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Despite decades of control efforts, the prevalence of schistosomiasis remains high

inmany endemic regions, posing significant challenges to global health. One of the

key factors contributing to the persistence of the disease is the complex life cycle

of the Schistosoma parasite, the causative agent, which involves multiple stages of

development and intricate interactions with its mammalian hosts and snails.

Among the various stages of the parasite lifecycle, the deposition of eggs and

their migration through host tissues is significant, as they initiate the onset of the

disease pathology by inducing inflammatory reactions and tissue damage.

However, our understanding of the mechanisms underlying Schistosoma egg

extravasation remains limited, hindering efforts to develop effective interventions.

Microphysiological systems, particularly organ-on-a-chip systems, offer a

promising approach to study this phenomenon in a controlled experimental

setting because they allow the replication of physiological microenvironments in

vitro. This review provides an overview of schistosomiasis, introduces the concept

of organ-on-a-chip technology, and discusses its potential applications in the field

of schistosomiasis research.
KEYWORDS
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Introduction

Schistosomiasis, commonly referred to as bilharziasis, is a neglected tropical disease caused

by parasitic trematodes of the genus Schistosoma which affects more than 251.4 million people

worldwide, particularly in regions with limited resources including poor access to clean water

(World Health Organization, 2023). The disease is endemic in tropical and subtropical regions,
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where it poses a significant burden on public health and socioeconomic

development (Colley et al., 2014). Human schistosomiasis is caused by

several species of Schistosoma parasites, the most predominant being

Schistosoma haematobium, Schistosoma mansoni, and Schistosoma

japonicum, each of which has a unique geographical distribution and

clinical manifestation (Ross et al., 2002) along with other less prevalent

species such as Schistosoma mekongi, Schistosoma guineensis, and

Schistosoma intercalatum.

The life cycle of Schistosoma parasites involves two hosts: a

definitive mammalian host and an intermediate host, usually a

freshwater snail (McManus et al., 2018). Infection occurs when

cercariae, the larval stage of the parasite, penetrates the human skin

during contact with contaminated water. Once inside the human

host, the cercariae metamorphose into a schistosomulum, and

develop into adult worms that pair up as male and female couples

that reside in the blood vessels surrounding the intestines (S. mansoni

and S. japonicum) or bladder (S. haematobium). Female worms

produce hundreds of eggs per day, which are then released into the

bloodstream or lymphatic system (Gryseels et al., 2006).

Central to the pathogenesis of schistosomiasis is the process of

egg deposition and extravasation within the host’s tissues. The eggs

must cross the endothelial barrier of blood vessels to reach the lumen

of the intestine or bladder, where they are excreted in stool or urine,

respectively (Chitsulo et al., 2000). However, some eggs become

trapped in tissues, leading to the formation of granulomas and

fibrosis, which are hallmarks of chronic schistosomiasis. These

pathological changes can result in severe morbidity, including liver

and spleen enlargement, bladder cancer, and neurological

complications (Chitsulo et al., 2000).

Despite decades of research, the molecular and cellular

mechanisms underlying Schistosoma egg extravasation are

incompletely understood. In part, this can be attributed to

overreliance on animal models, which, due to their nature of

complexity, do not allow the high-resolution studies necessary to

decipher molecular mechanisms. Although animal experiments are

indispensable, especially for preclinical screening in the drug discovery

process, various issues, such as ethical considerations and species

differences, remain (Kimura et al., 2018). To circumvent these

challenges, cell-based assays using human-derived cells have been

actively pursued. Furthermore, in recent years, there has been a

growing interest in leveraging advanced biomedical technologies to

overcome these limitations and unravel the “mysteries” of schistosome

egg extravasation. To this end, organ-on-a-chip (OOC) platforms have

emerged as powerful tools for recapitulating the physiological

microenvironments of human organs in vitro (Bhatia and Ingber,

2014). OOC models offer unique advantages by providing dynamic

multicellular systems that mimic the structural and functional

complexity of human tissues. These in vitro models can provide

valuable information on the pathogenesis of schistosomiasis, as they

offer the simplicity of high-resolution imaging, allowing studying the

molecular mechanisms of the disease in detail (Yeh et al., 2022; Yeh

et al., 2024). Furthermore, OOCs are devoid of ethical and practical

considerations that often restrict the use of human participants and

animal models in the research of schistosomiasis.

This review explores the utility of OOC systems in unraveling

the process of extravasation of S. mansoni eggs in humans. By
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systematically analyzing the existing literature, we identify key

findings, knowledge gaps, and future research directions in this

rapidly evolving field. Through a comprehensive examination of

OOC-based studies, our objective is to elucidate the potential of this

innovative technology to advance our understanding of the

pathogenesis of schistosomiasis focusing on the role of immune

cells in granuloma formation that could facilitate the development

of novel therapeutic strategies.
Schistosomiasis life cycle

Schistosoma species have intricate life cycles involving both a

freshwater snail as an intermediate host and a mammalian host,

such as humans, as the definitive host as illustrated in Figure 1. S.

mansoni eggs are expelled through feces, while S. haematobium eggs

exit via urine. Upon reaching water body, these eggs hatch under

favorable conditions such as temperature, pH and turbidity. In

snails (e.g., Biomphalaria for S. mansoni), asexual reproduction

produces large numbers of free-swimming cercariae, which actively

seek out and penetrate the skin of a mammalian host, developing

into schistosomula. Initially residing in the skin, schistosomula then

migrate to the bloodstream and, within 5-7 days, reach the lungs.

After circulating for about two weeks, they settle in the hepatoportal

system for S. mansoni and veins of the bladder and the pelvic organs

for S. haematobium, where they sexually mature.

