
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Sara Marı́a Soto,
Instituto Salud Global Barcelona (ISGlobal),
Spain

REVIEWED BY

Roberto Rosales-Reyes,
National Autonomous University of Mexico,
Mexico
Dharmender K. Gahlot,
Umeå University, Sweden

*CORRESPONDENCE

Qingpi Yan

yanqp@jmu.com

RECEIVED 10 October 2024

ACCEPTED 08 January 2025
PUBLISHED 31 January 2025

CITATION

Mao M, He L and Yan Q (2025) An updated
overview on the bacterial PhoP/PhoQ two-
component signal transduction system.
Front. Cell. Infect. Microbiol. 15:1509037.
doi: 10.3389/fcimb.2025.1509037

COPYRIGHT

© 2025 Mao, He and Yan. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 31 January 2025

DOI 10.3389/fcimb.2025.1509037
An updated overview on the
bacterial PhoP/PhoQ two-
component signal
transduction system
Meiqin Mao, Li He and Qingpi Yan*

Fisheries College, Jimei University, Xiamen, Fujian, China
The PhoP response regulator and the cognate sensor kinase PhoQ form one of

the two-component signal transduction systems that is highly conserved in

bacteria. The PhoP/PhoQ system is a crucial mediator of signal transduction. It

regulates the expression of bacterial environmental tolerance genes, virulence

factors, adhesion, and invasion-related genes by sensing various environmental

signals in the host, including Mg2+, low pH, antimicrobial peptides, and osmotic

pressure. In this review, we describe the PhoP/PhoQ system-induced signal

composition and its feedback mechanism, and the abundance of PhoP

phosphorylation in the activated state directly or indirectly controls the

transcription and expression of related genes, regulating bacterial stability.

Then, we discuss the relationship between the PhoP/PhoQ system and other

components of the TCS system. Under the same induction conditions, their

interaction relationship determines whether bacteria can quickly restore their

homeostasis and exert virulence effects. Finally, we investigate the coordinated

role of the PhoP/PhoQ system in acquiring pathogenic virulence.
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Introduction

Bacteria may encounter various environmental pressures, affecting their survival and

virulence (Yao et al., 2024; He et al., 2025). In response to environmental pressure, many

strategies have been evolved to fight against external pressure. The two-component signal

transduction systems (TCSs) play an essential role in signal transduction during the change

of bacterial environment (Xie et al., 2022). It enables bacterial pathogens to sense various

environmental conditions such as light, temperature, pH, osmotic pressure, nutrients, small

molecule metabolites, antibiotics, antimicrobial peptides, and other host-derived signals.

This ability allows pathogens to determine when they have reached the microenvironment

of a host or host interior. Subsequently, specific genes are activated or repressed to adapt,

evade, or attack (Xie et al., 2022). The two-component signal transduction systems consist
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of conserved signal receivers: histidine kinases (HKs) and their

cognate response regulators (RRs) (Xie et al., 2020). Studies have

shown that TCS usually uses positive and negative feedback

mechanisms to regulate gene expression in HK, RR, and

downstream genes (Figure 1). In this way, PhoP/PhoQ system

responds positively to environmental stress (Lippa et al., 2009).

Depending on the structural domain is divided into six families,

respectively: the OmpR family, the family of NarL, the NtrC family,

the LuxR family, the CitB family, and Che (Pina et al., 2021), TCSs

control the various components of the phosphate transferring

principle almost similar; they form between complex signal

transportation network (Véscovi et al., 1996; Pina et al., 2021;

Shao et al., 2021). The composition of bacterial TCS is rich,

forming a complex information transportation network between

them. However, the TCS system has not been found in animal hosts,

and as a signal transduction system, TCS could be a new target for

developing new antibacterial therapeutic agents (Chen and

Groisman, 2013).

The PhoP/PhoQ system, a member of the OmpR family, has

been thoroughly studied in Salmonella enterica (S. enterica),

Escherichia coli (E. coli), Shigella flexneri and other bacterial

strains (Lin et al., 2017; Yuan et al., 2017; Pina et al., 2021; Guo

et al., 2022), and plays an important role in the entire regulatory

network (Pina et al., 2021). In S. enterica, PhoP/PhoQ is involved in

regulating the transcription and expression of a variety of virulence

genes, including invasion of non-phagocytic cells (such as epithelial

cells), anti-phagosome killing, resistance to antimicrobial peptides

(AMPs), and release of virulence proteins (Pina et al., 2021). The

PhoP/PhoQ system consists of two parts: PhoQ belongs to
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transmembrane proteins, and its structural composition mainly

includes the N-terminal conserved periplasmic sensor domain, two

transmembrane (TM) domains, the histidine adenosine

monophosphate associated protein (HAMP) domain located in

the cytosol for signal transmission, the dimerization and histidine

phosphotransfer (DHp) domain required for dimerization, and the

catalytic adenosine (CA) domain that binds to catalytic adenosine

triphosphate (ATP) (Mensa et al., 2021). PhoP, a homologous

regulatory factor (RRs) located downstream of PhoQ, consists of

two domains: the N-terminal regulatory domain, which has the

necessary aspartate residue site, and one is the C-terminal effect

domain, which is involved in binding to the specific DNA sequence

in the target promoter (Ali and Abdel Aziz, 2024). The catalytic and

regulatory structures of these two proteins are relatively conserved.

