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Role of E-cadherin in epithelial
barrier dysfunction: implications
for bacterial infection,
inflammation, and
disease pathogenesis
Peter Lialios1,2 and Stella Alimperti 1,2*

1Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC,
United States, 2Center for Biological and Biomedical Engineering, Georgetown University, Washington,
DC, United States
Epithelial barriers serve as critical defense lines against microbial infiltration and

maintain tissue homeostasis. E-cadherin, an essential component of adherens

junctions, has emerged as a pivotal molecule that secures epithelial homeostasis.

Lately, its pleiotropic role beyond barrier function, including its involvement in

immune responses, has becomemore evident. Herein, we delve into the intricate

relationship between (dys)regulation of epithelial homeostasis and the versatile

functionality of E-cadherin, describing complexmechanisms that underlie barrier

integrity and disruption in disease pathogenesis such as bacterial infection and

inflammation, among others. Clinical implications of E-cadherin perturbations in

host pathophysiology are emphasized; downregulation, proteolytic phenomena,

abnormal localization/signaling and aberrant immune reactions are linked with a

broad spectrum of pathology beyond infectious diseases. Finally, potential

therapeutic interventions that may harness E-cadherin to mitigate barrier-

associated tissue damage are explored. Overall, this review highlights the

crucial role of E-cadherin in systemic health, offering insights that could pave

the way for strategies to reinforce/restore barrier integrity and treat

related diseases.
KEYWORDS

E-cadherin, epithelial barrier, infection, bacteria, inflammation, homeostasis,
disease pathogenesis
1 Introduction

The epithelial barrier is essential for maintaining tissue homeostasis and protecting

against exogenous insults. Loss of barrier function results in severance of the intricate

structural framework of the epithelia and increased susceptibility to noxious stimuli such as

bacterial infection and inflammation (Groeger andMeyle, 2015; Rogers et al., 2023). Bacterial
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pathogens are known to exploit transcytosis, as well as other uptake

mechanisms like internalization or paracytosis (intercellular passage),

to penetrate epithelial and other tissue barriers. These strategies

enable them to reach underlying niches or access the intra- and

sub-epithelial spaces, facilitating their spread (Kaper et al., 2004;

Edwards and Massey, 2011; Nikitas et al., 2011; Zhu et al., 2024). To

this end, it is essential to elucidate cellular phenomena and

understand the key regulatory events that govern the integrity of a

well-controlled epithelial barrier. This may pave the way for new
Frontiers in Cellular and Infection Microbiology 02
therapeutic avenues that will enable the development of targeted

interventions to mitigate barrier impairment and, ultimately, restore

its functionality in pathophysiological conditions.

The epithelial barrier acts as a physical and immunological

barrier, separating the internal milieu from the external

environment. It represents a composite network of cell adhesion

molecules (CAMs), such as adherens junctions (AJs), tight

junctions (TJs), and desmosomes, which collectively maintain the

epithelial polarity and barrier microarchitecture (Figure 1) (Adil
FIGURE 1

Schematic structure of E-cadherin. The extracellular domain contains five 110 amino acids repeated regions (EC1-EC5), in which the Ca2+ ions work
as inter-domain linkers to stabilize the adhesive interactions between adjoining cells. The single-pass transmembrane region of E-cadherin
transverses the phospholipid bilayer and facilitates the interactions of the extracellular domains with the cytoplasmic domain. The cytoplasmic tail
consists of roughly 150 amino acids and regulates downstream signaling pathways. Cadherins initially form cis-dimers on the same cells, followed by
the formation of trans-dimers with cadherins on adjacent cells, establishing adhesion across the paracellular space. The three domains are involved
in the epithelial barrier function via formation and stabilization of AJs. JAM, junctional adhesion molecule; ZO-1, zonula occludens-1; b-cat, b-
catenin; a-cat, a-catenin; p120ctn, p120 catenin; EC1-5, extracellular cadherin repeats 1-5.
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et al., 2021). Infectious agents dissociate these junctional complexes

and destabilize the selective permeability and structural coherence,

facilitating barrier breach and pathogen invasion into the interstitial

tissues (Groeger and Meyle, 2015; Rogers et al., 2023).

The formation of AJs requires the presence of Ca2+-dependent

transmembrane adhesion glycoproteins, named cadherins. They act

more than mere cell glue designated to serve mechanical cohesion

between adjacent cells; they orchestrate junctional assembly and

inter-junctional communication, and participate in signaling

pathways that regulate cellular behavior, such as proliferation,

migration, differentiation, epithelial repair, wound healing, or

even morphogenesis (Stockinger et al., 2001; Gumbiner, 2005;

Halbleib and Nelson, 2006; Van Roy and Berx, 2008, 2008; Van

Den Bossche et al., 2012). The most well-studied cadherins are the

classical vertebrate cadherins, which have been named based on the

tissue in which they are expressed. Neuronal cells mainly express N-

cadherin (CDH2), while epithelial cells highly express E-cadherin

(CDH1) (Rajwar, 2015; László and Lele, 2022; Kadeh et al., 2023). P-

cadherin (CDH3) has been found in breast tissue, skin, and hair

follicles, as well as lungs and placenta among others (Vieira and

Paredes, 2015). In addition, VE-cadherin (CDH5) is specifically

expressed in vascular endothelial cells, where it controls their

behavior during angiogenesis (Nan et al., 2023), while K-cadherin

(CDH6) is primarily found in the kidney (Cho et al., 1998; Thedieck

et al., 2005) and R-cadherin (CDH4) mainly in the brain (Martinez-

Garay et al., 2016). Interestingly, it has been found that E-cadherin

is also present in immune cells, such as dendritic cells (DCs),

macrophages, and T-cells (Riedl et al., 2000; Van Den Bossche

et al., 2012; Van Den Bossche and Van Ginderachter, 2013;

Charnley et al., 2023; Davies et al., 2024). E-cadherin is a type-I

cadherin encoded by the CDH1 gene on chromosome 16q22 (Van

Roy and Berx, 2008). The E-cadherin molecule is composed of three

distinct structural domains, namely an extracellular domain,

consisting of 5 repeated regions (EC1-EC5), which engages in

homotypic (cis- and trans-dimers) and heterotypic cell-cell

interactions, a single-pass transmembrane domain, and a

cytoplasmic tail which regulates downstream signaling

(Gumbiner, 2005; Hulpiau and Van Roy, 2009). The domain

structure of E-cadherin is illustrated in Figure 1.

This review aims to provide a comprehensive overview of E-

cadherin as a major junctional molecule with respect to tissue

homeostasis and its dysregulation in the etiopathogenesis of

bacterial infections, inflammatory, and other conditions. Initially,

we report the molecular underpinnings of E-cadherin-directed cell-

cell adhesion and relevant signaling pathways in homeostasis. Next,

we describe E-cadherin-mediated mechanisms in bacterial

infections, inflammation, and other diseases by delving into

alterations in E-cadherin expression, localization, and

functionality. Furthermore, we highlight the clinical implications

of epithelial barrier dysfunction and the mechanistic and

immunological involvement of E-cadherin in disease across

various tissues, emphasizing numerous infection examples and

inflammation models. Lastly, we examine potential therapeutic

strategies targeting junctional compounds and E-cadherin to

enhance and restore epithelial barrier integrity and tackle infection.
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2 Homeostatic regulation of the
epithelial barrier via E-cadherin

E-cadherin plays a vital role in tissue homeostasis by

contributing to selective, semi-permeable barrier structure

features via sealing the intercellular spaces between the cells and

promoting the formation of AJs (Wheelock and Johnson, 2003;

Takeichi, 2014). Herein, we aim to report E-cadherin-mediated

mechanisms that are involved in the barrier assembly and are

responsible for maintaining epithelial homeostasis (Figure 2).
2.1 E-cadherin/b-catenin/actin complex

The canonical pathways involved in AJ assembly demonstrated

the E-cadherin clustering controlled by the intracellular tail and the

coupled actin cytoskeleton (Yap et al., 1998; Wu et al., 2015; Biswas

and Zaidel-Bar, 2017). Specifically, the C-terminus of the

intracellular tail interacts with a group of adaptor proteins called

armadillo catenins, namely b-catenin and plakoglobin (g-catenin),
which anchor E-cadherin to the peri-junctional actin cytoskeleton.

g-Catenin is primarily localized at desmosomes and AJs, interacting

with desmogleins/desmocollins and cadherins, respectively, and can

compensate for b-catenin loss at AJs without disrupting

desmosomal integrity (Diane Wickline et al., 2013). The E-

cadherin-catenin complex -known as CCC- is composed of b-
catenin (or plakoglobin), which directly tethers via its central