Mature worm pairs migrate to the mesenteric veins, with adult S.

mansoni worms primarily residing in the inferior mesenteric veins

surrounding the colon and caecum. Female worms lay eggs in

capillary walls, where they either enter the bloodstream or move

through the intestinal epithelium into the lumen. These metabolically

active and immunogenic eggs provoke an inflammatory response,

resulting in granuloma formation that aids their passage through

intestinal tissues. The life cycle is completed when eggs are excreted in

feces. In the case of S. haematobium, once matured, the female worm

lays eggs in the blood vessels. The eggs move through the bladder wall

and are expelled with urine, continuing the cycle. Some eggs,

however, become trapped in surrounding tissues, causing

inflammation and leading to urogenital pathology such as bladder

fibrosis, calcification, and, over time, an increased risk of

bladder cancer.

Acute schistosomiasis may present as a mild skin rash (swimmer’s

itch) and systemic symptoms like fever, fatigue, and cough (Katayama

fever). The pathological hallmark of schistosomiasis is the

immunopathology associated with egg deposition in host tissues and

their subsequent excretion. Vascular endothelial cells (VECs)

encapsulate these eggs, triggering an inflammatory granulomatous

response that facilitates egg extravasation (Yeh et al., 2022; Yeh et al.,

2024). Some eggs fail to reach the intestines or bladder, becoming

trapped in host tissues and forming granulomas, which consist of

immune cells, fibroblasts, and collagen. These granulomas are

characteristic of chronic schistosomiasis, contributing to tissue

damage, fibrosis, and organ dysfunction (Pearce and MacDonald,

2002). This can cause portal hypertension, gastrointestinal bleeding,

hepatic encephalopathy, and liver failure.
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Gaps in our understanding of
extravasation of S. mansoni eggs

The S. mansoni egg proteome has been characterized in many

studies but the pathogenic consequences of the interaction of egg

molecules with the host immune system, as well as the processes that

underlie the passage of eggs through tissues and their subsequent

release with the feces, are still poorly understood (Schwartz and

Fallon, 2018). Mechanisms by which eggs travel through tissues of the

intestinal wall are believed to include modulation of local immune

responses that favor their migration to the intestinal lumen. This

mechanism by which schistosome eggs extravasate from the

bloodstream into host tissues is complex and involves multiple

steps as proposed in Figure 2 (Schwartz and Fallon, 2018). When

reaching the small blood vessels of the liver or other organs, the eggs

lodge in the endothelium (Wynn and Cheever, 1995). This triggers a

cascade of inflammatory responses characterized by the recruitment

of immune cells and the release of cytokines and chemokines

(Chiaramonte et al., 1999). Macrophages, neutrophils, eosinophils,

and other immune cells are recruited to the site of deposition, where

they interact with the endothelium and surrounding tissues (Colley

and Secor, 2014). The production of pro-inflammatory cytokines,
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such as interleukin-1b (IL-1b), tumor necrosis factor-alpha (TNF-a),
and interleukin-6 (IL-6), promotes endothelial activation and

permeability, facilitating egg extravasation (Mpotje, 2017).

In addition, basophils can be activated directly by

Immunomodulatory protein secreted by schistosomes alpha 1

(IPSE/a1) to release Interleukin (IL-4) that is present in intestinal

granulomas. Recent studies have uncovered a novel molecular

mechanism in which IPSE, a member of the bg-crystallin
superfamily, binds to Immunoglobulin E (IgE) via its crystallin

fold. This interaction activates basophils independently of

traditional IgE cross-linking (Cass et al., 2007). Once outside the

bloodstream, eggs interact with host cells and components of the

extracellular matrix (ECM), triggering additional inflammatory and

fibrotic responses (Costain et al., 2018). Immune cells, particularly

macrophages and eosinophils, recognize and phagocytose eggs,

releasing cytokines and chemokines that recruit additional

immune cells to the site of deposition (Pearce and MacDonald,

2002). Fibroblasts are activated to produce collagen and other ECM

proteins, to complete the formation of granulomas (Colley and

Secor, 2014). The size and composition of the granulomas vary

depending on the number and location of the trapped eggs and the

immune response of the host (Cass et al., 2007).
FIGURE 1

Schistosoma life cycle. Infection begins when (Step 1) free-living cercariae penetrate human skin and (Step 2) cercariae lose tails and become
schistosomula, followed by (Step 3) migration through the portal vein in the liver and maturation to adult schistosomes. Once in the liver, the female
and male adults pair up (Step 4) and migrate to the intestines where the females release eggs. Interaction with the microbiome, epithelial cell death
and remodeling lead to the active release of eggs, which are then released to the environment with host feces. (Step 5). Lastly, when in water eggs
hatch into miracidia (step 6) which eventually penetrate the tissue of Biomphalaria spp snails to continue the cycle (step 7). Eggs that do not
extravasate are encapsulated by vascular endothelia cells that trigger intravascular host-immune responses to induce VEC inflammation,
proliferation, and migration. This then leads to the formation of granuloma in the liver that results in liver fibrosis after about 8 weeks. Created in
BioRender.com.
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In vitro immunological studies
in schistosomiasis

One of the most intriguing aspects of schistosomiasis is its ability

to evade the host immune system. Various studies have used in vitro

models to investigate how Schistosoma spp. manipulates host

immune responses. In a notable study, Kazura et al., 1981 used an

in vitro approach to demonstrate that S. mansoni schistosomula

releases excretory-secretory (ES) products that inhibit the production

of reactive oxygen species (ROS) by human neutrophils. ROS are

typically a key part of the immune response to pathogens, and the

ability of the parasite to suppress ROS production aids in evasion of

immune defenses. This study laid the foundation for further research

into the role of ES products in immune evasion (Kazura et al., 1981).

More recently, in vitro assays have shown that the extracellular

vesicles (EVs) secreted by schistosomula play an essential role in

immune modulation. These studies have demonstrated that

EVs carry microRNAs (miRNAs) capable of altering host gene

expression and effectively dampening pro-inflammatory responses.