PhoQ is commonly used as a sensor to recognize environmental

stimuli, promote self-phosphorylation of histidine residues under

the catalysis of ATP, and deliver phosphate groups to its cognate

regulator PhoP (Yamamoto et al., 2002; Pathak et al., 2010). After

the N-terminal aspartic acid residue of PhoP is captured and

recognized, the phosphorylation reaction (PhoP-P) occurs, and

the PhoP conformation changes (Yamamoto et al., 2002; Pathak

et al., 2010). PhoQ controls PhoP phosphorylation and influences

the transcription of PhoP-regulating genes (Gall et al., 2016;

Mattos-Graner and Duncan, 2017). Following phosphorylation of

PhoP, on the one hand, it can promote its own transcription and

activate the expression of downstream gene targets (such as mgtA,

slyB, pmrD, pagP). More so, it can competitively bind with other

transcription factors, resulting in down-regulation of specific gene

targets (Goldberg et al., 2010). The activated PhoP/PhoQ system
FIGURE 1

The process of two-component signal transduction. Under environmental stimulus conditions, histidine kinase (HK) interacts with its signaling ligand,
leading to phosphorylation of histidine residue. The phosphate group is recognized and captured by response regulator (RR) in the cytoplasm,
activating the output domains of the response regulator and inducing conformational changes. Subsequently, the regulator binds to the promoter
regions of downstream target genes, thereby activating transcription levels of both themselves and downstream target genes. Here, “P” denotes the
phosphate group, “HK” stands for histidine kinase, and “RR” represents response regulator.
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mediates various phenotypic modifications, regulates bacterial

homeostasis, and reduces the adverse effects of external

environmental pressure (Goldberg et al., 2010).
How does the PhoP/PhoQ system
respond to external environmental
stimulus signals?

The PhoP/PhoQ system, as a classic two-component system,

involves the dual-function protein PhoQ, which senses

environmental changes such as divalent cations (Véscovi et al.,

1996), antibacterial (Yu and Guo, 2011), low pH (Bader et al., 2010),

circumcellular redox (Choi and Groisman, 2016), and osmotic

pressure (Yuan et al., 2017). These factors regulate the

phosphorylation-mediated phenotypic modification of the

response regulator PhoP. The PhoP/PhoQ system plays a crucial

regulatory role in virulence of in the virulence of several pathogenic

bacteria. Therefore, elucidating the response mechanisms of the

PhoP/PhoQ system to various stimuli and its transcriptional

regulation of downstream target genes provides fundamental

insights into the PhoP/PhoQ system.
Divalent cations

Divalent cations play a crucial role in organisms, serving as

essential cofactors for numerous enzymes. They are vital for

maintaining the integrity of biological membranes and facilitating

various physiological functions (Lippa and Goulian, 2012). Mg2+

was initially identified as the environmental stimulus factor for the

PhoP/PhoQ system, which plays a crucial role in maintaining Mg2+

homeostasis (Véscovi et al., 1996). When the cytoplasmic Mg2+

concentration falls below a certain threshold (e.g., when Salmonella

typhimurium concentration below 0.5 mM Mg2+) (Véscovi et al.,

1996), bacteria generally reduce the assembly of functional

ribosomes and undergo auto-phosphorylation of the periplasmic

PhoQ. PhoP is phosphorylated to PhoP-P, and PhoP-P specifically

binds to the promoter region of Mg2+ transport-related genes (such

as mgtA, mgtB, and mgtC), and thus activating gene transcription

(Cromie and Groisman, 2010; Yeom et al., 2020; Yeom and

Groisman, 2021). In the case of E. coli, when Mg2+ levels decrease

to levels impairing protein production (below 10 mMMg2+), PhoP-

P promotes the expression of the iraP gene. This increases the

intracellular content of RpoS, reducing the rate of protein synthesis

to maintain essential cellular functions (Yin et al., 2019).

Meanwhile, the expression level of the Mg2+ transporter protein

MgtA is significantly upregulated, facilitating the transport of Mg2+

from the periplasm to the cytoplasm, thereby maintaining stable

cellular Mg2+ concentrations (Park et al., 2018). When PhoQ is

activated by cationic antimicrobial peptides or acidic environmental

conditions, MgtA remains unaffected (Subramani et al., 2016).

Due to environmental stress, the PhoP/PhoQ cascade activates

the transcription of downstream genes, which requires significant
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ATP consumption. The availability of ATP directly correlates with

changes in the abundance of ClpXP (Groisman, 2016). Under

normal conditions, upon binding with adaptor proteins, RpoS is

transported to ClpXP for degradation, rapidly reducing RpoS

levels (Groisman, 2016). The transcription factor RpoS regulates

the expression of numerous bacterial genes, with its synthesis and

degradation tightly controlled, varying in response to cellular

growth stresses (Battesti and Gottesman, 2013; Schellhorn,

2020). In Salmonella enterica serovar Typhimurium (S.

Typhimurium) under low Mg2+ conditions (≤20 mM Mg2+), the

stability of the sigma factor RpoS plays a crucial role in the PhoP/

PhoQ system cascade (Bougdour et al., 2008). PhoP-P promotes

the upregulation of RssB anti-adaptors (IraM/IraP/IraD)

expression (Bougdour et al., 2008). Acting as an intermediary in

regulating RpoS stability, it interferes with RssB-mediated

degradation of RpoS by interacting with RssB. Moreover, the

PhoP/PhoQ cascade promotes the regulation of RpoS stability

by iraP, and high levels of RpoS mediate transcriptional

expression of its dependent genes (such as katE and esrB genes)

(Bougdour et al., 2008).

SlyB, located in the outer membrane, is regulated by PhoP-P

under decreased Mg2+ concentration (such as in Yersinia pestis when

Mg2+ is below 50 mM) or increased osmotic pressure (such as in E.

coli when stimulated with 300 mMNaCl) (Tu et al., 2006; Perez et al.,

2009; Yuan et al., 2017). In addition, SlyB plays a negative regulatory

role in some bacteria on PhoP/PhoQ (Tu et al., 2006; Perez et al.,

2009). For instance, in Salmonella typhimurium, deletion of the slyB

gene leads to decreased transcription levels of genes activated by

PhoP-P. In contrast, such a negative regulatory mechanism is not

observed in E. coli (Lippa et al., 2009). Additionally, SlyB can respond

to outer membrane (OM) biogenesis defects by sensing the

accumulation of lipopolysaccharide (LPS) and periplasmic unfolded

outer membrane proteins (OMPs). The modification of LPS plays a

crucial role in the PhoP/PhoQ cascade (Janssens et al., 2024). LPS

modifications help bacteria reduce the electrostatic repulsion of

phosphorylated residues and releases a certain amount of Mg2+ for

MgtA-related proteins to transfer Mg2+ from the periplasmic space

into the cytoplasm (Janssens et al., 2024). Studies on S. Typhimurium

demonstrate that under lowMg2+ conditions (less than 50 mMMg2+),

the mgtA gene is activated in a PhoP-P-dependent manner,

independent of other environmental stimuli (Yeom et al., 2020).