Armadillo domain to the cytosolic tail of E-cadherin and via the

N-terminal domain to a-catenin, which in turn links the compound

to the actin filaments (F-actin) (Pećina-Šlaus, 2003; Kobielak and

Fuchs, 2004; Hulpiau and Van Roy, 2009). The binding of a-catenin
to F-actin requires a-catenin homodimers, whereas a-catenin binds

to E-cadherin/b-catenin complex in its monomeric form. EPLIN

(i.e., epithelial protein lost in neoplasm) represents the missing link

between the CCC and the apical circumferential actin belt, coupling

cortical actin filament bundles to the monomeric a-catenin of the

assembly (Abe and Takeichi, 2008).
2.2 E-cadherin/p120ctn complex

A highly conserved sequence in the juxtamembrane domain of

E-cadherin is responsible for coupling with another catenin, named

p120 catenin (p120ctn), whose binding is fundamental for the AJ

assembly (Thoreson et al., 2000; Van Roy and Berx, 2008). p120ctn

acts as a master regulator of E-cadherin’s cell surface delivery and

functional integrity by inhibiting internalization pathways that

promote E-cadherin degradation and facilitating plasma

membrane recycling (Davis et al., 2003). It has been reported that

the juxtamembrane region primarily mediates the lateral clustering

of cadherin molecules, further reinforcing the role of p120ctn as a

key contributor to cluster formation and adhesion strengthening

(Yap et al., 1998). Moreover, p120ctn is an important mediator for

the Rho-associated protein kinase (ROCK)/E-cadherin interaction.
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ROCK is a serine-threonine kinase involved in the regulation of

cadherin function. Constitutive activation of ROCK leads to

disruption of AJs, whereas pharmacological inhibition of ROCK

promotes AJ stability (Wójciak-Stothard et al., 2001; Grothaus

et al., 2018).
2.3 Post-translational events

Post-translational processing of E-cadherin, most prominently

including phosphorylation, O-glycosylation, N-glycosylation, and

proteolytic cleavage, has been extensively described to dictate its

function and redistribution dynamics. Serine phosphorylation of

the b-catenin-binding domain, for instance, has been reported to be

constitutive to cadherin-catenin complex formation and

stabilization by increasing b-catenin binding affinity and

regulating E-cadherin’s biosynthesis and trafficking (McEwen

et al., 2014). Effector phosphorylation of p120ctn and b-catenin
Frontiers in Cellular and Infection Microbiology 04
also seem to -inversely- contribute to the E-cadherin/catenin

association and partly control E-cadherin’s surface stability

(Roura et al., 1999; Fukumoto et al., 2008). Cytoplasmic O-

glycosylation (O-GlcNAc) of newly synthesized E-cadherin

regulates its secretory path, causing retention in the endoplasmic

reticulum and cell surface transit arrest. In its absence, unimpeded

export to the membrane delays apoptosis and rescues E-cadherin

recruitment to adhesion sites (Geng et al., 2012). Ectodomain N-

glycosylation constitutes the most prevalent post-translational

modification, boasting four potential sites (two in EC4 and two in

EC5) in the extracellular domain of human E-cadherin. In addition

to E-cadherin folding and trafficking, N-glycan remodeling can be

instrumental to functional junction organization, with the extent of

N-glycan branching/complexity negatively associating with

adhesive strength (Pinho et al., 2011). Another functionally-

impairing post-translational event E-cadherin can undergo is

proteolytic truncation by endogenous proteases, which more

prominently results in the release of soluble E-cadherin (sE-cad)
FIGURE 2

Schematic representation of the E-cadherin interactions and homeostatic mechanisms involved in the regulation of the epithelial barrier of epithelial
barrier. i) E-cadherin/b-catenin/actin complex, ii) E-cadherin/p120ctn complex, iii) E-cadherin post-translational modifications, iv) Tight junctions
and E-cadherin, v) E-cadherin and Wnt pathways, vi) E-cadherin and Hippo pathway, collectively play a critical role in tightly regulating cellular
behavior and intercellular communication. Intricate modulation of the AJs integrity, downstream signaling, and overall epithelial barrier function
preserves homeostatic conditions in the host tissue. b-cat, b-catenin; a-catenin, a-catenin; p120ctn, p120 catenin; ZO-1, zonula occludens 1; GSK-
3b, glycogen synthase kinase-3 beta; CK1, casein kinase 1; APC, anaphase-promoting complex; b-TrCP, beta-transducin repeats-containing protein;
YAP, yes-associated protein; TAZ, transcriptional co-activator with PDZ-binding motif; LATS1/2, large tumor suppressor kinase 1/2; Tead,
transcriptional enhanced associate domain; TCF, T-cell factor.
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fragments, as discussed in more detail below. sE-cad is

approximately 80 kDa in size, generated by a-secretase cleavage

on the extracellular face of the plasmamembrane, which is catalyzed

by various proteases, including matrix metalloproteinases (MMPs),

members of a disintegrin and metalloproteinase (ADAMs) family,

plasmin, and kallikrein 7 (David and Rajasekaran, 2012). The shed

sE-cad fragment can diffuse into the extracellular environment,

where it retains the ability to form homophilic bonds and pair with

intact, full-length molecules, interfering with the function of

adhesion-competent E-cadherin. Moreover, it can chemotactically

anchor E-cadherin on migrating cells and upregulate MMPs,

thereby further destabilizing epithelial integrity (Samuels et al.,

2023). Ectodomain shedding disrupts the intact E-cadherin

junctional complexes, with circulating sE-cad harboring biological

effect amplification in the context of proliferative and survival/

apoptotic resistance signals, migratory and invasive abilities due to

loss of barrier function, inflammation, and tumorigenesis

(Grabowska, 2012). The remaining membrane-bound C-terminal

fragment of E-cadherin (38 kDa, E-cad/CTF1) can then be cleaved

by a g-secretase/presenilin-1/2, injecting a 33-kDa E-cad/CTF2

fragment into the cytosol. This unleashes b-catenin which can

promote the oncogenic canonical Wnt pathway, with E-cadherin

sheddase matrilysin (MMP-7) among the transcriptional targets.

Also, p120ctn remains E-cadherin-bound and can mediate E-cad/

CTF2 translocation to the nucleus and subsequent DNA binding,

where E-cad/CTF2 modulates p120ctn-Kaiso-mediated pathway to

suppress apoptosis (Ferber et al., 2008). In addition to

fragmentation into CTF1 and CTF2, generation of a 29kDa E-

cad/CTF3 by caspase-3 has been observed in apoptosis and cancer

progression (Craig and Brady-Kalnay, 2011; Yang et al., 2017).
2.4 E-cadherin and tight junctions (TJs)

Tungal et al. demonstrated that E-cadherin is crucial for

maintaining epithelial barrier function in vivo by regulating TJ

formation and stability. Specifically, E-cadherin coordinates the

trafficking and positioning of TJ proteins, facilitating the localized

integration of key molecules such as the cytoplasmic scaffolding

zonula occludens 1 (ZO-1) and claudins, a family of integral

membrane proteins that form TJs (Tunggal et al., 2005; Maiers

et al., 2013). The communication between AJs, mediated by E-

cadherin, and TJs plays a vital role in establishing inter-junctional

co-dependence and directing the initial architecture of the epithelial

barrier (Ando-Akatsuka et al., 1999; Lázaro et al., 2002; Tunggal

et al., 2005).

The functional coupling of AJs and TJs is essential for the

maturation of AJs and the early development of TJs. Early studies

found that ZO-1 mobilization to the plasma membrane is mediated

by catenins, enabling ZO-1 to co-distribute in areas segregated by E-

cadherin (Rajasekaran et al., 1996). ZO-1, a key marker of TJs, is

closely associated with AJs and the cadherin-catenin complex,

transiently binding with a-catenin in nascent junctions (Maiers

et al., 2013; Campbell et al., 2017). Knockdown of E-cadherin using

siRNA has been shown to reduce ZO-1 expression and lower
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epithelial resistance in bronchial epithelial cells (Heijink et al.,

2010). Additionally, loss of E-cadherin disrupts the organization

of ZO-1 and F-actin, as E-cadherin-dependent mechanical circuits

play a role in integrating force transduction and signaling pathways

that drive junctional polarization necessary for functional epithelial

barrier formation (Rübsam et al., 2017).

E-cadherin also regulates epidermal growth factor receptor

(EGFR) activity and junctional tension to inhibit premature TJ

complex formation in lower layers, while promoting TJ stability and

cortical stiffness in apical layers. In E-cadherin knockout models,

occludin—a transmembrane protein essential for TJs—and its

cytosolic connector ZO-1 exhibit a more punctate or discontinuous

pattern at cellular interfaces, explaining why TJ barrier function is

compromised in the absence of E-cadherin (Rübsam et al., 2017).