Their findings suggested that schistosomula-derived EVs can

downregulate the expression of genes involved in innate immune

signaling, helping the parasite establish an infection (Wu et al., 2019;

Kuipers et al., 2020; Keshtkar et al., 2022).

Schistosome eggs are highly immunogenic and play a critical

role in shaping immune responses during infection. An earlier
Frontiers in Cellular and Infection Microbiology 04
study by Linder (2017) established that perioval granuloma

formation is driven by the host immune responses where

immune cells form protective structures around the eggs and this

shields tissues from damage. Also, this process leads to significant

fibrosis and pathology. The immune system responds to egg

antigens by activating cells like macrophages and eosinophils,

which initiate inflammation and help push the eggs through

tissue barriers. The study also stated that mechanical forces

associated with muscle contraction aid in egg movement to the

perivascular space. Coagulation and fibrinolysis are also essential, as

balanced clot formation and breakdown facilitate egg movement

without excessive clotting or bleeding. The study distinguished

between “successful” eggs, which reach the gut or bladder for

excretion, and “unsuccessful” eggs, which become trapped in

tissues, causing chronic inflammation and fibrosis (Linder, 2017).

Many studies have focused on understanding the immunomodulatory

properties of egg-secreted proteins. For example, Pearce et al.,

2005 identified specific egg antigens, including omega-1 (w1), which
are responsible for driving the T helper type 2 (Th2) immune

response, a hallmark of chronic schistosomiasis. Using in vitro

assays with dendritic cells, they showed that w1, a glycoprotein

secreted by schistosome eggs, induces the production of interleukin-4

(IL-4) by T helper cells. This discovery highlights the central role of

egg antigens in skewing the immune response toward a Th2

phenotype, which is associated with granuloma formation and tissue
FIGURE 2

Schistosome egg transition through gastrointestinal tissues. Modified from Schwartz and Fallon (2018) with further editing in Biorender.com. (A) Adult
female schistosomes deposit eggs (about 300 eggs per day for S. mansoni) into the vasculature close to the lamina propria. Platelets and fibrinogen
adhere to the eggs and activate the endothelium. Endothelial cells actively grow over the egg supporting its extravasation. Eggs that do not cross the
endothelial border are disseminated by the blood flow and become trapped mostly in the liver portal system. (B, C) Immune cells, such as macrophages,
T cells and eosinophils start to encapsulate the egg. Granuloma formation occurs around the egg and together with other processes, such as fibrinolysis,
egg secretions-induced necrosis, leading to the passage of the egg toward the intestinal lumen. (D) Entrapped eggs become fibrotic and calcified in the
liver during chronic schistosomiasis infection.
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fibrosis (Pearce, 2005). In this study, it was also found that

egg antigens induce dendritic cells to produce thymic stromal

lymphopoietin (TSLP), a cytokine that primes dendritic cells to support

the development of Th2 responses. This provides additional mechanistic

insight into how schistosome eggs drive chronic immune activation

(Pearce, 2005).

The immune response to schistosome infection is tightly

regulated to balance effective defense mechanisms and prevent

excessive tissue damage. Regulatory T cells (Tregs) play a pivotal

role in modulating immune responses during schistosome infections.

Layland et al., 2007 conducted in vitro and ex vivo experiments to

investigate the role of Tregs in schistosomiasis. They showed that

during chronic infection, Tregs expand in response to schistosome

egg antigens and are essential for controlling the size of granulomas.

In vitro assays demonstrated that granuloma formation became more

pronounced when Tregs were depleted, leading to increased tissue

damage. This study highlights the importance of Tregs in preventing

excessive immunopathology during schistosomiasis (Layland et al.,

2007). More recently, studies have shown use of in vitro co-culture

systems to investigate the effects of schistosome-derived products on

the differentiation and function of Tregs. These findings revealed that

schistosome eggs secrete molecules that directly promote the

expansion of Tregs, thereby modulating the host immune

environment to favor parasite survival, while limiting inflammation

and pathology (Mu et al., 2021).

Granuloma formation around the schistosome eggs is a key

pathological feature of chronic schistosomiasis. In vitromodels have

been developed to study cellular and molecular processes

underlying granuloma formation. In an important study Zouain

et al., 2004 used an in vitro granuloma model to investigate how S

mansoni PIII antigen influences granuloma size and composition.

They found that granulomas formed around schistosome eggs in

vitro are dependent on the presence of IL-13, a cytokine that

promotes fibrosis. This study provides direct evidence linking IL-

13 levels to the fibrotic pathology observed in schistosomiasis

(Zouain et al., 2004). Furthermore, studies have shown that

schistosome egg antigens drive macrophages toward an

alternatively activated (M2) phenotype, which is associated with

tissue repair and fibrosis in vitro. These findings help explain the

dual role of macrophages in controlling infection and contributing

to pathology (Pearce and MacDonald, 2002).

In addition to immune modulation, schistosomes release

proteolytic enzymes, which facilitate tissue invasion and egg

translocation. Several in vitro assays have been used to explore

the role of these proteases in schistosome biology. Felleisen et al.,

1990 conducted in vitro assays using recombinant schistosome

proteases to study their role in degrading host extracellular matrix

proteins. They showed that the protease cathepsin B, secreted by

schistosomula, is crucial for the ability of the parasite to enter the

circulatory system (blood vessels or lymphatics) and are carried

passively by the bloodstream to establish infection. This study

highlights the importance of proteolytic enzymes in the early

stages of infection (Felleisen and Klinkert, 1990).
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Animal models in
schistosomiasis research

Human studies on schistosomiasis are typically conducted in

endemic regions, and often focus on observations before and after

treatment. While analyzing human samples, such as blood, tissue,

and stool, is essential for translating animal research into human

systems (Colley and Secor, 2014), these samples have limitations,

including variability in genetic background, medical history, co-

infections, and environmental factors. Moreover, ongoing studies

using controlled human infection with S. mansoni promise to shed

new light on many aspects of human infection (Janse et al., 2018).