When PhoQ detects signals like low pH or antimicrobial peptides, the

expression level of the Mg2+ transporter gene mgtA remains

unaffected (Yeom et al., 2020; Groisman et al., 2021). Additionally,

Ca2+ and Mn2+ can serve as ligands for PhoQ with similar

mechanisms of action, neutralizing electrostatic repulsion between

negatively charged residues at the divalent cation binding sites

(Regelmann et al., 2002; Barchiesi et al., 2008). Conversely, as the

concentration of divalent cations increases, the expression levels of

regulatory proteins produced by the PhoP/PhoQ cascade (such as

PgtE, PhoN, MgtA, MgtB, and IraP) gradually decrease (Cho et al.,

2006; Bougdour et al., 2008). When the Mg2+ concentration exceeds

50 mM, a stable bridge forms between the negatively charged outer

and inner membranes, thereby inhibiting the PhoP/PhoQ cascade

reaction (Regelmann et al., 2002).
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Under conditions of low Mg2+ concentration (such as S.

Typhimurium in a minimal medium containing 10 mM Mg2+),

the PhoP/PhoQ system interacts with PmrA/PmrB (Hu et al., 2016).

PmrA serves as the sensor responding to external stimulus signals,

while PmrB acts as the downstream responder to PmrA (Kato et al.,

2003; Paredes et al., 2023). PhoP-P stimulates the transcription of

PmrD, which mediates the phosphorylation of another response

regulator, PmrA. Sufficient PmrA-P is produced to promote the

expression levels of genes such as pmrC, pmrE, pmrHFIJKLM,

collectively modifying the outer membrane LPS (Chen and

Groisman, 2013; Shprung et al., 2021; Paredes et al., 2023;

Janssens et al., 2024). In pmrD deletion strains, it was found that

the expression level of PmrA was significantly reduced compared to

wild-type strains (Cho et al., 2006). Additionally, under high Fe3+

conditions, (such as S. enterica in a minimal medium containing

100 mM Fe3+) activate the PmrA/PmrB system (Bolard et al., 2019).

PmrD also plays a role in promoting the activation of PmrA (Cho

et al., 2006), serving as a crucial bridge between the PhoP/PhoQ and

PmrA/PmrB systems, directly influencing the regulatory

mechanism and abundance of PmrA (Cho et al., 2006). The

above content is briefly described in Figure 2.
Antimicrobial peptides

Antimicrobial peptides are widely sourced from diverse origins,

including animals, plants, microorganisms, and synthetic
Frontiers in Cellular and Infection Microbiology 04
production, serving as integral components of the innate immune

systems in most multicellular organisms (Kato et al., 2012). AMPs

are predominantly concentrated within phagosomes, where they

exert antimicrobial effects in macrophages (Li et al., 2022). AMPs

are rich in positive charges, enabling them to bind with negatively

charged molecules on bacterial surfaces (Yan et al., 2021; Zhu et al.,

2022). They swiftly penetrate lipid membranes, forming pores in

bacterial cell membranes and disrupting membrane permeability,

ultimately causing bacterial cell lysis (Yan et al., 2021; Zhu et al.,

2022). For pathogens, resistance to antimicrobial peptides is crucial

for exerting their toxicity. It has been established that antimicrobial

peptides serve as direct signals for activating the PhoQ histidine

kinase (Ramezanifard et al., 2023). Cationic antimicrobial peptides

competitively bind to the periplasmic domain of PhoQ with

divalent cations, inducing a conformational change in the

cytoplasmic dimer (Ramezanifard et al., 2023). This promotes the

phosphorylation of PhoP and alters the total charge of the lipid A

portion of bacterial lipopolysaccharide (LPS), modifying LPS to

increase bacterial resistance (Bader et al., 2005; Yu and Guo, 2011;

Ramezanifard et al., 2023). The inner membrane protein Mig-14 in

extraintestinal pathogenic E. coli (ExPEC) and S. typhimurium)

play a crucial role within macrophages, significantly enhancing

bacterial resistance against AMPs (Zhuge et al., 2018; Martynowycz

et al., 2019).

In recent years, polymyxins have garnered significant attention

from researchers due to the rapid increase in bacterial antibiotic

resistance (Brodsky et al., 2005; Wang et al., 2020). Polymyxins are
FIGURE 2

Low Mg2+ levels stimulate the activation of the PhoP/PhoQ and PmrA/PmrB systems. During growth under low Mg2+ conditions, the PhoP/PhoQ
system induces transcription of target genes including mgrB, pmrD, pmrHFIJKLM, mgtC, mgtA, and mgtB. The mgrB gene is transcriptionally
upregulated, and the synthesized MgrB membrane protein exerts negative feedback on PhoQ. Activation of the pmrD gene positively regulates the
PmrA/PmrB system. The mgtA and mgtB genes facilitate the transport of extracellular Mg2+ into the cell. Presence of the mgtC, mgtA, and mgtB
genes reduces ATP consumption and decreases protein synthesis rates. Activation of pmrHFIJKLM is involved in LPS modification. In the figure
legend, a circle with “P” denotes a phosphate group, an upward vertical arrow indicates upregulation, a downward vertical arrow indicates
downregulation, and the arrow from MgrB to PhoQ signifies “inhibition”.
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important cyclic peptide antibiotics isolated from Bacillus species

(Gahlot et al., 2024). They disrupt membrane integrity and induce

bacterial outer membrane damage by interacting with negatively

charged surface structures such as LPSs in Gram-negative bacteria

and lipoteichoic acids in Gram-positive bacteria, thereby exhibiting

bactericidal activity (Storm et al., 1977; Brodsky et al., 2005). The

cascade of PhoP/PhoQ system modifying bacterial outer membrane

LPS can lead to increased resistance of bacteria to polymyxins (Guo

et al., 2022). Meanwhile, PhoP-P regulates the expression of PmrD,

which effectively inhibits the dephosphorylation of PmrA-P,

thereby mediating the involvement of the PmrA/PmrB system in

the modification process of LPS (Brodsky et al., 2005; Zhang et al.,

2022). PhoQ promotes the binding of PhoP-P to its downstream

pmrHFIJKLM promoter (also known as arnBCADTEF or pbgPE

operator) through the recognition of polymyxin (Chandler et al.,

2020). Concurrently, the upregulation of PmrD expression

indirectly enhances the cascade reaction of the PmrA/PmrB

system. PmrA also binds to downstream pmrC, pmrE, and

pmrHFIJKLM promoters (Shprung et al., 2012; Poirel et al., 2017;