Moreover, TJ proteins can influence E-cadherin regulation. For

instance, introducing mutated ZO-1 into a ZO-null cell line inhibits

the maturation of AJs during epithelial polarization (Ikenouchi

et al., 2007). Additionally, overexpression of claudin-1 has been

shown to drive the transcriptional downregulation of E-cadherin

through the transcriptional repressor ZEB-1 (Singh et al., 2011). In

contrast, overexpression of claudin-7 upregulates E-cadherin

expression and enhances cell-cell adhesion, whereas E-cadherin

expression does not appear to induce an increase in claudin-7 (Lioni

et al., 2007).
2.5 E-cadherin and Wnt pathways

The Wnt signaling pathways are evolutionarily conserved

cellular communication networks that play a key role in both

normal physiological and disease states. Several studies have

reported that Wnt signaling governs processes such as cell fate

determination, differentiation, proliferation, migration, and

polarity. The pathway is divided into two main branches: the

canonical Wnt/b-catenin pathway, which involves the

stabilization and nuclear translocation of b-catenin, and the non-

canonical Wnt pathways, such as the planar cell polarity (PCP)

pathway, which operate independently of b-catenin (Komiya and

Habas, 2008; Katoh, 2017; Flores-Hernández et al., 2020). Of note,

E-cadherin/b-catenin membranous interaction and colocalization

sequesters b-catenin to the membrane, inhibiting Wnt activation

and epithelial-to-mesenchymal transition (EMT) by averting

nuclear translocation of b-catenin. The Wnt/b-catenin signaling

culminates in the nucleus with the formation of the TCF/LEF

complex, initiating the transcription of Wnt target genes. Loss of

E-cadherin results in downregulation of membrane b-catenin
binding, whereas nuclear mutant b-catenin induces EMT,

dysregulating the assembly of TJs and AJs (Kim et al., 2019).

Also, E-cadherin/b-catenin interaction maintains low levels of

cytoplasmic b-catenin fraction by inhibiting Wnt signaling

(Stockinger et al., 2001). In reverse, the absence of Wnt stimulus

empowers b-catenin phosphorylation by a destruction complex

consisting of APC, Axin, GSK3b, and CK1, which marks b-
catenin for degradation by the proteasome (Stamos and Weis,

2013). b-catenin´s growth-inducing transcriptional activity can
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thus be counteracted by E-cadherin, which in turn induces cell cycle

arrest or, more pronouncedly, apoptosis (Stockinger et al., 2001).
2.6 E-cadherin and Hippo pathway

The Hippo pathway is another evolutionarily conserved signaling

network that regulates cell-cell communication and tissue homeostasis

across species. It integrates environmental signals, including cellular

polarity, contact inhibition, soluble factors, and mechanical stimuli, to

regulate key biological processes such as cell proliferation, organ/tissue

size, development, and regeneration (Cheng et al., 2020; Ahmad et al.,

2022; Fu et al., 2022; Nita and Moroishi, 2024; Zhong et al., 2024). It

primarily regulates the phosphorylation of Yes-associated protein

(YAP) and transcriptional co-activator with PDZ-binding motif

(TAZ) by LATS1/2 kinases at multiple serine residues. This

phosphorylation facilitates the binding of 14-3-3 proteins, resulting

in the retention of YAP/TAZ in the cytoplasm, preventing their

nuclear translocation and transcriptional activity, and potentially

leading to their proteolytic degradation in the cytosol (Cheng et al.,

2020; Zhong et al., 2024). Upon LATS1/2 inactivation,

unphosphorylated YAP/TAZ translocate to the nucleus, where it

functions as a transcriptional co-activator by associating with the

transcriptional enhanced associate domain (TEAD) transcription

factor family (Kaan et al., 2017; He et al., 2021). The resulting YAP/

TAZ-TEAD complex facilitates the transcriptional activation of

numerous target genes, including those encoding critical junctional

proteins such as desmogleins and E-cadherin. Inhibition of YAP–

TEAD interactions lead to a substantial decrease in both YAP and

phospho-YAP levels, significantly impairing cell–cell junction

integrity and resulting in the disassembly of AJs and desmosomes

(Ahmad et al., 2022). Kim et al. demonstrated that cell-cell adhesion,

mediated by homophilic binding of E-cadherin, contributes to YAP

inactivation (Kim et al., 2011). Perturbing the E-cadherin/a-catenin
complex reduces YAP phosphorylation and increases YAP nuclear

accumulation and activity (Kim et al., 2011; Lamar et al., 2012).

Studies have shown that the regulation of Hippo pathway kinases and

the sequestration of YAP occur at AJs, where several Hippo pathway

components are localized (Pan et al., 2018; Ma et al., 2020; Ahmad

et al., 2022).

Several studies have also established a connection between Hippo

signaling and cell-cell contact through the regulation of TJs, including

ZO proteins (Kaan et al., 2017; Ahmad et al., 2022; Guo et al., 2022).

Specifically, AMOTL2, a member of the Angiomotin (AMOT) family

of proteins, binds directly to the WW domains of YAP via its PPxY

motifs, sequestering YAP at TJs and preventing its nuclear activity. In

addition, it has been shown that AMOTL2 interacts with LATS2,

permitting the recruitment of upstream Hippo components, such as

SAV1, to the junctional complex. The interaction between AMOTL2

and LATS2 also facilitates LATS2-mediated YAP phosphorylation,

cytoplasmic retention, and inactivation (Paramasivam et al., 2011;

Zhao et al., 2011). Intriguingly, the scaffolding functions of AMOTL2

have been described beyond YAP and LATS2, including multiple

other junctional proteins like ZO-1 and b-catenin, thus contributing
to maintenance of TJ integrity and epithelial polarity (Zhao et al.,

2011; Kim et al., 2021). Hippo and canonical Wnt have been reported
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to engage in crosstalk, particularly through the YAP effector; YAP/

TAZ has been described as part of the b-catenin destruction complex

and can modulate the Wnt/b-catenin response and b-catenin
degradation; in Wnt-OFF cells, YAP/TAZ cytoplasmic sequestration

as part of the destruction complex, inhibitsWnt/b-catenin signaling in
the cytoplasm. Conversely, in nucleus, YAP/TAZ can contribute to b-
catenin-mediated transactivation of genes, with the two co-activators

complexing and b-catenin/YAP/TAZ/TEAD co-regulating target

genes. Finally, YAP can be a Wnt/b-catenin target gene, with its

expression being a driver of proliferation in cancer cells (Konsavage

and Yochum, 2013; Sileo et al., 2022).
3 E-cadherin regulation in
bacterial infections

E-cadherin is considered the gatekeeper of the epithelial barrier,

which stands at the frontline of mechanical and immune defense

against pathogens. Given the biological complexity of inflammation in

epithelial tissues and the range of its clinical manifestations, mucosae

and other membranes play a crucial role as the first line of defense

against bacterial invasion (Haq et al., 2019; Yang and Yan, 2021;

Chegini et al., 2023). Specifically, E-cadherin has been implicated in

microbial invasion and dissemination during infectious diseases which

breach the epithelial barrier. Herein, we report the direct E-cadherin-

driven interactions with infectious agents (Tables 1, 2) as well as

pathogen-induced signaling and expression dysregulation, which are

involved in the etiopathogenesis of bacterial infections (Figure 3).
3.1 Bacterial toxins and pathogen-induced
host proteases

E-cadherin cleavage to an 80 kDa soluble fragment is one of the

primary mechanisms known to provoke functional loss of E-

cadherin. The cleavage of E-cadherin is more commonly

attributed to matrix metalloproteinases, including MMP-3

(stromelysin-1), MMP-7 (matrilysin), MMP-9 (gelatinase B or

gelatinase type IV), as well as certain ADAMs such as ADAM10

(adamalysin) (Noë et al., 2001; David and Rajasekaran, 2012;

Boukhedouni et al., 2020; Tao et al., 2021; Im et al., 2022).
3.1.1 ADAM-mediated pathways
Elevated sE-cad levels have been reported in sera of Helicobacter

pylori (H. pylori)-positive patients (O’Connor et al., 2011). H. pylori

infection, the causative agent of peptic ulcers and one of the leading

risk factors of gastric cancer, was found to trigger significant E-

cadherin ectodomain shedding, potentially employing host’s native

sheddases, such as ADAM10 or less pronouncedly, ADAM19, as

executors (Schirrmeister et al., 2009). Loss of full-length E-cadherin

can occur irrespective of H.pylori virulence factor CagA and without

transactivating b-catenin transcriptional signaling, while disassembly

of AJ complexes rapidly follows disruption of a-catenin-E-cadherin
interaction and subsequent disassembly of the E-cadherin/b-catenin/
p120ctn complex from the actin cytoskeleton (Weydig et al., 2007).
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1506636
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Lialios and Alimperti 10.3389/fcimb.2025.1506636
TABLE 1 Major pathogens, secreted proteases and host sheddases induced by bacterial infection, allow proteolytic degradation of E-cadherin,
disruption of the epithelial barrier, and ultimately bacterial invasion and dissemination.