However, ethically studying the egg excretion process in humans

poses challenges, particularly when considering deliberate chronic

infections involving male and female worms, which can lead to egg

production, tissue damage, and significant health risks.

Longitudinal studies in endemic areas could be an alternative,

although they present logistical difficulties, such as the need for

colonoscopy, to examine the intestinal epithelium.

Animal models have played a critical role in the investigation of

schistosomiasis, facilitating the study of parasite biology, host

immune responses, disease pathogenesis, drug efficacy, and

vaccine development. Various animal species have been used to

model distinct stages of Schistosoma infection, each offering unique

advantages in understanding the disease, as shown in Table 1.

Baboons and chimpanzees are the most accurate models, replicating

key features of human schistosomiasis, such as peri-portal fibrosis

and intestinal lesions (Sadun et al., 1966; Abe et al., 1993; Yole,

1996; Nyindo and Farah, 1999; Farah et al., 2000) but these large

animal models are costly with stricter ethical considerations.

Despite some differences, particularly in hepatic fibrosis and

pathology, which are more closely linked to the granulomatous

response to trapped parasite eggs in the liver and intestine in mice

(Fallon, 2000), the formation of granulomas in mice is still a

valuable reflection of human disease. However, despite decades of

research, the immunological and molecular mechanisms underlying

the extravasation of schistosome eggs remain poorly understood.
OOC systems for modeling
human physiology

OOC systems as summarized in Table 2 represents a revolutionary

approach to modeling human physiology in vitro by recreating the

structural and functional complexity of human organs and tissues

(Huh et al., 2013). These microfluidic devices, also known as 3D

microphysiological systems (3D MPS), offer a unique platform for

studying biological processes in a controlled environment that closely

mimics the in vivo microenvironment (Bhatia and Ingber, 2014).

OOC systems revolves around the creation of microscale devices

that replicate the essential features of specific organs or tissues

(Esch et al., 2014). These systems typically consist of microfluidic
frontiersin.org
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TABLE 1 Selected schistosomiasis studies in animal models.

Research
Area

Animal Model Purpose/Findings References

Parasite Biology
and
Lifecycle
Studies

Mice, Hamsters,
Nonhuman primates

The migration of Schistosoma from the skin to the
liver and organs during infection was studied, as
well as the cycles of egg laying.

(Lambertucci et al., 2014; Pereira et al., 2015; Wang
et al., 2018; Lombardo et al., 2019; Maciel et al., 2019)

Snail (Biomphalaria spp.) Investigated the stages of life of S. mansoni in snails,
including cercarial shedding and miracidial
infection, establishment of infection, and factors
such as temperature and genetics.

(Wang et al., 2016; Mutuku et al., 2017; Queiroz et al.,
2017; Hambrook et al., 2018; Nguyen et al., 2021; Phan
et al., 2022)

Rodents (rats) Examined the early development of schistosomula in
rodent models to better understand parasite-
host interactions.

(Han et al., 2013; Krautz-Peterson et al., 2017; Phan
et al., 2022)

Pathogenesis
of
Schistosomiasis

Mice and Hamsters Investigated the formation, fibrosis, and deposition
of eggs in the liver and intestines of infected
animals. Hepatosplenomegaly and portal vein
obstruction due to chronic schistosomiasis infection.

(Warren, 1966; el-Sebai et al., 1989; Moustafa et al.,
1996; Tiggelman et al., 1996; Abou Rashed et al., 1997;
Wynn et al., 2004; Abouel-Nour et al., 2005; Helmy
et al., 2005; Bartley et al., 2006; Oloris et al., 2007;
Andrade and Santana, 2010; Sanches et al., 2020; Tang
et al., 2020; Salama et al., 2021)

Non-human primates (baboons) Investigated liver fibrosis progression and
schistosomiasis-associated cirrhosis.

(Andrade, 2004; Kariuki et al., 2004)

Host
Immune
Responses

Mice (BALB/c, C57BL/6, RAG-1
knockout), rats

Dissected the roles of T cells, macrophages, and
eosinophils in the immune response and formation
of granulomas, immune response during co-
infection including vaccine response.

(Rumbley et al., 1998; Chiu and Chensue, 2002;
MacDonald and Pearce, 2002; Burke et al., 2010; Chen
et al., 2012; Joyce et al., 2012; Teixeira de Melo et al.,
2013; Yu et al., 2015; Zhang et al., 2015; Zhu et al., 2017;
Huang H. et al., 2022; Shen et al., 2022; Reinholdt
et al., 2023)

Guinea pigs The authors studied delayed hypersensitivity
responses to Schistosoma antigens, providing
information on immune mechanisms.

(Dean et al., 1975; Pearce and McLaren, 1983; Gordon
and McLaren, 1988)

Non-human primates (baboons,
rhesus monkeys)

Chronic infection model to assess immune
modulation and cytokine response.

(Kariuki et al., 2004; Carvalho-Queiroz et al., 2015;
Pearson et al., 2015; Nyakundi et al., 2016; Gent et al.,
2019; Nyakundi et al., 2022)

Vaccine
development

Mice (various strains) Various vaccine candidates were tested, such as
paramyosin, glutathione-S-transferase (GST) and the
Sm-p80 antigen.

(El Ridi and Tallima, 2009; Frantz et al., 2011; Sulbarán
et al., 2013; Molehin et al., 2021; Mossallam et al., 2021;
de Oliveira Santos Bernardes et al., 2022; Lam et al.,
2022; Tedla et al., 2022; Hassan et al., 2023; Elguindy
et al., 2024)

Baboons, Rhesus monkeys Showed reduced worm burdens and egg production
in vaccinated primates with recombinant antigens.