Paredes et al., 2023). The overexpression products of pmrC, pmrE,

and pmrHFIJKLM are utilized for the synthesis of 4-amino-4-

deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine (PEA)

(Figure 3). These two components modify LPS by increasing the

negative charge on the outer membrane (Hiroshi, 2003), reducing

membrane permeability, thereby limiting the entry of antimicrobial
Frontiers in Cellular and Infection Microbiology 05
peptides and playing a crucial role in promoting polymyxin

resistance (Phan et al., 2017; Liu et al., 2021; Shahzad et al., 2023).

Typically, the regulation of its own and downstream target genes

by the PhoP/PhoQ system to resist external stimuli is called positive

feedback regulation. Negative feedback regulatory mechanisms

collectively contribute in maintaining cellular homeostasis, and

adverse feedback effects also play a crucial role in reducing intra-

population cellular variability (Lippa et al., 2009). The membrane

protein MgrB activation occurs through PhoP phosphorylation

(Lippa et al., 2009). Subsequently, it binds to the periplasmic

domain of PhoQ in order to attenuate its interaction with other

stimulus signals, thereby inhibiting the phosphorylation of PhoP

and establishing a negative feedback mechanism (Lippa et al., 2009;

Poirel et al., 2017). The combination of positive and negative

feedback in the PhoP/PhoQ system enhances bacterial sensitivity

to signals and plays a crucial role in maintaining intracellular

homeostasis (Lippa et al., 2009). When MgrB undergoes

functional changes or is lost, the negative feedback regulation of

PhoPQ is disrupted (Zafer et al., 2019; Kong et al., 2021). Although

the absence of MgrB indirectly affects the activation of PmrD, MgrB

appears to specifically target the PhoQ domain (Zafer et al., 2019).

In PhoQ-deficient strains, MgrB does not exert its inhibitory effect

and does not influence PmrD-mediated resistance to polymyxin B

(Zafer et al., 2019). Recent studies have suggested that the CpxR/

CpxA system may indirectly influence the antibiotic sensitivity of
FIGURE 3

The PhoP/PhoQ and PmrA/PmrB systems synergistically respond to antimicrobial peptide attacks. Activation of the PhoP/PhoQ system promotes
transcription of mgrB, mig-14, pmrD, and pmrHFIJKLM. The mgrB gene is upregulated, and the synthesized MgrB membrane protein exerts negative
feedback on PhoQ. Upregulation of the mig-14 gene supports the synthesis of the inner membrane protein Mig-14. Activation of the pmrD gene
positively regulates the PmrA/PmrB system. Activation of pmrHFIJKLM facilitates the synthesis of L-Ara4N and PEA, which are used for LPS site
modification, enhancing bacterial resistance. In the figure legend, a circle with “P” denotes a phosphate group, and the arrow from MgrB to PhoQ
signifies “inhibition”.
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the PhoP/PhoQ and PmrA/PmrB systems by regulating the activity

levels of MgrB (Wang et al., 2020).
Mildly acidic pH

pH regulates crucial biological processes such as genes

expression, energy generation, and various enzyme functions.

Many bacteria, including E. coli, S. enterica, P. aeruginosa, and

Edwardsiella, have evolved distinct acid resistance mechanisms (Du

et al., 2021; Mallick and Das, 2023). In addition to combating AMPs

pressure within phagosomes, bacteria also face the challenge of

phagosomal acidification that needs to be overcome (Di et al.,

2017). The regulatory response to acid stress is achieved through the

coordinated action of various regulators and regulatory systems

(Krin et al., 2010). Two-component systems (TCS), such as PhoP/

PhoQ, PmrA/PmrB, EvgS/EvgA, SsrA/SsrB, RstA/RstB, and CpxA/

CpxR system consist of multiple components that enable bacteria to

sense acidic environments and respond to acid stress (Perez and

Groisman, 2007; Lin et al., 2017; Sen et al., 2017; Xu et al., 2020; Li

and Yao, 2022; Wan et al., 2024). Deletion of phoPQ in E. coli leads

to reduced expression levels of various acid-regulated proteins,

highlighting the importance of PhoPQ under mildly acidic

conditions. Multiple studies indicate that PhoPQ is an effective

bacterial defense mechanism against phagosomal killing. PhoPQ

directly regulates the lipid A deacylase PagL and the putative

dehydrogenase/reductase (SDR) HlyF (Elhenawy et al., 2016;

Martynowycz et al., 2019). The upregulation of their transcription

levels mediates LPS modification and reshaping of lipid structures

(formation of OMV) (Martynowycz et al., 2019). The periplasmic

sensor PhoQ detects acidic stimuli and initiates a positive

phosphorylation response, thereby activating the transcription of

PhoP and its downstream acid resistance-related genes (Tu et al.,

2006). Moreover, under acidic environmental conditions, PhoQ

does not affect its response to other environmental stimuli (Prost

et al., 2007; Choi and Groisman, 2017; Roggiani et al., 2017). For

example, within macrophage phagosomes, the PhoP/PhoQ system

in bacteria can simultaneously sense stimuli from cationic AMPs

and mildly acidic environmental conditions. This capability reduces

the damage caused by these stimuli to the outer membrane and

maintains normal physiological functions of the bacteria (Han et al.,

2023). PhoQ simultaneously sensing both signals rather than

individually responding to one of them results in a significant

increase in the abundance of PhoP and its downstream target

genes (Prost et al., 2007). Under conditions of high or low

concentrations of Mg2+, low pH can still be sensed by PhoQ

(Prost et al., 2007). Be more specific about the concentration of

Mg2+ and low pH. Research has reported that in S. enterica, low pH

conditions lead to an increase in PhoP-P levels, which indirectly

promotes transcription of pmrD (Perez and Groisman, 2007). This

mediation enhances LPS modification effectiveness under acidic

conditions, thereby strengthening bacterial resistance (Perez and

Groisman, 2007). It can be seen that low pH can cooperate with
Frontiers in Cellular and Infection Microbiology 06
other stimulating conditions to activate PhoQ, but currently, there

is limited research on this aspect.