Mechanism Pathway Pathogen
E-cadherin Effects
or Interactions

References

(i) Bacterial
Toxins and
Host Proteases

ADAM-mediated
pathways

Helicobacter pylori

E-cadherin cleavage and ectodomain
shedding, induced calpain-mediated
cleavage, elevated sE-cad levels, a-
catenin-E-cadherin
interaction disruption

(Weydig et al., 2007; Schirrmeister
et al., 2009; O’Connor et al., 2011)

Pseudomonas aeruginosa

ADAM10-mediated E-cadherin
shedding via toxins, ExoA-
stimulated calcium ion conduit,
ExlA activating ADAM10

(Reboud et al., 2017; Aljohmani
et al., 2022)

Serratia spp.
ShlA activating ADAM10 and E-
cadherin cleavage

(Reboud et al., 2017)

Staphylococcus aureus
Hla activating ADAM10 and E-
cadherin cleavage

(Inoshima et al., 2011; Von Hoven
et al., 2016)

Clostridium perfringens

ADAM10-promoted E-cadherin loss,
increased permeability, intracellular
vesicles containing digested
E-cadherin

(Seike et al., 2019)

MMP-mediated
pathways

Helicobacter pylori

Upregulation of MMP-9 and MMP-
7, E-cadherin ectodomain shedding,
EMT induction, MMP-7 induction
via RhoA and NF-kB activation

(Noë et al., 2001; Gooz, 2003;
Wroblewski et al., 2003; Bergin
et al., 2004; McCaig et al., 2006;
Kubben et al., 2007; Lee et al., 2007;
Symowicz et al., 2007; Yin
et al., 2010)

Leptospira spp.

LRR20 interacting with E-cadherin,
activating MMP-7, degradation of
cell-surface E-cadherin, promoting
NF-kB pathway activation

(Hsu et al., 2021)

Pseudomonas aeruginosa
High MMP-9 expression and
enzyme activity in infected cornea

(McClellan et al., 2006)

Staphylococcus aureus
Upregulated MMP-9 and MMP-7 in
nasal mucosa, mid-ear epithelia, and
during septic arthritis

(Gjertsson et al., 2005; Wang et al.,
2010; Park et al., 2012; Tsai
et al., 2018)

Streptococcus pneumoniae

PLY-driven E-cadherin cleavage,
PMN recruitment, bacterial
translocation, complete ablation of
E-cadherin by PFO or ILY

(Xu et al., 2023)

Chlamydia spp., Porphyromonas gingivalis Excess MMP-9 activity
(Ault et al., 2002; Jotwani et al.,
2010; Paolillo et al., 2012)

Coxiella burnetii
Augmented MMP-7 and MMP-9
production, higher sE-cad levels
in sera

(Krajinović et al., 2012; Jansen et al.,
2017; Mezouar et al., 2019)

Miscellaneous
Host Proteases

Staphylococcus aureus

Calpain-mediated E-cadherin
cleavage, cytoskeleton
disorganization via RhoA/ROCK/
MLC, Spa mediates the pathogen’s
paracellular penetration

(Soong et al., 2011)

Streptococcus oralis, Candida albicans

Calpain-mediated E-cadherin
cleavage, synergistic effect promoting
systemic dissemination and
biofilm formation

(Xu et al., 2016)

Helicobacter pylori
Caspase-3-mediated E-cadherin
degradation into intracellular
fragments, apoptosis induction

(Yang et al., 2017)

(Continued)
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H. pylori can also induce calpain-mediated cleavage, resulting

in the production of a 100 kDa truncated E-cadherin form,

independent of CagA and VacA, but rather via activation of TLR2

by a putative proteinaceous H. pylori surface component.

Cytoplasmic translocation of b-catenin and internalization of E-

cadherin ensues, with intracellular redistribution of E-cadherin

away from cell-contact sites (O’Connor et al., 2011).

Pseudomonas aeruginosa (P. aeruginosa) infection was recently

shown to modulate epithelial permeability by triggering exosomal

ADAM10-mediated E-cadherin shedding activity via its secreted

toxin repertoire and an Exotoxin A (ExoA)-stimulated calcium ion

conduit intracellularly (Aljohmani et al., 2022). Likewise, other
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pore-forming toxins, such as P. aeruginosa-derived exolysin

(ExlA), Serratia marcescens-derived ShlA, and Staphylococcus

aureus a-toxin or a-hemolysin (Hla) were also found to drive

ADAM10 activation and subsequent cadherin cleavage, through

potentiating calcium influx and cell death (Inoshima et al., 2011;

Von Hoven et al., 2016; Reboud et al., 2017). In the case of Serratia

infection, it has been reported that S. proteamaculans invasion

requires full-length E-cadherin, while S. grimesii invasiveness can be

promoted by both full-length and truncated E-cadherin.

Interestingly, E-cadherin expression was shown to increase and

redistribute in cell compartments in response to Serratia infection

(Tsaplina et al., 2023).
TABLE 1 Continued

Mechanism Pathway Pathogen
E-cadherin Effects
or Interactions

References

Pseudomonas aeruginosa,
Streptococcus pneumoniae

NE-mediated E-cadherin proteolysis
and collateral tissue damage due to
excessively activated neutrophils

(Benabid et al., 2012; Boxio et al.,
2016; Domon et al., 2018; Domon
and Terao, 2021)

(ii)
Bacterial
Proteases

HtrA

Helicobacter pylori, Campylobacter jejuni,
enteropathogenic Escherichia coli (EPEC),
Shigella flexneri, Salmonella enterica,
Yersinia enterocolitica, Proteus mirabilis,
Chlamydia spp., Listeria monocytogenes,
Bacillus anthracis, Coxiella burnetii,
Borrelia burgdorferi, Glaesserella
(Haemophilus) parasuis and
Actinobacillus pleuropneumoniae

E-cadherin cleavage of NTF, CTF1
and CTF2 fragments release,
promoting pathogen translocation,
co-translocation of commensal
microbiota, CagA injection, and
tyrosine phosphorylation, elevated
sE-cad levels, M2-polarized
macrophages and downregulation of
E-cadherin expression, ECM protein
and E-cadherin degradation

(Hoy et al., 2010, 2012; Wu et al.,
2011; Boehm et al., 2012; Russell
et al., 2013; Abfalter et al., 2016;
Elmi et al., 2016; Schmidt et al.,
2016a, b; Israeli et al., 2019;
Mezouar et al., 2019; Cao et al.,
2021; Radhakrishnan et al., 2021;
Sharafutdinov et al., 2022, 2024;
Zhang et al., 2022; Osman et al.,
2023; Canadas-Ortega et al., 2024)

BFT or fragilysin Bacteroides fragilis
E-cadherin step-wise cleavage, b-
catenin cytoplasmic translocation
and NF-kB activation, IL-8 secretion

(Wu et al., 2007; Rhee et al., 2009;
Shiryaev et al., 2014; Choi et al.,
2016; Zakharzhevskaya et al., 2017;
Pierce et al., 2021; Lee et al., 2022)

GelE Enterococcus faecalis
E-cadherin extracellular domain loss,
barrier breakage, colitis
development, PAR2 activation

(Steck et al., 2011; Maharshak
et al., 2015)

Gingipains Porphyromonas gingivalis

E-cadherin breakdown, host
proteins’ proteolytic activation, non-
canonical b-catenin activation, peri-
implant disease involvement,
colitis exacerbation

(Katz et al., 2002; Inaba et al., 2014;
Zhou et al., 2015; Hočevar et al.,
2018; Eick et al., 2019; Tsuzuno
et al., 2021)

Miscellaneous
Bacterial Proteases

Clostridium perfringens
Cysteine protease-induced E-
cadherin degradation

(Pruteanu and Shanahan, 2013)

Mycobacterium tuberculosis

Extracellular serine protease
Rv2569c mediating E-cadherin
cleavage, respiratory epithelial
barrier translocation, pathological
damage to pulmonary tissues

(Zang et al., 2024)