(Kariuki et al., 2004; Kariuki et al., 2004; Ahmad et al.,
2011; Carvalho-Queiroz et al., 2015; Zhang et al., 2018;
Gent et al., 2019)

Drug Testing
and
Efficacy Studies

Mice (various strains) Praziquantel, oxamniquine, and new derivatives
tested for efficacy and resistance development.

(Botros et al., 2011; Muchirah, 2012; Allan et al., 2014;
Abla et al., 2017; Pinto et al., 2019; Nono et al., 2020)

Hamsters Novel antischistosomal compounds and their impact
on parasite life stages and host immune response.

(Abdulla et al., 2009; Padalino et al., 2021; Alghamdi
et al., 2023)

Baboons Assessed pharmacokinetics and drug resistance
patterns, showing effective reduction of worms
with praziquantel.

(Pica-Mattoccia and Cioli, 2004; Greigert et al., 2019;
Melkus et al., 2020)

Schistosomiasis-
Associated
Comorbidities

Mice, Hamsters, and Rats Investigated the role of chronic inflammation in the
development of colorectal cancer in Schistosoma-
infected mice. Effect of Schistosoma infection on the
gut microbiome. Studied portal hypertension and
esophageal varices associated with advanced
schistosomiasis infection.

(Sarin et al., 1991; Tanaka, 2012; Hu et al., 2020)

Non-human primates (baboons) Modeled pulmonary hypertension and
cardiovascular complications caused
by schistosomiasis.

(Farah et al., 2013)

(Continued)
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channels lined with living cells that simulate the structure and function

of the target tissue (Bein et al., 2018). By culturing cells in a 3D

microenvironment, OOC models provide more physiologically

relevant conditions than traditional two-dimensional (2D) cell

culture systems (Jiang et al., 2019).
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The key advantage of OOC system is its ability to simulate

dynamic microenvironments, including fluid flow, mechanical

forces, and cell-cell interactions (Huh et al., 2010). The microfluidic

channels embedded within the device allow precise control over the

delivery of nutrients, oxygen, and signaling molecules to cultured cells,
TABLE 1 Continued

Research
Area

Animal Model Purpose/Findings References

Schistosomiasis
Transmission
Dynamics

Snails (Biomphalaria spp.) Investigated the role of environmental factors and
snail control measures in interrupting transmission
cycles.
Modeled transmission in endemic regions to study
the impact of water management and human-snail-
parasite interactions.

(Sengupta et al., 2019; Huang Q. et al., 2022)
TABLE 2 Current organ on a chip/disease models.

Organ/
Model

Diseases
studied

Key Features Significance References

Liver-on-a-Chip Drug-induced liver
injury, Hepatitis
B, genotoxicity

Replicates liver metabolism, bile
secretion, and cellular microarchitecture.
Can be perfused with blood-like fluids
for long-term studies.

Crucial for evaluating the hepatotoxicity of
pharmaceuticals and studying liver
diseases such as viral hepatitis. Can predict
drug-induced liver injury (DILI).

(Shah et al., 2018; Beaurivage
et al., 2019; Etxeberria et al., 2022;
Kanabekova et al., 2022; Yang
et al., 2023; Ewing et al., 2024)

Heart-on-a-Chip Cardiotoxicity,
Heart disease

Mimic heart tissue contraction, beat
rate, and electrophysiology using
human-induced pluripotent stem
cells (hiPSC).

It is useful for studying cardiomyopathies
and screening drug effects on heart
function, for example, arrhythmias
induced by certain cancer drugs.

(Morimoto et al., 2016; Zhang
et al., 2021; Schneider et al., 2022)

Lung-on-a-Chip Pulmonary
infections,
COPD, asthma

Simulates the alveolar-capillary interface
with mechanical stretching to mimic
breathing. Can expose epithelial cells to
pathogens or allergens.

Enables the study of lung inflammatory
diseases such as COPD, asthma, and
infectious diseases such as tuberculosis.

(Huh, 2015; Müller et al., 2021;
Shah et al., 2024)

Kidney-on-
a-Chip

Kidney
disease,
Nephrotoxicity

Models renal tubular reabsorption and
secretion, including filtration and
electrolyte balance.

Provides information on nephrotoxicity
caused by medications (eg,
chemotherapeutics) and models diseases
such as acute kidney injury (AKI).

(Guo et al., 2020; Sun et al., 2020;
Chambers et al., 2023)

Gut-on-a-chip Inflammatory Bowel
Disease (IBD),
Celiac Disease

Mimics intestinal peristalsis, villi
structure, and microbe-host interactions.
Incorporates epithelial, immune, and
microbial cells.

Useful for studying gastrointestinal
disorders such as Crohn’s disease,
ulcerative colitis, and the role of the gut
microbiome in health and disease.

(Beaurivage et al., 2019; Xian
et al., 2023; Yang et al., 2023;
Taavitsainen et al., 2024)

Brain-on-a-Chip Alzheimer’s Disease,
Parkinson’s Disease

Recreates blood-brain barrier (BBB)
function and neuron-astrocyte
interactions. Allows the study of
neurotransmitter release and
synaptic function.

A valuable model for studying
neurodegenerative diseases such as
Alzheimer’s and Parkinson’s, and for
screening for neuroprotective drugs.

(van der Helm et al., 2016; Lenoir
et al., 2022; de Rus Jacquet et al.,
2023; Hall and Bendtsen, 2023)

Pancreas-on-
a-Chip

Diabetes, Islet
cell function

Mimics pancreatic islets and insulin
secretion dynamics. Integrates endocrine
tissue from human islet cells.

Enables the study of diabetes and glucose
regulation, with potential applications in
drug development for insulin production
and beta-cell regeneration.

(Essaouiba et al., 2020a; Essaouiba
et al., 2020b; Zandi Shafagh et al.,
2022; Fernández-Costa et al., 2023;
Kim et al., 2023)

Skin-on-a-Chip Wound
Healing, Psoriasis

Models of epidermal and dermal layers,
with barrier function and nutrient
delivery. Can include immune cells for
inflammation studies.