In S. enterica under weakly acidic conditions (pH 4.9), the UgtL

protein is essential for activation of the PhoP/PhoQ system (Choi

and Groisman, 2017). UgtL interacts with PhoQ, enhancing its

autophosphorylation and increasing the intracellular abundance of

phosphorylated PhoP (Choi and Groisman, 2017). This leads to the

activation of downstream gene transcription by PhoP. However,

under other stimulating conditions, the effect of UgtL on PhoQ is

not significant (Choi and Groisman, 2017). Recent studies have

shown that UgtS, a novel inner membrane protein homologous to

UgtL, is upregulated at the transcriptional level by PhoP

phosphorylation (Salvail et al., 2022). It acts as an antagonist to

UgtL within macrophages of S. Typhimurium (Salvail et al., 2022).

Following activation of the SsrB/SsrA system in response to weak

acid conditions, further enhancement of ugtL gene expression can

increase PhoP phosphorylation (Choi and Groisman, 2020a).

Conversely, PhoP phosphorylation can also increase transcription

of the ssrB gene (Choi and Groisman, 2020a). The PhoP/PhoQ and

SsrB/SsrA systems play crucial regulatory roles in controlling genes

within the (S. Typhimurium) pathogenicity island.

Additionally, the TCS EvgS/EvgA system is also a major player

in acid resistance, activating the expression of numerous acid-

resistant genes (Dan et al., 2021; Zeng et al., 2021). It primarily

branches into two pathways: EvgSA-YdeO and EvgSA-SafA (Zeng

et al., 2021). YdeO is a critical component of glutamate-dependent

acid resistance AR2, whose transcriptional upregulation activates

the expression of the gadE gene, mediating the upregulation of AR2

effector genes (gadABC) (Roggiani et al., 2017). The membrane

protein SafA acts as a connector between the EvgS/EvgA system and

the PhoP/PhoQ system (Schellhorn, 2020). SafA and UgtL are both

short membrane proteins (65 and 132 residues, respectively) that

interact with PhoQ to facilitate network regulation of PhoP/PhoQ

(Choi and Groisman, 2017; Yoshitani et al., 2019). However, they

lack sequence similarity between each other and independently

exert their functions (Choi and Groisman, 2017; Yoshitani et al.,

2019). Through binding with anti-adaptor proteins, RssB reduces

its interaction with RpoS, thereby mediating the upregulation of

RpoS expression levels and ultimately promoting the transcriptional

upregulation of gadE (Xu et al., 2019). As mentioned above, the

MgrB protein acts as a feedback inhibitor in the PhoP/PhoQ system.

The expression of the mgrB gene may be associated with acid

resistance, as its deletion can increase the transcription levels of

iraM, thereby promoting the activation of the acid resistance gene

gadE (Yuan et al., 2017; Xu et al., 2019). Figure 4 depicts a brief

description of the PhoP/PhoQ system responding to acidic

pH stimulation.
Periplasmic redox state

Bacteria encounter oxidative stress responses induced by

reactive oxygen species (ROS) during both natural environments
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and host infection (Hillion and Antelmann, 2015). Bacteria have

evolved complex oxidative stress regulatory networks (Hillion and

Antelmann, 2015). Before oxidative repair can occur, there is a need

for oxidative redox sensors to transmit oxidative information

directly or indirectly between them, thereby further regulating the

expression of relevant proteins (Hillion and Antelmann, 2015).

DsbA, a member of the Dsb family of oxidoreductases involved in

disulfide bond formation, is commonly found in the bacterial inner

membrane and periplasmic space (Eckels et al., 2021). Its

transcriptional regulation depends on the PhoP/PhoQ system

cascade, and it plays a crucial role in disulfide bond synthesis

(Cardenal-Muñoz and Ramos-Morales, 2013; Choi and Groisman,

2016; Eckels et al., 2021). DsbA acts as a potent oxidase involved in

disulfide bond formation, while DsbB re-oxidizes DsbA to form

new disulfide bonds (Kadokura and Beckwith, 2014; Santos-Martin

et al., 2021). The DsbA-DsbB pathway functions as a redox cycle,

continuously driving proper folding and function of substrate

proteins in the bacterial envelope and periplasmic space

(Kadokura and Beckwith, 2014; Santos-Martin et al., 2021).

Studies have shown that the transcription of dsbA and mgrB is

regulated by PhoP-P (Cardenal-Muñoz and Ramos-Morales, 2013).

In E. coli, the absence of dsbA directly leads to the activation of the

PhoP/PhoQ system (Cardenal-Muñoz and Ramos-Morales, 2013).

Meanwhile, MgrB, a membrane protein, has been shown to interact

with PhoQ, exerting a dephosphorylating effect on PhoP and

thereby inhibiting the activation of the PhoP/PhoQ system

(Cardenal-Muñoz and Ramos-Morales, 2013). Furthermore,

deletion of mgrB in dsbA-deficient strains has been found to
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reduce the activation of DsbA by the PhoP/PhoQ system