Leptospira interrogans
E-cadherin displacement,
cytoskeletal rearrangement, AJ
disassembly, UPS hijacking

(Tokumon et al., 2023)

Spontaneous bacterial peritonitis-causing
bacteria (E. coli, P. mirabilis)

E-cadherin cleavage by novel
protease, TJ protein occludin
reduction by enhanced
proteosomal activity

(Haderer et al., 2022)
Pathogenic mechanisms, pathogens, key proteases, and toxins are indicated in bold.
ADAM, A-disintegrin and metalloproteinase; sE-cad, soluble E-cadherin fragment; ExoA, exotoxin A; ExlA, exolysin; ShlA, pore-forming toxin of Serratia marcescens; Hla, a-hemolysin; MMP,
matrix metalloproteinase; RhoA, Ras homolog gene family member A; NF-kB, nuclear factor kappa B; LRR20, leptospira leucine-rich repeat 20; PLY, pneumolysin; PMN, polymorphonuclear
neutrophil; PFO, perfringolysin O; ILY, intermedilysin; ROCK, Rho-associated protein kinase; MLC, myosin light chain; Spa, S. aureus protein A; NE, neutrophil elastase; NTF, amino-terminal
fragment; CTF, carboxy-terminal fragment; CagA, cytotoxin-associated gene A; ECM, extracellular matrix; IL-8, interleukin-8; PAR2, protease-activated receptor 2; AJ, adherens junction; UPS,
ubiquitin-proteasomal system; TJ, tight junction.
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Clostridium perfringens, which is known to cause food

poisoning and gas gangrene, encodes a pore-forming toxin named

delta-toxin, which can similarly trigger ADAM10-promoted E-

cadherin loss in Caco-2 cells, resulting in increased permeability

and fluid accumulation in the ileal loop. With respect to E-cadherin

degradation, investigators observed the distribution of digested E-

cadherin in intracellular vesicles of shedding cells derived from the

damaged intestinal villi as soon as 1h after toxin administration

(Seike et al., 2019).

3.1.2 MMP-mediated pathways
A plethora of proteases extending to members of the MMP

family, whose substrates include E-cadherin, such as MMP-9 and

MMP-7 (matrilysin) (Noë et al., 2001; Lee et al., 2007; Symowicz

et al., 2007), are upregulated in H.pylori-infected gastric epithelial

tissues (Gooz, 2003; Wroblewski et al., 2003; Bergin et al., 2004;
Frontiers in Cellular and Infection Microbiology 09
McCaig et al., 2006); MMP-9 exhibits 19-fold higher activity in

infected gastric mucosae compared to uninfected ones and is

secreted by gastric macrophages in response to bacteria, while it

decreases significantly upon H. pylori eradication (Bergin et al.,

2004; Kubben et al., 2007). Adherence of the pathogen induced

MMP-7 in AGS cells via RhoA and nuclear factor kappa B (NF-kB)
activation (Wroblewski et al., 2003). H. pylori-directed EMT

through upregulation of E-cadherin-repressive transcription

factors Snail and Slug and gastric microenvironment remodeling

contribute to its pathogenicity (McCaig et al., 2006; Yin et al., 2010).

A key example of host-pathogen interactions inducing MMP-

mediated degradation of E-cadherin is during leptospirosis. An

outer membrane virulence factor, leptospira leucine-rich repeat 20

(LRR20), was shown to interact with E-cadherin and mediate its

degradation by activating downstream E-cadherin signaling; LRR20

can promote the nuclear translocation of activated b-catenin,
TABLE 2 Bacterial mechanisms employing E-cadherin as a target receptor for bacterial attachment and entry.

Pathogen Interaction with E-cadherin Mechanism/Effect References

L. monocytogenes lnlA binds to N-terminal EC1 domain

- Initiates “zipper”-like mechanism for entry into
epithelial cells
- Requires calcium and induces post-translational
modifications of E-cadherin
- Leads to caveolin-dependent clustering and
clathrin-mediated internalization
- Also uses InlB for enhanced invasion

(Mengaud et al., 1996; Schubert et al., 2002;
Lecuit et al., 2004; Bonazzi et al., 2008; Pentecost
et al., 2010; Nikitas et al., 2011; Dellafiora
et al., 2020)

S. pneumoniae PsaA binds to E-cadherin
- Calcium-dependent binding
- Both human and mouse E-cadherin inhibits
PsaA-coated adherence to NP cells

(Anderton et al., 2007)

EPEC

E-cadherin is recruited at intercellular
junctions and interacts with intimin
(bacteria) – Tir (host cells)
receptor complex

- E-cadherin influences EPEC attachment post
initial intimin-Tir interaction
- Absence of E-cadherin reduces
EPEC adhesiveness

(Login et al., 2018)

F. nucleatum FadA binds to EC5 domain

- Promotes attachment and invasion in CRC and
non-CRC cells
- Induces b-catenin signaling and oncogenic
pathways in CRC cells
- Affects inflammatory responses based on b-
catenin expression

(Rubinstein et al., 2013; Ma et al., 2018)

C. botulinum Hemagglutinin binds to EC1-EC2 residues
- Disrupts E-cadherin function by blocking
trans-dimerization

(Sugawara et al., 2010; Lee et al., 2014)

H. pylori CagA interacts with E-cadherin

- Impairs E-cadherin/b-catenin complex
assembly
- Leads to b-catenin accumulation and activation
of signaling pathways
- Interacts with c-Met and p120ctn
affecting invasiveness

(Murata-Kamiya et al., 2007; Oliveira
et al., 2009)

C. difficile
E-cadherin serves as an adherence receptor
for spores

- Requires TcdA and TcdB toxins to open AJs
and make E-cadherin accessible for
spore tethering

(Castro-Córdova et al., 2023)

L. interrogans
Protein Lsa16 and leptospiral lipoproteins
(LIC11711, LIC12587) bind to E-cadherin

- Allows bacterial attachment to epithelial cells
- Induces E-cadherin/b-catenin and NF-kB
signaling affecting E-cadherin regulation and
Leptospira adhesion
- E-cadherin downregulation potentially
decreases Leptospira colonization

(Evangelista et al., 2014; Pereira et al., 2017;
Kochi et al., 2019; Hsu et al., 2021)
Pathogens and main adhesins that interact with E-cadherin are indicated in bold.
PsaA, pneumococcal surface adhesin A; NP, nasopharyngeal; EPEC, enteropathogenic Escherichia coli; Tir, translocated intimin receptor; FadA, protein adhesion A; CRC, colorectal cancer;
CagA, cytotoxin-associated gene A; c-Met; mesenchymal-epithelial transition factor; p120ctn, p120 catenin; TcdA/TcdB, Clostridioides difficile toxin A/B; AJs, adherens junctions; NF-kB;
nuclear factor kappa B.
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significantly increasing MMP-7 expression in a dose and time-

dependent manner. LRR20-induced MMP-7 consequently degrades

cell-surface E-cadherin, which in turn promotes NF-kB pathway

activation (Hsu et al., 2021).

In P. aeruginosa keratitis, MMP-9 was reported to show high

expression and greater enzyme zymography activity in the infected

cornea of susceptible B6 mice versus normal cornea of resistant

BALB/c mice (McClellan et al., 2006).

MMP-9 was significantly upregulated by S. aureus in infected

nasal mucosa and mid-ear epithelia, namely chronic rhinosinusitis

and lipoteichoic acid-induced otitis media, respectively (Wang

et al., 2010; Park et al., 2012), while S. aureus-induced expression

depends on PGE2/IL-6 during infection-associated aortic

inflammation (Tsai et al., 2018). Elevated MMP-7 contributes to

S. aureus septic arthritis pathogenesis, but interestingly, it also
Frontiers in Cellular and Infection Microbiology 10
eliminates the increased bacterial burden by enhancing bacterial

clearance (Gjertsson et al., 2005).