Useful for studying skin diseases,
including psoriasis, eczema, and for testing
wound healing and drug delivery systems
for topical applications.

(Wufuer et al., 2016; Quan et al.,
2022; Sun et al., 2022; Cho
et al., 2024)

Bone Marrow-
on-a-Chip

Leukemia,
Hematopoiesis

Models the bone marrow niche,
hematopoietic stem cell (HSC)
differentiation, and blood cell
production under various conditions.

Helps in the study of blood cancers (e.g.,
leukemia) and hematopoiesis, allowing
drug testing and information on the
immune system response.

(Torisawa et al., 2014; Kefallinou
et al., 2020; Ma et al., 2020;
Nasello et al., 2021; Nelson
et al., 2021)

Placenta-on-
a-chip

Maternal-Fetal
Interface,
Preeclampsia

Simulates nutrient, oxygen, and drug
transport between maternal and fetal
cells. Recreates trophoblast-
endothelial interactions.

Helps to understand placental diseases,
drug effects during pregnancy, and
conditions such as preeclampsia. Provides
a safer model for drug testing.

(Blundell et al., 2016; Blundell
et al., 2018; Yin et al., 2019;
Rahman et al., 2024)
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mimicking the physiological conditions found in vivo (Esch et al.,

2015). OOC systems are suitable for studying complex biological

processes such as host-pathogen interactions. Unlike animal models,

OOC systems allow the use of human cells, reducing the need for

animal experimentation and improving the relevance of the results to

human physiology (Bhatia and Ingber, 2014). Furthermore, OOC

systems can be customized to mimic specific disease conditions,

allowing researchers to study the mechanisms of disease and test

potential therapeutics in a high-throughputmanner (Esch et al., 2011).

These systems have been utilized in the studies of other

infectious diseases, including malaria, tuberculosis, and influenza

(Esch et al., 2014). These models recapitulate key aspects of host-

pathogen interactions, such as the interaction between immune

cells and pathogens, the dynamics of infection within host tissues,

and the efficacy of antimicrobial drugs. For example, lung-on-chip

systems have revealed important insights into pathogenesis of

respiratory infections, including the recruitment of immune cells

to the site of infection and the inflammatory response induced by

the pathogen (Huh et al., 2011). Similarly, gut-on-a-chip models

have uncovered the mechanisms of microbial colonization and host

immune response to gut microbiota and enteric pathogens (Lu

et al., 2018). Therefore, OOC systems represent a groundbreaking

leap in biomedical research, offering unparalleled advantages by

recreating human tissue environments with remarkable fidelity.

This makes them particularly valuable in studying complex diseases

such as schistosomiasis, where the lifecycle of the parasite and its

effects on human tissues such as the liver and vasculature, are

difficult to fully capture in existing models.
Application of OOC systems in
schistosomiasis research

In the context of schistosomiasis research, OOC technology offers

a powerful platform for studying the mechanisms underlying the

extravasation of schistosome eggs (Lu et al., 2018). By replicating the

physiological conditions of the host vasculature and surrounding

tissues, OOC models can provide insights into the interactions

between schistosome eggs and the host immune system, as well as

the factors that regulate egg extravasation (Costain et al., 2018).

Furthermore, OOC platforms allow real-time imaging and analysis of

cell responses, allowing for visualization and quantifying the

dynamics of egg migration in a controlled experimental setting

(Wu et al., 2020). This technology holds a great promise in

advancing our understanding of schistosomiasis by providing a

physiologically relevant platform to study the mechanisms

underlying extravasation of Schistosoma eggs. Yeh et al., 2022, have

demonstrated the utility of organ-on-chip models in elucidating the

complex interactions between Schistosoma eggs and host tissues, as

well as the factors that regulate egg extravasation (Yeh et al., 2022). By

culturing endothelial cells in microfluidic channels and exposing
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them to schistosome eggs, we can simulate the initial stages of egg

extravasation and investigate the mechanisms by which eggs breach

the endothelial barrier. Past studies have revealed that schistosome

eggs induce endothelial activation and permeability through the

release of pro-inflammatory cytokines and chemokines, leading to

the recruitment of immune cells to the site of infection (Angeles

et al., 2020).

For example, a microfluidic system was developed by Girod et al.,

to mimic flow conditions in the human blood system that allowed the

evaluation of drug effects on worm attachment and viability under

dynamic conditions (Girod et al., 2022). The system demonstrated

that healthy worms remained attached to the walls and resisted flow,

while damaged worms were eliminated. This study highlights the

importance of developing novel screening systems for the

identification of schistosomicidal drugs contributing to the

advancement of drug screening methodologies and provides a

promising platform to evaluate the efficacy of other potential

treatments against these parasites. Future advancements in this

technology could implement automated worm counting for real-

time analysis. OOC systems also enable real-time imaging and

analysis of cellular responses, allowing researchers to visualize the

dynamics of egg migration and granuloma formation in a controlled

experimental setting. By incorporating advanced imaging techniques,

such as confocal microscopy and live cell imaging, we can monitor

the interactions between schistosome eggs and host cells in real time,

providing insight into the spatiotemporal dynamics of egg

extravasation (Singh et al., 2022). Furthermore, computational

modeling approaches can be used to simulate the biophysical forces

that regulate egg migration and predict optimal conditions for the

formation of granulomas (King et al., 2021).