(Cardenal-Muñoz and Ramos-Morales, 2013). However, there is

currently limited research on the regulatory role of the PhoP/PhoQ

system on the Dsb family of proteins.
Hyperosmotic stress

Osmotic pressure is also among the environmental factors

encountered during microbial growth (Brauer et al., 2023). High

osmotic pressure caused by excessive or insufficient extracellular

solutes that may have detrimental effects on bacteria (Sun et al.,

2021; Brauer et al., 2023). The TCSs are important regulatory

mechanisms in prokaryotic microbes for coping with osmotic

stress. Components involved in osmotic regulation include

OmpR/EnvZ, CpxA/CpxR, and the PhoP/PhoQ system (Yuan

et al., 2017). The OmpR/EnvZ system can perceive stimuli of

both low and high osmotic pressure across the outer membrane

(Yuan et al., 2017). Meanwhile, the CpxAR system, responds to

signals of outer membrane stress, whereas the PhoP/PhoQ system is

specifically associated with high osmotic pressure (Yuan et al.,

2017). During hyperosmotic stress (300 mM NaCl), cells

experience water loss, growth stagnation, and an increase in the

thickness of the lipid bilayer (Poolman et al., 2002). When PhoQ

senses high osmolarity, there is a reorganization of lipid bilayers and

transmembrane domain conformations, promoting the

accumulation of osmoregulatory proteins through PhoP-P (Yuan

et al., 2017). In E. coli, mutants lacking PhoPQ show decreased
FIGURE 4

Weakly acidic pH activates multiple TCSs. Sensing the weakly acidic stimulus, the PhoP/PhoQ, EvgS/EvgA, and SsrA/SsrB systems respond positively.
The PhoP/PhoQ system cascades to enhance transcription levels of genes including ugtL, ugtS, iraP, iraM, and ssrB. Upregulation of ssrB gene
expression enhances the SsrA/SsrB system’s response to weakly acidic stimuli. Activation of ugtL and ugtS genes strengthens the interaction of the
membrane protein UgtL with PhoQ. Upregulation of iraP and iraM gene transcription interferes with RssB protein degradation of RpoS. Within the
EvgS/EvgA system cascade, transcriptional expression of acid resistance genes gadABC is promoted, along with upregulation of the safA gene. This
gene interacts with PhoQ and positively regulates PhoQ. The circle with “P” represents a phosphate group.
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sensitivity to high osmolarity (Xu et al., 2019). PhoP-P mediates the

activation of the iraM gene, whose increased expression prevents

the binding of RssB to RpoS, thereby further enhancing PhoP/PhoQ

activation (Xu et al., 2019). This process regulates the balance of

intracellular osmotic pressure in bacteria (Xu et al., 2019). In E. coli,

through individual knockout studies of phoQ, phoP, envZ, and

ompR, it was found that the PhoP/PhoQ and OmpR/EnvZ systems

independently perceive and respond to osmotic pressure stimuli

(Xu et al., 2019).
Other stimulus signals

Exogenous long-chain unsaturated fatty acids (LCUFAs) are

transported across the bacterial outer membrane and converted into

acyl-CoA derivatives, which serve as substrates for b-oxidation or

membrane phospholipid synthesis (Viarengo et al., 2013; Xia et al.,

2024). LCUFAs inhibit the activity of the PhoP/PhoQ system by

interacting with the PhoQ periplasmic sensor, disrupting its

autophosphorylation activity, and subsequently downregulating

the expression of PhoP-P and its downstream target genes

(Viarengo et al., 2013). However, previous studies have shown

that LCUFAs do not compete for binding sites with other stimuli

(Viarengo et al., 2013; Carabajal et al., 2020). In S. Typhimurium,

the PhoP/PhoQ system is inhibited in response to LCUFAs

stimulation. LCUFAs may bind to Ca2+, aiding in the distinction

between intracellular and extracellular environmental conditions

(Viarengo et al., 2013). Furthermore, as signaling molecules,

LCUFAs play a regulatory role in coordinating bacterial virulence

expression (Xia et al., 2024). For instance, in S. enterica, their

presence can interact with the transcription regulators HilC/HilD,

leading to the expression of the type III secretion system (Xia

et al., 2024).

Lysine acetylation is a typical post-translational modification in

bacteria that can regulate various cellular functions (Weinert et al.,

2013). Acetylation utilizes acetyl coenzyme A as a cofactor,

transferring acetyl groups via acetyltransferases (Weinert et al.,

2013). During aerobic microbial growth, acetate is secreted as

part of metabolic processes. Acetate can be converted into acetyl

coenzyme A, mediating the occurrence of PhoP acetylation During

aerobic microbial growth, acetate is secreted as part of metabolic

processes. Acetate can be converted into acetyl coenzyme A,

mediating the occurrence of PhoP acetylation (Ren et al., 2019).

Research indicates that acetylation plays a crucial role in

modulating PhoP activity, regulating changes in bacterial

virulence (Ren et al., 2016). In S. Typhimurium, PhoP undergoes

acetylation at three lysine residues (K201, K88, and K102), which

inhibits the binding of PhoP-P to downstream gene promoters (Ren

et al., 2016). PhoP K201 undergoes acetylation and deacetylation

mediated by Pat and CobB, while PhoP K88 and PhoP K102 are

acetylated by non-enzymatic acetyl phosphate (AcP) modification

(Ren et al., 2019; Li et al., 2021). Acetylation of PhoP inhibits its

phosphorylation (Ren et al., 2019), resulting in a 2- to 5-fold

reduction in transcriptional activation of PhoP-regulated genes

(Ren et al., 2019).
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The relationship between the PhoP/
PhoQ system and other
TCS components

The two-component systems regulate the activity of their

sensors, response regulators, and subsequent proteins through

feedback mechanisms to maintain the stability of the bacterial

internal environment (Chen et al., 2021; Pina et al., 2021). The

PhoP/PhoQ system, in response to various environmental signals, is

also influenced by components of other two-componentsystems

(Chen et al., 2021; Pina et al., 2021). It interacts with the PmrA/

PmrB, EvgS/EvgA, RstA/RstB, SsrB/SsrA, and CpxR/CpxAsystems

(Wang et al., 2020; Pina et al., 2021). They are interconnected

through intermediate connectors (such as PmrD, SafA, MgrB),

forming a complex regulatory network (Yoshitani et al., 2019;

Yadavalli et al., 2020; Chen et al., 2021). PmrD, known as a

connector protein, is a small regulatory RNA that acts as a

connector and is activated by the PhoP phosphorylation

mechanism (Zafer et al., 2019; Chen et al., 2021). It mediates the

activation pathway of PhoP-PmrD-PmrA (Zafer et al., 2019; Chen

et al., 2021). In many members of the Enterobacteriaceae family, the

regulation of polymyxin resistance is primarily governed by two

two-component systems: PmrA/PmrB and PhoP/PhoQ (Chen

et al., 2021). These systems modulate the modification of bacterial

outer membrane LPS through intricate signal transduction

networks, thereby influencing bacterial resistance to polymyxins

(Chen et al., 2021). Simultaneously, under conditions of magnesium

deficiency, low pH environment, or strong stimulation of PhoQ, the

PmrD protein also functions as a connector (Kox et al., 2000; Luo

et al., 2010). Therefore, the PmrD protein plays a crucial role in the

two-component signal transduction process by facilitating

important information transfer. Moreover, the PhoP/PhoQ

system can also act as an inhibitor of iron uptake proteins,

synergizing with the PmrA/PmrB system to mount an immune

response against high Fe3+ (Cho et al., 2006).