Pneumolysin’s (PLY) pore-forming activity was shown to be

essential for Streptococcus pneumoniae to elicit cleavage and subvert

organization of E-cadherin at a MOI of 2, though a putatively

induced proteolytic executor that remains to be identified (Xu et al.,

2023). This low-dose infection drives the recruitment of

polymorphonuclear neutrophils (PMNs) and bacterial

translocation in a PLY-dependent manner, even in absence of

epithelial detachment, while other pore-forming virulence factors

of the cholesterol-dependent cytolysins family, such as

perfringolysin O (PFO) or intermedilysin (ILY), resulted in

almost complete ablation of E-cadherin, indicating a likely

pathogenetic mechanism (Xu et al., 2023). Excess MMP-9 activity

has been indicated to participate in the pathogenesis of Chlamydia
FIGURE 3

Representative E-cadherin-mediated intercellular interactions that are involved in bacterial pathogenesis. i) Bacterial toxins inducing host proteases,
ii) Bacteria-secreted proteases, iii) Dysregulated E-cadherin expression and signaling, and iv) Adhesin-mediated internalization via interactions with
the extracellular domain of E-cadherin as a target receptor, play a crucial role in bacterial attachment, invasion into the underlying tissues and
consequent establishment and dissemination of infection. sE-cad, soluble E-cadherin fragment.
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spp. and P. gingivalis infections (Ault et al., 2002; Jotwani et al.,

2010; Paolillo et al., 2012). Coxiella burnetii, the etiologic agent of Q

fever, can also manifest with augmented MMP(-7,9) production in

the acute and persistent form of infection, along with higher sE-cad

serum concentrations (Krajinović et al., 2012; Jansen et al., 2017;

Mezouar et al., 2019).

3.1.3 Miscellaneous host proteases
Calcium-dependent, non-lysosomal cysteine proteases named

calpains, are also known to mediate occludin and E-cadherin

cleavage and can be induced by wild-type S. aureus in an EGFR-

dependent manner. S. aureus protein A (Spa) mediates the

pathogen’s paracellular penetration into polarized airway

epithelial monolayers via tumor necrosis factor (TNF) receptor 1

and EGFR stimulation and consequent RhoA/ROCK/MLC

activation that disorganizes cytoskeleton distribution, while

calpain activity also facilitates staphylococcal transmigration

through the ruptured paracellular junctions (Soong et al., 2011).

Augmented calpain-mediated E-cadherin reduction has also been

observed as a synergistic effect of Streptococcus oralis and Candida

albicans coinfection, promoting their systemic dissemination and

pathogenic potential of their biofilms (Xu et al., 2016).

Caspase-3, a protease “executioner” involved in apoptosis, has

also been associated with E-cadherin dismantling. Degradation of

full-length E-cadherin into 3 intracellular/carboxy-terminal

fragments (CTF1, CTF2, CTF3) by H. pylori is reportedly coupled

with cleaved-caspase-3 upregulation and induction of gastric

epithelial cells’ apoptosis (Yang et al., 2017).

Inflammatory responses triggered during bacterial infections are

primarily driven by neutrophils. Neutrophil elastase (NE), a serine

protease released by neutrophils at the site of acute lung injury, plays

a key role in shaping the proteolytic environment during infections,

particularly in PMN-rich pathologies. While NE serves a protective

function against pathogens, excessive neutrophil activation and

dysregulated NE secretion during bacterial infections can lead to

tissue damage. Elevated NE levels have been observed in conditions

such as pneumonia caused by Pseudomonas aeruginosa,

pneumococcal pneumonia, and bacterial exacerbations of chronic

obstructive pulmonary disease (COPD) (Benabid et al., 2012; Domon

et al., 2018; Thulborn et al., 2019; Domon and Terao, 2021). In a

mouse model of P. aeruginosaH103 pneumonia, significant amounts

of active NE were detected in bronchoalveolar lavage (BAL) fluids,

alongside an approximately 80 kDa fragment of E-cadherin,

indicative of its degradation in the alveolar space. This effect was

observed after eliminating the confounding influence of bacterial

metalloelastases, suggesting that NE itself contributes to E-cadherin

breakdown (Boxio et al., 2016).
3.2 Bacterial proteases

In addition to bacterial stimulation of the host’s native

sheddases, proteases encoded and secreted by pathogens have also

been described to catalyze E-cadherin fragmentation, independent

of endogenous enzymes.
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3.2.1 High-temperature requirement A (HtrA)
Full-length 125 kDa E-cadherin was identified as a substrate to

the serine protease and periplasmic chaperone HtrA, a caseinolytic

active enzyme secreted byH. pylori. The HtrA-mediated cleavage of

the extracellular 90 kDa amino-terminal domain (NTF) of E-

cadherin results in the release of CTF1 that, upon further

processing, yields a soluble 33 kDa CTF2 fragment (Hoy et al.,

2010). A 29 kDa E-cad/CTF3 fragment can be produced by caspase-

3 cleavage in H. pylori-induced apoptosis of gastric epithelial cells

(Yang et al., 2017). HtrA was reported to cleave at the linker regions

between the EC domains, with the signature cleavage sites

potentially being masked under calcium-binding homophilic

homotypic interactions (cis and trans) (Schmidt et al., 2016b, a).

HtrA was further characterized as a highly conserved virulence

factor among bacterial species, with HtrA-mediated E-cadherin

truncation potentially comprising a prominent pathogenic

mechanism for Gram-negative gastrointestinal pathogens,

including H. pylori, Campylobacter jejuni, enteropathogenic

Escherichia coli (EPEC), Shigella flexneri, Salmonella enterica

subsp. Enterica (S. Typhimurium), Yersinia enterocolitica, and

Proteus mirabilis (Hoy et al., 2012; Abfalter et al., 2016). Of note,

HtrA-mediated E-cadherin cleavage properties are limited to DegP

and DegQ homologs expressed by Gram-negative pathogens, which

harbor different HtrAs combinations (Abfalter et al., 2016). The

Hoy group showed that HtrA is expressed mainly as active

multimers in H. pylori and C. jejuni -as opposed to monomers in

EPEC and S. flexneri- allowing the pathogens to efficiently and

rapidly transverse polarized MKN-28 monolayers via the

paracellular route (Hoy et al., 2012). In H. pylori infection, HtrA-

mediated E-cadherin shedding on the surface of highly polarized

gastric epithelial cells, permits CagA injection and tyrosine

phosphorylation in the cytosol of non-transformed healthy cells

(Canadas-Ortega et al., 2024). In the case of C. jejuni, the

transmigration does not confer any drastic reduction in

transepithelial electrical resistance (TEER), suggesting that HtrA-

directed cell-cell junction opening is executed in a strictly

controlled, spatiotemporally restricted manner that enables

pathogens to seamlessly cross the intercellular space, whereas this

translocation capacity is severely defected in DHtrA mutants

compared to wild-type bacteria (Boehm et al., 2012). C. jejuni

outer membrane vesicles (OMVs) with serine protease activity

targeting intestinal epithelial E-cadherin and occludin are thought

to deploy HtrA to exercise their cleaving effects (Elmi et al., 2016).

Yet, the group of Sharafutdinov and colleagues showed by electron

and confocal immunofluorescence microscopy that it is not the

soluble purified protease nor the protease in HtrA-containing

OMVs, but the C. jejuni surface-bound HtrA that disrupts

epithelial cell-cell junctions (Sharafutdinov et al., 2024).

Moreover, HtrA-expressing C. jejuni was shown to facilitate co-

translocation of commensal microbiota with otherwise weak

transmigratory capabilities, such as non-pathogenic E. coli and

Lactococcus lactis, which may represent a central mechanism that

underpins the pathogenesis of inflammatory bowel disease (IBD)

(Sharafutdinov et al., 2022). Additionally, HtrA induction as a

proteolytic tool that manipulates host cell machinery has been
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reported in chlamydial infection (Wu et al., 2011) and in Listeria

monocytogenes (Radhakrishnan et al., 2021), while it also plays a

role in stress resistance and pathogenicity of Bacillus anthracis

(Israeli et al., 2019). However, proof of enhanced E-cadherin

degradation was not established in these conditions. In Coxiella

burnetii infection, secretion of functional cbHtrA was pinpointed as

another plausible mechanistic explanation behind the elevated sE-

cad levels found in sera of patients with Q fever (Mezouar et al.,

2019; Osman et al., 2023). Indeed, recombinant cbHtrA-treated and

C. burnetii-infected BeWo cells released markedly higher sE-cad

compared to unstimulated cells, while cbHtrA-exposed

macrophages skewed toward M2-polarized interleukin signature

which additionally downregulated E-cadherin expression (Osman

et al., 2023). Borrelia burgdorferi, the causative agent of Lyme

disease, is also endowed with HtrA-mediated cleaving capacity in

vitro, allowing host extracellular matrix (ECM) protein and E-

cadherin degradation, which is consistent with spirochaetal

dissemination findings (Russell et al., 2013). Lastly, E-cadherin

ectodomain shedding by HtrA/DegQ virulence factor has lately

been described in porcine respiratory pathogens such as Glaesserella

(Haemophilus) parasuis and Actinobacillus pleuropneumoniae (Cao

et al., 2021; Zhang et al., 2022). Studies have shown that bacterial

paracellular transmigration was significantly higher in E-cadherin

knock-out, as opposed to the effects of HtrA depletion (Cao

et al., 2021).
3.2.2 BFT or fragilysin (FRA)
The group of Wu et al. proved that enterotoxigenic Bacteroides