In addition to studying the mechanisms of egg extravasation,

OOC models can be used to screen potential therapeutics targeting

Schistosoma infection (Hong et al., 2024). By culturing immune

cells and endothelial cells in microfluidic devices and exposing them

to Schistosoma eggs, it is possible to evaluate the efficacy of anti-

inflammatory drugs, immune modulators, and antiparasitic agents

in preventing egg extravasation and granuloma formation

(Mannino et al., 2018). These studies have identified several

promising candidates for further preclinical testing, including

small-molecule inhibitors of cytokine signaling pathways and

monoclonal antibodies targeting immune cell receptors (Wynn

and Cheever, 1995). Furthermore, OOC platforms can be used to

study the long-term effects of Schistosoma infection on host tissues

and organs (Colley et al., 2014). Culturing of cells from different

organs, such as the liver, intestine, and bladder, in interconnected

microfluidic devices, can model the systemic effects of chronic

schistosomiasis and investigate the mechanisms underlying

disease progression (Colley and Secor, 2014). These studies can

uncover novel therapeutic targets to prevent or mitigate long-term

complications of schistosomiasis, such as liver fibrosis and bladder

cancer (Pearce and MacDonald, 2002).
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Using OOC systems to decipher the
forces driving schistosome
egg migration

Since schistosome eggs do not possess known motility

mechanism, the puzzling and yet scientifically interesting question

is how the eggs transit through layers of host tissues, including

endothelial and epithelial barriers to reach the intestinal lumen and

be excreted to continue the life cycle. As earlier stated, there is a

better understanding of host immune interaction with the parasites,

including characterization of proteins and enzymes such as matrix

metalloproteinases (MMPs) and their tissue inhibitors (TIMPs)

which are key regulators of extracellular matrix (ECM) turnover

and remodeling in schistosomiasis infection (Page-McCaw et al.,

2007). These play a critical role in both host defense and tissue

pathology released by the parasites to aid in host invasion and

immunomodulation for survival inside the host (Pearce and

MacDonald, 2002).

The formation of granuloma is a complex process which

involve infiltrations of alternatively activated macrophages,

eosinophils, Th2 cells, fibroblast proliferation (Hams et al.,

2013), angiogenesis, endothelial activation, and the release of

blood clotting factors (Shariati et al., 2011; Mebius et al., 2013).

As such, both in vitro and in vivo studies have reported that the

timing and formation of granuloma are crucial to the successful

translocation of schistosome eggs (Hams et al., 2013; Linder, 2017;

Schwartz and Fallon, 2018; Takaki et al., 2021). These stromal cells

play key roles in tissue repair, and become activated following

tissue damage, as would happen during egg deposition

(Gabbiani, 2003).

However, despite intense studies, precisely how the eggs transit

through the complex granuloma ecosystem to reach the gut lumen

remains largely unknown. Equally unclarified is the role of

fibroblasts in granuloma formation and egg propulsion since

fibroblasts are the most abundant cells in the stroma where eggs

are laid. In normal development and physiology, fibroblasts are the

major producers of the ECM. These stromal cells play key roles in

tissue repair and become activated following tissue damage, as

would happen during egg deposition (Gabbiani, 2003). During

wound healing, these cells can produce transforming growth

factor-b (TGFb) and acquire a highly contractile phenotype

associated with the expression of alpha smooth muscle antigen

(aSMA) (Rockey et al., 2013). In this state, fibroblasts are termed

‘myofibroblasts’. Both in normal homeostasis and following injury

they participate in crosstalk with adjacent epithelia, and their ability

to influence local epithelial stem cell behavior has been documented

(Brizzi et al., 2012; Le Guen et al., 2015). In addition, fibroblasts can

also promote angiogenesis via the production of vascular

endothelial growth factor A (VEGFA) and coordinate the

function of the immune system via the production of chemokines

and cytokines (Kraman et al., 2010; Buechler and Turley, 2018).

Given the myriad roles of fibroblasts in homeostasis and being the
Frontiers in Cellular and Infection Microbiology 09
most contractile among the cells within the granuloma

microenvironment, it is likely that these cells provide thrust to

the eggs. In support of this, earlier studies have pointed to the role of

fibroblasts in granuloma formation in tuberculosis (TB) where they,

confoundingly, provide both protection to the host as well as

facilitate bacteria dissemination (Evans et al., 2019). Cancer

associated fibroblasts (CAFs) are also suspected to produce

contractile forces which drive cancer metastasis (reviewed in

(Sahai et al., 2020)). Could a similar mechanism exist in

schistosome egg dissemination, and if so, what is the exact role of

fibroblasts in this process?

OOC can be employed to clarify the migratory mechanism of

schistosome eggs within gastrointestinal tissues from the perspective

of tissue mechanics. Given the role of fibroblasts in remodeling the

extracellular matrix (ECM) and generating contractile forces, we

propose that egg-induced immune stimulation and/or ECM

alterations—such as collagen and fibrin deposition and degradation

—within the granuloma microenvironment may activate fibroblasts

into a highly contractile myofibroblast phenotype. This activation

could produce sufficient contractile forces to facilitate the migration

of schistosome eggs. Thus, using in vitro studies utilizing

microphysiological systems (MPS) as illustrated in Figure 3, which

are now widely accepted as animal alternatives (Wikswo, 2014), we

can take a tissue mechanistic approach to quantitatively map and

dissect the nature and origin of forces that propel schistosome egg

migration. Considering the roles of fibroblasts in matrix deposition

and contractile force generation, we can use in vitro studies

employing 3D MPS to determine the role of fibroblast-generated

contractile forces in egg propulsion. Because cell contractility is

closely associated with matrix stiffness such that on a stiffer matrix

where cells can establish stronger focal adhesions, stronger contractile

forces are generated compared with a soft matrix.

By adjusting the microenvironment in an OOC system, we can

further investigate the conditions that promote or inhibit egg

migration, distinguishing between “successful” (excreted) and

“unsuccessful” (trapped) eggs. This allows for the identification of

molecular and mechanical cues that influence egg migration

outcomes. The OOC system can also mimic coagulation pathways

by incorporating blood vessel-like structures that simulate vascular

responses to egg transit. Introducing blood flow and clotting factors

enables real-time observation of how coagulation and fibrinolysis

are regulated during egg migration. Additionally, microfluidic

channels can simulate blood vessels to explore clot formation,

and how the fibrinolytic system clears clots to facilitate egg

movement (Linder, 2017).