As stated above, SafA serves as a connector between the EvgS/

EvgA and PhoP/PhoQ systems (Yoshitani et al., 2019). When E. coli

is in a weakly acidic environment, it regulates acid resistance gene

networks through the EvgS/EvgA and PhoP/PhoQ systems

(Yoshitani et al., 2019). The sensor kinase EvgS detects low pH

signals and activates the response regulator EvgA, subsequently

initiating a cascade of gene transcription (Yamanaka et al., 2013).

This pathway primarily bifurcates into two branches: one involving

EvgA-YdeO-GadE, where YdeO activates GadE, leading to the

regulation of various decarboxylases and providing resistance to

acid stress (Yamanaka et al., 2013); the other branch includes SafA-

PhoPQ-IraM-RpoS, with the membrane protein SafA acting as a

connector, interacting with PhoQ to initiate a phosphorylation

cascade. PhoP activates IraM to promote an increase in RpoS

levels (Yamanaka et al., 2013). RpoS serves as a central regulator

in response to external stresses, and its regulation of the gadE gene

is a key strategy for combating weakly acidic environments

(Chattopadhyay et al., 2015). Research has shown that E. coli

significantly upregulates the expression levels of gadA, gadB, and
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gadE genes when exposed to low pH (pH 6) values (Hao

et al., 2004).

Similar to SafA, UgtL is a membrane protein essential for

PhoQ-mediated weakly acidic environmental signals, acting

between the PhoP/PhoQ and SsrB/SsrA systems (Choi and

Groisman, 2017; Choi and Groisman, 2020a). Under low pH

conditions, UgtL interacts with the periplasmic domain of PhoQ,

promoting the transcriptional levels of phosphorylated PhoP

(Janssens et al., 2024). Research indicates that PhoP is a key

regulator of the S. Typhimurium. Pathogenicity Island 2 (SPI-2)

gene cluster, facilitating the cascade response of the SsrB/SsrA

system (Shetty and Kenney, 2023; Janssens et al., 2024).

Simultaneously, SsrB can also enhance the transcriptional

expression of phoP and ugtL, thereby augmenting the network

regulatory function of the PhoP/PhoQ system (Choi and Groisman,

2020a; Janssens et al., 2024). However, under low Mg2+ conditions

(10 mMMg2+), the expression of UgtL does not significantly change

despite activation signals for PhoQ (Choi and Groisman, 2017;

Janssens et al., 2024).

Meanwhile, there is cross-regulation of environmental stress

between RstA/RstB and PhoP/PhoQ (Tran et al., 2016). Upon

activation of PhoQ by low Mg2+ concentration (10 mM Mg2+)

and low pH (the pH range is 5.0 to 6.5) signals, PhoP-P binds to the

rstA promoter region, activating rstA gene transcription and

influencing the cascade response of the RstA/RstB system (Tran

et al., 2016). The RstA/RstB system specifically regulates purine

metabolism, iron acquisition, biofilm formation, and tolerance to

acidic environments (Tran et al., 2016). PhoP/PhoQ controls the

function of RstA and mediates the transcriptional level regulation of

acid-resistant genes (i.e. asr gene), curli-regulatory gene (i.e. csgD

gene), and iron transport genes (i.e. feoB gene) (Ogasawara et al.,

2007; Jeon et al., 2008; Tran et al., 2016). Environmental conditions

influence the degree of cross-regulation between PhoQ/PhoP and

other regulatory systems. Overall, the PhoP/PhoQ system does not

solely respond to specific stimuli but is intricately interconnected

with other TCS systems and regulatory networks.
The PhoP/PhoQ system regulates the
transcriptional expression of bacterial
virulence factors

When activated, the PhoP/PhoQ system enables various

bacteria to tolerate stresses such as low Mg2+ (10-50 mM Mg2 +),

antimicrobial peptides, Mildly acidic pH (the pH range is 5.0 to 6.5),

and high osmolarity. Multiple studies in the research process have

shown that the PhoP/PhoQ cascade plays a crucial role in regulating

virulence in various pathogenic bacteria, including Salmonella, E.

coli, Shigella, Yersinia, and P. aeruginosa (Lin et al., 2017;

Martynowycz et al., 2019; Fukuto et al., 2020; Xu et al., 2020;

Cabezudo et al., 2022; Zhang et al., 2022). Deletion of the phoP or

phoQ genes significantly reduces the virulence of these pathogens

(Lin et al., 2017; Martynowycz et al., 2019; Fukuto et al., 2020; Xu

et al., 2020; Cabezudo et al., 2022; Zhang et al., 2022). In Shigella

strains with PhoPQ deletion, a reduced ability to withstand
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environmental stresses was observed, with the key virulence factor

icsA being regulated by the PhoP/PhoQ system (Lin et al., 2017).

