I

strain (Supplementary Figure S2).
Discussion

TBV candidates identified by the MalERA as potential tools for

malaria eradication exhibit lower genetic diversity compared to blood

or pre-erythrocytic stage antigens, likely due to reduced exposure to

human immunity (Alonso et al., 2011; Lopez et al., 2017). However,

efforts towards TBV development against P. vivax, the second major

cause of malaria morbidity, significantly lag behind those targeting

P. falciparum. All current P. vivax TBV candidates (Pvs25, Pvs28,

Pvs47, Pvs48/45, Pvs230, and PvHAP2) are orthologs of known

P. falciparum candidates (Kaslow et al., 1988; Hisaeda et al., 2000;

Tachibana et al., 2012, 2015; Qiu et al., 2020). Given the substantial
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differences in biological characteristics and epidemiology between

these two species of Plasmodium parasites, methodologies developed

for P. falciparum TBVs may not always be directly applicable for

combating P. vivax infection, including the utilization of orthologous

vaccine antigens (Mueller et al., 2009). Therefore, it is imperative to

identify novel candidate antigens targeted to P. vivax to expedite

research and development efforts toward an effective TBV.

TBVs elicit antibodies that neutralize the sexual stages of the

parasite in blood meals ingested by the Anopheles mosquitos,

disrupting parasite development in the mosquito and preventing

transmission. Upon ingesting the parasite and antibodies, certain

antibodies recognize pre-fertilization antigens on the gametocytes/

gametes, while others target post-fertilization antigens on zygotes/

ookinetes. In malaria-endemic areas, natural antibodies against pre-

fertilization antigens exist within populations, providing an immune

advantage; however, antibodies targeting post-fertilization antigens

may prolong antibody blockade duration (Jones et al., 2015; Dinko

et al., 2016; Muthui et al., 2019). Therefore, simultaneous antigens

expression during pre- and post-fertilization stages can elicit more

significant transmission blockade responses. Our previous study
FIGURE 4

Evaluation of the transmission blocking effect of anti-Pvg37-P2 IgGs on transgenic parasites. The inhibition of the anti-Pvg37-P2 IgGs on (A) male
gametocyte exflagellation and (B) ookinete formation was assessed by in vitro assays. The purified anti-Pvg37-P2 IgGs and pre-immune IgGs were
added at concentrations of 0.2, 1.0, and 2.0 mg/mL in culture medium, respectively, incubated with the TrPvg37Pb parasites. Data were representative
of three separate experiments. The error bar shows mean ± SD. ****P < 0.0001, **P < 0.01, ns, no significance (Student’s t-test). (C) The number of
oocysts per midgut in mosquitos after 10 days of feeding. N=29, error bar represents mean ± SEM, ** P < 0.01 (Student’s t-test). (D) Mosquito
infection rate (oocyst-infected mosquitoes/dissected mosquitoes).
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demonstrated that Pbg37 is expressed on the surface of both pre-

fertilization (gametes) and post-fertilization (zygotes and ookinetes)

stages, suggesting its potential as a candidate antigen for a TBV

(Liu et al., 2018). Through functional studies, we determined the

importance of Pbg37 during gametocytogenesis, particularly in male

gametocyte development. Furthermore, we showed that antiserum

against a small 63-amino-acid Pbg37 polypeptide was able to induce

moderate TB activity in a mosquito-feeding assay (Liu et al., 2018).

Although Pvg37 shares 59% sequence identity with Pbg37 at the

amino acid level, it remains unclear if their functional characteristics

and expression patterns are consistent across different species.

The biggest challenge facing vaccine development for vivax

malaria is the inability to establish long-term in vitro cultures of

P. vivax (da Veiga et al., 2022). However, transgenic rodent malaria

parasites expressing a P. vivax TBV candidate gene in place of their
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native genes offer a promising alternative assay system (Ramjanee

et al., 2007; Cao et al., 2018). It utilizes the principle that the target

cell genome can undergo homologous recombination with the

homologous sequences of exogenous DNA to perform precise

gene editing or modification, thereby achieving precise

manipulation of the target gene (Rocha-Martins et al., 2015). In

the current study, we used the transgenic rodent malaria parasites to

assess the Pvg37 gene function. We found that Pvg37 was expressed

similarly to Pbg37, mainly on the surface of both pre-fertilization

(gametes) and post-fertilization (zygotes and ookinetes) stages. The

phenotype of TrPvg37Pb was similar to the WT line, indicating that

Pvg37 fully restored the defects of DPbg37 parasites during sexual

development, demonstrating the potential of this parasite line for

evaluating the TB capability of Pvg37.

Recently, peptide-based vaccines have become an attractive

alternative approach. These vaccines utilize short protein

fragments to induce immune responses against malaria parasites

(Skwarczynski et al., 2020). To further elucidate the TB effect of the

Pvg37 antibodies, we synthesized two highly conserved and B-cell

epitope-rich peptides of Pvg37 to mitigate challenges associated

with protein folding, aiming to optimize the functional potential of

the protein. Enhanced antibody titers have been shown to correlate

with improved TB effects against malaria, particularly in the context

of P. falciparum (Tachibana et al., 2011, 2012). Studies on

antibodies targeting the ookinete surface protein Pfs25 have

demonstrated a strong association between high titers and

effective TBA, indicating that elevated antibody levels can persist

for months while maintaining their blocking efficacy (Kubler-Kielb

et al., 2007). In this study, we selected anti-Pvg37-P2 antibodies

with higher antibody titers for validation of TRA and TBA. Using

the transgenic parasite line, we observed that the anti-Pvg37-P2

IgGs significantly reduced exflagellation and ookinete conversion in

vitro. Furthermore, an antibody transfer experiment revealed that

anti-Pvg37-P2 IgGs led to an 80.2% reduction in oocyst density in

mosquitoes. These findings expand upon the TB potential of Pvg37

and highlight the utility of transgenic rodent parasites for evaluating

vaccine candidates against P. vivax.