Thus, we hypothesize that when egg-induced matrix

degradation occurs due to egg-secreted matrix metalloproteinase

(MMP) (Singh et al., 2004; Singh et al., 2006), fibroblasts on the

degraded part of the granuloma can exert less contractility

compared with those on the unaffected part, creating an

anisotropic contraction which may push the eggs out of the

granuloma towards the blood vessels as shown in Figure 4. To

clarify this, in 3D MPS, we can deploy high resolution live cell
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FIGURE 3

A conceptualized potential application of OOC to mimic schistosome egg migration through the gastrointestinal tissues. (A) A layout of the OOC
showing the various components for tracking egg migration. (B) An enlarged diagram depicting the migration process on the OOC. The complex
process involved in the egg migration, including the penetration of endothelial barrier wall, egg interaction with fibroblast and immune cells leading
to the formation of granuloma in the stroma, and finally, egg transition through epithelial barrier into the intestinal lumen are depicted.
(C) Fluorescence microscopy can be applied to track fluorescent beads embedded in the gel mimicking the stroma, and (D) force characterization
using atomic force microscope (AFM) can yield quantitative information about the forces produced by host cells to propel Schistosome egg during
the egg migration process. (A) is modified from Lee et al., 2019 (Lee et al., 2019).
FIGURE 4

Conceptualized representation of how fibroblast-dependent tissue mechanics may drive schistosome egg migration. (A) Recruitment phase where
immune cells and fibroblasts respond to egg released immunogenically. Light blue arrows indicate migration direction. (B) Assembly phase involving
ECM deposition and isotropic contraction without a resultant force due to tissue stress balance. Red arrows indicate hypothesized fibroblast-
generated contractile forces within the granuloma (C) Propulsion phase where polarized ECM degradation or myofibroblast differentiation
contributes to anisotropic contraction and egg propulsion. The red dashed arrows indicate diminishing forces due to matrix degradation. The solid
black arrows in (B, C) represent the tissue stress balance or unbalance.
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tracking, 3D force mapping techniques, and tissue mechanics,

coupled with immunological characterization and genetic

profiling to characterize fibroblast-egg interaction right from the

initiation of granuloma formation to the egg migration stage. 3D

MPS can recapitulate the gastrointestinal microenvironment where

we could deploy it to spatiotemporally and quantitatively study the

role of fibroblasts in the formation of granuloma and, eventually, egg

migration. Leveraging on tissue mechanics, we can map forces within

the granuloma microenvironment, using quantitative approaches

integrating 3D traction force microscopy (3D TFM) and atomic

force microscopy (AFM)measurements. From cellular migration and

tissue deformation analyses, we could generate a force map to reveal

the force vector dictating the trajectory of egg migration within the

gastrointestinal ecosystem as depicted in Figure 5. 3D MPS can

therefore be used to map the nature and origin of the forces that

propel egg migration, with focus on fibroblasts.
Conclusion

Over the past few decades, research has revealed many

fascinating aspects of S. mansoni biology and the host’s immune
Frontiers in Cellular and Infection Microbiology 11
response to both the worms and their eggs. The immunology of

granuloma formation around the eggs has been a major focus, given

its central role in the immunopathology of schistosomiasis

infections. Despite significant advances, many unknown aspects

remain to be identified and experimentally validated. One such area

is the process by which granulomas evolve to facilitate egg

migration through the intestinal wall, liver, spleen and other

organs. Thus, a 3D MPS can recapitulate the gastrointestinal

microenvironment where we could deploy it to spatiotemporally

and quantitatively study the role of immune cells and fibroblasts in

the formation of granuloma and, eventually, egg migration.

Leveraging on tissue mechanics, we can map forces within the

granuloma microenvironment, using quantitative approaches

integrating 3D TFM and AFM measurements. From cellular

migration and tissue deformation analyses, we could generate a

force map to reveal the force vector dictating the trajectory of egg

migration within the gastrointestinal ecosystem. 3D MPS can

therefore be used to map the nature and origin of the forces that

propel egg migration, with focus on immune cells and fibroblasts.

This cutting-edge platform, which mimics the structure and

function of human organs, could allow for detailed investigation

of egg transit in a controlled environment.
FIGURE 5

An illustration of a gel-based assay to decipher forces produced by host cells such as contractile fibroblasts to aid Schistosoma eggs migration. (A) A
hydrogel is first characterized using (B) stiffness measurement equipment such as AFM or rheometer. (C) A stress-strain relationship obtained from
the characterization is then used to derive quantitative stiffness information such as Young’s modulus. (D) Gel samples can be embedded with
fluorescence particles such as beads for optical tracking and mapping of gel deformation during cell migration on or through the gel. Schistosoma
eggs can be co-cultured on the gel surface in contact with host cells such as fibroblasts. (E) Tracking bead displacement using a fluorescent
microscope would yield (F) a displacement field resulting from gel deformation. By applying particle image velocimetry (PIV) analysis, migration
forces produced by host cells can be determined quantitatively.
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Zygocotyle lunata as a model for in vivo screening of anthelmintic activity against
paramphistomes: Evaluation of efficacy of praziquantel, albendazole and closantel in
experimentally infected mice. Exp. Parasitol. 199. doi: 10.1016/j.exppara.2019.02.007

Quan, Q., Weng, D., Li, X., An, Q., Yang, Y., Yu, B., et al. (2022). Analysis of drug
efficacy for inflammatory skin on an organ-chip system. Front. Bioeng. Biotechnol. 10.
doi: 10.3389/fbioe.2022.939629

Queiroz, F. R., Silva, L. M., De Jesus Jeremias, W., Hideo Babá, É., Caldeira, R. L.,
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