SPI-1 and SPI-2 encode two type III secretion systems (T3SS),

which are crucial for the pathogenicity of S. enterica (Jennings et al.,

2017). PhoP/PhoQ mediates virulence by activating downstream

target genes that modulate the expression of SPI-1 and SPI-2 (Lou

et al., 2019). HilA acts as a positive regulator controlling the

expression of SPI-1 genes, coordinated by the combined action of

three AraC-like transcriptional activators: HilC, HilD, and RtsA

(Lou et al., 2019). Studies have shown that S. Typhimurium lacking

the hilA gene exhibit a phenotype equivalent to SPI-1 functionality

deficiency (Lou et al., 2019). HilE is the most critical negative

regulator of the hilA expression (Lou et al., 2019). Under conditions

of low Mg2+ concentration (low magnesium was at 8 mM), PhoP

binds to the hilE promoter, increasing hilE gene expression, which

mediates inhibition of hilA gene expression and indirectly affects

transcription of hilD and rtsA genes (Lou et al., 2019). These

transcriptional changes in these genes highlight the significant

role of PhoP in SPI-1 (Bijlsma and Groisman, 2005; Pérez-

Morales et al., 2017). As mentioned earlier, the PhoP/PhoQ

system activates and enhances the kinase activity of SsrB,

concurrently boosting the transcriptional levels of its downstream

gene cluster SpiCBA (Bijlsma and Groisman, 2005). Additionally,

PhoPQ induces two small RNAs: MgrR and PinT (Westermann

et al., 2016; Kim et al., 2019; Yeom and Groisman, 2021). The

former responds to low Mg2+ levels by upregulating expression to

influence Mg2+ homeostasis (Yeom and Groisman, 2021). The

latter, under mildly acidic conditions, mediates the expression of

SPI-1 and SPI-2 genes by regulating the transcription levels of hilA

and rtsA (Kim et al., 2019). The mgtC gene plays a crucial role in

pathogen virulence, and its transcription levels are upregulated

during activation of the PhoP/PhoQ system, surpassing the

expression levels of the virulence factor CigR (Yeom et al., 2018).

MgtC inhibits ATP synthesis by suppressing the F1Fo ATP

synthase, thereby reducing transcription of ribosomal RNA and

simultaneously protecting PhoP from degradation (Yeom et al.,

2017; Yeom et al., 2018). Previous studies have shown that the S.

Typhimurium genes cigR andmgtC are located within SPI-3 and are

part of the same transcriptional unit under MgtC-inducing

conditions (Yeom et al., 2018). Research has shown that in S.

Typhimurium, when exposed to low Mg2+ (10 mM Mg2+), the

PhoP/PhoQ system indirectly regulates the expression of the pagM

gene by affecting the transcription levels of mgtA and mgtC (Park

et al., 2015). The PagM secreted protein, in turn, mediates a flagella-

independent mode of motility (Park et al., 2015). This process helps

the bacteria adapt to low Mg2+ environmental conditions by

altering their mode of movement.

The H-NS nucleoid protein is a common negative regulatory

protein that readily binds to AT-rich sequences, leading to silencing

of associated genes (Choi and Groisman, 2020b). In S.

Typhimurium, the SPI gene clusters exhibit higher AT content in

their promoter sequences compared to ancestral genes, enhancing

the pronounced negative regulatory role of H-NS, which plays a

crucial role in virulence expression (Hu et al., 2019). Upon

activation of the PhoP/PhoQ system, the transcription levels of

downstream target genes, ssrB and slyB are upregulated. PhoP
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interacts with SsrB and SlyB to counteract H-NS-mediated silencing

(Choi and Groisman, 2020a). Under weakly acidic conditions, the

abundance of H-NS is significantly lower compared to neutral pH

states (Krin et al., 2010; Choi and Groisman, 2020b). This suggests

that activation of the PhoP/PhoQ system plays a crucial regulatory

role in relieving H-NS-mediated gene silencing mechanisms.

Previous studies have found that the PhoP/PhoQ system

negatively regulates bacterial flagella (Adams et al., 2001; Janssens

et al., 2024). When acid-adapted Salmonella (pH 5.0) is exposed to

pH 3.0 conditions, the transcription level of the fliC gene is

significantly downregulated, inhibiting flagella expression (Adams

et al., 2001). This may help Salmonella avoid excessive activation of

the host immune system (Adams et al., 2001). Overall, the PhoP/

PhoQ system influences bacterial virulence systems directly or

indirectly, adjusting the expression of relevant genes under

different stimulus signals to maintain bacterial internal

environmental stability.
Summary and outlook

Bacteria perceive different ecological niches within the host to

evade attacks from the host immune system by regulating the

expression levels of relevant genes. The PhoP/PhoQ system is the

most extensively studied TCS to date, and it is highly conserved

across both pathogenic and non-pathogenic bacteria. The PhoP/

PhoQ system senses external environmental stimuli through the

dual-function membrane protein PhoQ, which, upon

phosphorylation, transfers phosphate groups to the response

regulator, PhoP. PhoP then regulates the abundance of

downstream target genes in response to external environmental

signals until the components return to stable levels upon restoration

of bacterial physiological balance (Xu et al., 2019). The gene

products obtained at different levels during the cascade reaction

of the PhoP/PhoQ system integrate into the regulatory circuit,

influencing changes in closely associated regulatory proteins and

phenotype modifications (Choi and Groisman, 2020a). As

mentioned earlier, the cascade reaction of PhoP/PhoQ reduces

the modification of LPS, decreasing the overall negative charge of

the bacterial membrane. This enhances bacterial tolerance to

extreme environments, including increased resistance to

antibiotics, stabilizing cytoplasmic pH, and releasing Mg2+ ions,

among other effects. The interaction of the PhoP/PhoQ system with

other TCS systems forms a complex regulatory network, collectively

controlling bacterial cellular activities and virulence. Theoretically,

this strategy establishes resilience and infection capabilities that can

harm host cells without negative effects on the bacteria.

In summary, the PhoP/PhoQ system regulates the

physiological, biochemical, antibiotic resistance, and virulence

characteristics of bacteria across various environments. Moreover,
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it exhibits intricate synergistic interactions with other components

of the TCS regulatory network. Although the PhoP/PhoQ system

has received considerable attention in the past, research on its signal

transduction mechanisms has primarily focused on enteric

pathogens, with studies in other bacteria being relatively scarce.

Studying the specific mechanisms of action of the PhoP/PhoQ

system in other pathogenic or non-pathogenic bacteria, as well as

its interactions with other regulatory networks, contributes to the

development of effective antimicrobial therapies and mitigates the

negative impacts of antibiotic use.
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