fragilis leverages a zinc-dependent metalloprotease toxin termed

BFT or fragilysin, that shares homology with eukaryotic MMPs, in

order to manifest its virulence through BFT-initiated step-wise

cleavage of E-cadherin; extracellular ectodomain shedding (80

kDa) and subsequent proteolytic processing with intracellular

fragmentation (i.e., 33 kDa, by presenilin-1/g-secretase) (Wu

et al., 2007). Loss of full-length E-cadherin forces dispersion of E-

cadherin-bound b-catenin pool and cytoplasmic localization within

1-3 hours. Upon nuclear translocation (3-24 hours), it activates

proliferative signaling via TCF pathway activation and c-myc

transcription (Wu et al., 2003). Biologically active BFT, capable of

E-cadherin degradation, has been found in OMVs as a bacterial

secretory delivery system (Zakharzhevskaya et al., 2017). Fragilysin-

catalyzed shedding of intestinal epithelial E-cadherin in vivo has

been reported to be implicated in murine colitis onset and early IL-8

secretion (Rhee et al., 2009; Lee et al., 2022). Of note, IL-8 induction

due to BTF-mediated E-cadherin cleavage is b-catenin-dependent
and requires NF-kB signal activation (Lee et al., 2022). MMP-2 was

found to be encoded by the same B. fragilis pathogenicity island, but

E-cadherin was not recognized as a cleavage substrate (Shiryaev

et al., 2014). BFT in anaerobic bacteremia and sepsis has a similar

functional role to ADAM10 in S. aureus sepsis. A clostripain-like B.

fragilis protease named fragipain is involved in endogenous BTF

activation and secretome generation and can directly or indirectly

promote E-cadherin-targeted proteolytic activity (Choi et al., 2016;

Pierce et al., 2021).
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3.2.3 Gelatinase (GelE)
Other microbial metalloproteases impairing full-length E-

cadherin have been documented, including a GelE produced by

commensal Enterococcus faecalis strains; GelE was shown to trigger

loss of extracellular E-cadherin and barrier breakage, contributing

to the development of experimental colitis in E. faecalis mono-

associated IL-10−/− mice, irrespective of antigen-specific activation

of colitogenic CD4+ T cells (Steck et al., 2011). Ex vivo epithelial

permeability induction by purified GelE appears to require PAR2

activation, while human fecal supernatants from ulcerative colitis

(UC) patients can enhance colonic epithelial permeability in wild-

type mice, while the effects were lower in PAR2−/−mice (Maharshak

et al., 2015).

3.2.4 Gingipains
Porphyromonas gingivalis, an established pathogen in adult

periodontal disease, is known to secrete three cysteine proteases

known as gingipains (HRgpA, RgpB, and Kgp). Gingipains are

believed to account for the breakdown of E-cadherin by P.

gingivalis, with Kgp being the major degradative effector (Katz

et al., 2002). A plethora of other host proteins’ processing has been

ascribed to gingipains, including proMMP-9 (Inaba et al., 2014;

Hočevar et al., 2018), while b-catenin can also undergo proteolytic

activation attributed to gingipains, in noncanonical (Wnt-

independent) fashion (Zhou et al., 2015). In peri-implant disease

(i.e., peri-implant mucositis and peri-implantitis), gingipains can

interfere with sulcular epithelium attachment to titanium–

zirconium alloy surfaces through their cleaving ability (Eick et al.,

2019). In the intestinal epithelium, gingipains are thought to be

employed in murine colitis exacerbated by orally administered P.

gingivalis (Tsuzuno et al., 2021).

3.2.5 Miscellaneous bacterial proteases
Other putative microbial cysteine proteases with E-cadherin-

cleaving activity have been documented; for instance, Clostridium

perfringens culture supernatant induced in vitro degradation of

recombinant E-cadherin -albeit no host protease activation-, while

cysteine protease inhibitors completely extinguished the proteolytic

effects (Pruteanu and Shanahan, 2013).

An extracellular serine protease of Mycobacterium tuberculosis

named Rv2569c was recently shown to cleave E-cadherin; M.

tuberculosis Rv2569c allowed the bacteria to translocate through

the respiratory epithelial barrier in vivo and confer pathological

damage to murine pulmonary tissues, promoting colonization and

systemic dissemination (Zang et al., 2024).

Leptospira interrogans, etiological agent of leptospirosis, one of

the most significant zoonoses globally, is known to displace E-

cadherin from the membrane and drive cytoskeletal rearrangement

and AJ disassembly by hijacking the host cells’ ubiquitinin-

proteasomal system (UPS) and/or lysosomal degradation

pathways. Tokumon and co-workers found that L. interrogans

specifically triggers E-cadherin endocytosis by mislocalization and

degradation of the p120ctn sub-family proteins (p0071 and

p120ctn) that interact with the juxtamembrane domain of E-
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cadherin, through induction of an unidentified protease inhibited

by Z-VAD-FMK (Tokumon et al., 2023). The UPS hijacking could

also be involved in the degradation of other modulators of cell-cell

junctions and cytoskeletal dynamics such as Rho GTPases including

Rac1, Cdc42, and RhoA proteins (Tokumon et al., 2023).

Interestingly, a study by Haderer and colleagues investigating the

bacterial-to-cell effects in spontaneous bacterial peritonitis (SBP)

found that stimulation with E. coli and P. mirabilis led to the

cleavage of E-cadherin through a novel bacterial protease activity.

In contrast, intestinal bacteria induced the downregulation of the TJ

protein occludin via enhancing endogenous proteasomal degradation

in colonic epithelial cells (Haderer et al., 2022).
3.3 Transcriptional regulation of
E-cadherin

Bacterial pathogens can seemingly affect E-cadherin expression

on a transcriptional level as well as subvert epigenetic alterations

that lead to junctional disturbances. P. gingivalis-lipopolysaccharide

(LPS) substantially reduced E-cadherin protein expression in epi-4

cells compared to no P. gingivalis-LPS challenge (Abe-Yutori et al.,

2017). This expression pattern has been demonstrated in chronic

periodontitis subjects, showing a statistically significant decrease in

E-cadherin levels compared to healthy individuals, which inversely

correlated with K19 increase (Nagarakanti et al., 2007).

Semiquantitative immunohistochemical analysis of tissue samples

detected a statistically significant reduction in staining intensity

from the external oral epithelium, through the gingival sulcus, to the

junctional epithelium of clinically healthy gingiva, with the most

marked decrease seen in the pathological lining of the pocket

epithelium (Ye et al., 2000). In murine gingivitis epithelia,

noticeably decreased E-cadherin expression was observed under

the inflamed condition on a protein and mRNA level. This was

inversely associated with induction of pyroptosis, namely

programmed cell death triggered by caspase-1 activation, where

caspase-1 and E-cadherin were inversely correlated (Li et al., 2021).

Clostridium perfringens beta2 (CPB2) toxin was shown to confer

intestinal epithelial barrier injury in porcine IPEC-J2 cells treated

with 20 mg/mL rCPB2 by considerably restricting claudin-1 and E-

cadherin mRNA and protein expression levels (Gao et al., 2020). In a

transcriptomic analysis of human trophoblast cells (BeWo), many

junctional protein genes were recognized as differentially expressed in

response to E. faecalis infection, including E-cadherin, which was

found significantly downregulated (Tan et al., 2018). E-cadherin

transcripts were measured to be progressively inactivated over time

in Shigella dysenteriae-infected HT29 cells, with ensuing b-catenin
cytoplasmic translocation (Raja et al., 2012).