The standard membrane feeding assay (SMFA) is currently

considered the in vivo “gold standard” (Churcher et al., 2012). The

DMFA follows a similar design as the SMFA but uses freshly collected

gametocyte-infected blood from infected individuals instead of

cultured gametocytes to feed and infect mosquitoes (Duffy, 2021).

DMFA offers the advantage of testing multiple experimental

conditions on a single blood sample, thereby reducing uncontrolled

variability. Due to the inability to culture gametocytes for P. vivax,

DMFA remains the most appropriate method available for this

species (Miura et al., 2020). In this study, TRA and TBA for IgGs

against Pvg37-P2 were evaluated using DMFA with four clinical

P. vivax isolates. In DMFA, the transmission reduction rate of anti-

Pvg37-P2 IgGs against four clinical P. vivax parasites in midgut oocyst

density ranged from 28.6% to 50.4%, which is lower than that

observed on transgenic strain (80.2%). These findings are consistent

with the previous studies (Zhang et al., 2024; Zheng et al., 2024). This

disparity may be attributed to various uncontrollable factors of

DMFA using field parasite isolates, such as gametocyte density, the
FIGURE 5

Detection of Pvg37 expression in P. vivax gametocytes and TRA of
antibody against Pvg37-P2 in DMFA. (A) Gametocytes were stained
with the purified anti-Pvg37-P2 IgGs and Alexa Fluor 488-conjugated
anti-rabbit IgG antibodies. Pre-immune IgGs was used as the negative
control. Nuclei were stained with DAPI. BF, bright field; AF488, Alexa
Fluor 488; Merge, AF488 + DAPI. (B) DMFA was performed using four
P. vivax isolates with purified IgGs mixed with heat-inactivated
(complement minus) AB+ human serum in the ratio of 1:1. Numbers of
oocysts in mosquito midguts were shown as scatter dot plots. The
black horizontal bar indicates the mean number of oocysts in each
group. Statistical difference in the mean number of oocysts between
the pre-immune and Pvg37 groups was analyzed by the Mann-
Whitney U test (*P < 0.05, **P < 0.01, ***P < 0.001).
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proportion of mature gametocytes, the male/female gametocyte ratio,

and fertilization pattern among field isolates (Kiattibutr et al., 2017;

Ouattara et al., 2024). Certainly, variations in antibody concentrations

in the blood meal cannot be overlooked. However, the estimated

concentration of purified antibodies in DMFA (~2.5 µg/µL) was

higher than that in passively transferred mice (~1.3 µg/µL),

suggesting that this difference may not be the primary reason.

Additionally, complement might play a role, as passive transfer was

performed in mice with complement, while DMFA used purified IgG

and inactivated serum. Previous studies show that human

complement enhances the TB activity of antibodies against

P. falciparum and P. vivax (Mendis et al., 1987; Quakyi et al., 1987;

Healer et al., 1997). Unfortunately, we lacked a positive control for

complement in our DMFA and could not directly confirm whether

the TB activity of these antibodies depends on complement. The

anti-Pvg37 antibody generally elicits a lower TRA compared to

existing TBV antigens for P. vivax (Qiu et al., 2020; Zheng et al.,

2024). However, direct comparison is not appropriate because the

proteins used for immunization are expressed using different

systems, which affect their immunogenicity and the observed

antibody response.

Altogether, both in vivo studies with the transgenic parasites in

mice and in vitro DMFA using clinical P. vivax isolates corroborate

the TB potential of Pvg37. While our findings suggest that infection

prevalence does not significantly decrease, the reduction in oocyst

density is crucial. Research has demonstrated that lower oocyst

densities hinder the development of P. falciparum in mosquitoes,

thereby reducing the number of infectious bites transmitted to

humans (Guissou et al., 2023). With fewer oocysts, the likelihood of

mosquitoes becoming infective is diminished, ultimately lowering

the risk of human infection. Further experimental validation is still

required to enhance the TRA and TBA of Pvg37. Peptide-based

vaccines often suffer from low immunogenicity, which can be

mitigated by developing more advanced adjuvant-based delivery

systems. RTS, S/AS02 demonstrated increased antibody titers and

augmented cell-mediated immune responses through the utilization

of a novel adjuvant (AS02), comprising an oil-in-water formulation

containing MPL (a non-toxic derivative of lipopolysaccharide) and

QS21 (Garcon et al., 2003). Matrix-M is a promising vaccine

adjuvant based on Quillaja saponins, which has demonstrated

acceptable safety and the ability to enhance both cellular and

humoral immune responses of vaccines (Bengtsson et al., 2013,

2016). Nanoparticle-based platforms, including liposomes,

hydrogels, and nanocapsules, can be functionalized for targeted

delivery of vaccines (Ouji et al., 2018; Shakeel et al., 2019; Kekani

and Witika, 2023; Zhuo et al., 2024). Furthermore, incorporating

modified antigens into virus-like particles (VLPs) may augment

immunogenicity (Jelıńková et al., 2023; Yao et al., 2023). Carrier

proteins like Exoprotein A (EPA) have already been successfully

employed to elicit enhanced immune responses against TBV

candidates (Rausch et al., 2023; Sagara et al., 2023). Additionally,

synergistic effects can be achieved by combining multiple stages and

antigens in combination vaccines (Sherrard-Smith et al., 2018; Yang

et al., 2021). Finally, mRNA vaccines have also exhibited the

capacity to induce high levels of antibodies, as evidenced by their

impact on Pvs25 (Kunkeaw et al., 2023).
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