CDH1 promoter hypermethylation of CpG islands is one of the

most common epigenetic patterns that transcriptionally suppress E-

cadherin expression. This epigenetic modification is widely

considered to have a greater frequency in H. pylori chronic

gastritis and constitutes an established early event in gastric

carcinogenesis (Chan, 2003; Kang et al., 2003; Liu et al., 2005). In

a study, methylation density in gastric body and antral mucosae
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obtained from H. pylori-positive gastritis patients was

approximately 10-fold higher compared to H. pylori-negative

patients. The study showed that host inflammatory cytokines and

growth factors -including TNF-a, MG132 (ROS), and EGF in

response to the infection mediate aberrant E-cadherin

methylation and DNA methyltransferase (DNMT) activity in

vitro (Miyazaki et al., 2007). IL-1b-stimulated NF-kB cascade

activation and DNMT induction via NO production is another

compelling transcriptional system engaged in H. pylori-associated

hypermethylation status, which conceivably links chronic gastric

inflammation and carcinogenesis (Huang et al., 2012). SuccessfulH.

pylori eradication therapy notably eliminates methylation effects

and results in reversal of prior silencing (Chan, 2006; Leung et al.,

2006; Miyazaki et al., 2007), potentially reinstating E-cadherin

expression-dependent barrier function. Interestingly, the

opportunistic pathogen Acinetobacter baumannii was also found

capable of hindering E-cadherin expression through promoter CpG

methylation following its nuclear trafficking (Moon et al., 2012). In

the pathophysiological course of Chlamydia trachomatis infection,

EMT induction also seems to entail methylation increment in the E-

cadherin promoter, while upregulation of other mesenchymal

markers was not proven to stem from significant epigenetic

alterations (Rajić et al., 2017).
3.4 Interactions involving the extracellular
domain of E-cadherin

Given that the extracellular part of E-cadherin engages in

homotypic and heterotypic interactions to achieve cell

aggregation and control cell behavior, bacteria can seize the

molecule’s ectodomain as a heterophilic receptor for adherence

and uptake by host cells. L. monocytogenes, a food-borne pathogen

able of prototypic intracytosolic invasion in non-phagocytic cells,

can employ a well-described invasion protein named internalin

(lnlA) to interact with the N-terminal EC1 domain via a leucine-

rich repeat (LRR) of the bacterial ligand, securing attachment and

internalization at the site of the bacterial-epithelial interface

(Mengaud et al., 1996; Schubert et al., 2002). Upon specific

calcium-requiring anchoring to E-cadherin, L. monocytogenes can

initiate lnlA-based and locally constrained entry into the epithelial

cells at the sites of bacterial contact without inducing dramatic

morphological changes. This type of bacterial ligand-promoted

endocytosis more closely resembles the “zipper mechanism” of

Yersinia entry but is distinct from Salmonella “trigger” invasion

mechanism (Mengaud et al., 1996). Bonazzi et al. showed that lnlA

attachment induces sequential E-cadherin post-translational

modifications, which are prerequisites for the recruitment of the

different components of endocytosis machinery at the bacterial

entry site. In this regard, induced Src-mediated phosphorylation

and ubiquitination by ubiquitin-ligase Hakai at the juxtamembrane

E-cadherin domain were required for caveolin-dependent E-

cadherin clustering and clathrin-mediated internalization

(Bonazzi et al., 2008). In fetoplacental listeriosis, L. monocytogenes

crosses the maternofetal or trophoblastic barrier via heterotypic
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1506636
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Lialios and Alimperti 10.3389/fcimb.2025.1506636
interaction between accessible syncytiotrophoblast E-cadherin with

lnlA, as recapitulated ex vivo in human placental extracts (Lecuit

et al., 2004). In the intestinal villi, where E-cadherin is naturally

basolateral and secluded from the lumen, L. monocytogenes was

shown to exploit transient defects of epithelial polarity and

junctional remodeling spots to facilitate penetration. Indeed,

multicellular junctions formation in cell extrusion zones of villus

tip can function as entry points and enable the pathogen to

efficiently reach the apically exposed E-cadherin prior to its

dynamin-dependent removal from the cell surface (Pentecost

et al., 2010). Apart from extruding apoptotic cells on villi tips or

cells located within intestinal epithelial folds, reorganization of

apical junctional complexes around goblet cells, which is affected

by physical tensions associated with mucus-expelling dynamics, can

similarly make E-cadherin luminally accessible. This allows lnlA-

initiated rapid transcytosis across intestinal villi vertical axis with

ultimate bacterial release from the basal pole of enterocytes into the

lamina propria (Nikitas et al., 2011). Of note, even though InlA

binding to E-cadherin is indispensable and adequate for Listeria

attachment, modulation by another internalin (InlB) expedites

invasion through the displaced junctions and synergistically

promotes endocytosis through activation of c-Met signaling

(Pentecost et al., 2010). Ultimately, the strength of lnlA-E-

cadherin interaction per se may not directly correlate with the

invasive capacity, conceivably reflecting lnlA’s non-exclusive role in

determining L. monocytogenes virulence (Dellafiora et al., 2020).

Intriguingly, invasion can also involve other host cell-dependent

mechanisms such as cell membrane perforation to hijack the

endocytic machinery by use of pore-forming exotoxin listeriolysin

O; extracellular Ca2+ influx and Rac1 activation-dependent

downstream signaling lead to actin cytoskeleton de novo assembly

mandated for Listeria’s internalization (Lam et al., 2018).

Pneumococcal surface adhesin A (PsaA) of Streptococcus

pneumoniae has been identified as another heterophilic ligand of

E-cadherin during the initial stage of bacterial colonization in the

nasopharyngeal (NP) epithelium. PsaA binding was found to be

calcium-dependent and, unlike lnlA that is specific to human E-

cadherin, both human and mouse E-cadherin were able to inhibit

adherence of PsaA-coated fluospheres to NP cells (Anderton

et al., 2007).

Login et al. demonstrated that EPEC microcolonies also recruit

E-cadherin at intercellular junctions of polarized and nonpolarized

cells. However, only after the initial establishment of interaction

between bacterial intimin and the Tir receptor on the host

membrane, is E-cadherin able to bind to the Tir-intimin complex.

Nonetheless, E-cadherin still influences EPEC attachment as the

absence of the extracellular domain of E-cadherin significantly

reduced EPEC adhesiveness (Login et al., 2018).

Another adhesin, FadA, was described to bind to the EC5

domain of E-cadherin, promoting attachment and invasion in

colorectal cancer (CRC) and non-CRC cells under Fusobacterium

nucleatum infection. In CRC cells, interaction of E-cadherin with

FadA was shown to induce downstream b-catenin signaling.

Specifically, E-cadherin phosphorylation, internalization of the

complex, cytoplasmic translocation of b-catenin, and

transcriptional activation of Wnt/b-catenin target genes were
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shown to be induced (Rubinstein et al., 2013). F. nucleatum may

thus promote the malignant phenotype of CRC by enhancing tumor

growth, inflammatory responses, and EMT through interaction

with E-cadherin. However, F. nucleatum only increased the

inflammatory responses when b-catenin expression was knocked

down in normal colonic cells, whereas no changes were observed

when E-cadherin expression was knocked down (Ma et al., 2018).

Bacterial toxins have also been shown to associate with the E-

cadherin receptor, disrupting the intercellular epithelial continuity

to allow their subsequent uptake. Hemagglutinin (HA) constitutes a

nontoxic accessory component of the botulinum neurotoxin

complex, produced by Clostridium botulinum and known to cause

flaccid paralysis in animals and humans. HA was found to bind to

E-cadherin on EC1-EC2 residues in a species-specific manner,

disrupting its function by sterically blocking E-cadherin trans-

dimerization (Sugawara et al., 2010; Lee et al., 2014).

H. pylori virulence factor CagA can also interact physically with

E-cadherin, functionally impairing E-cadherin/b-catenin complex

assembly in gastric epithelial cells independently of CagA tyrosine

phosphorylation status. The resultant b-catenin cytosolic and

nuclear accumulation can transactivate b-catenin-regulated
signaling, including intestinal-specific transdifferentiation genes,

implicated in metaplasia and gastric carcinogenesis (Murata-

Kamiya et al., 2007). Oliveira and colleagues later suggested that

CagA interacts with E-cadherin and p120ctn in a c-Met-dependent

manner, promoting multiprotein formation between CagA, c-Met,

E-cadherin, and p120ctn. This interestingly inhibits c-Met and

p120ctn phosphorylation and restrains the invasive phenotype

induced by H. pylori (Oliveira et al., 2009).

Interestingly, E-cadherin was found to serve as an adherence

receptor for C. difficile spores onto intestinal epithelial cells (IECs).

Castro-Córdova et al. observed that E-cadherin was able to bind to

the hairlike projections of the spores, and that the E-cadherin-

specific interaction with IECs was toxin-mediated, requiring TcdA

and TcdB to open the AJs and render E-cadherin accessible for

tethering (Castro-Córdova et al., 2023).

Cadherins have been previously described as able receptors for

Leptospira (Evangelista et al., 2014). Pereira et al. identified E-

cadherin as a binding receptor for protein Lsa16 of L. interrogans

(Pereira et al., 2017). Kochi and co-workers reported that two

putative leptospiral surface-exposed lipoproteins LIC11711 and

LIC12587, conserved among pathogenic strains of L. interrogans,

show binding affinity to E-cadherin in a dose-dependent interaction

that allows initial bacterial attachment to host epithelial cells (Kochi

et al., 2019). Potential host cell membrane injury and E-cadherin

expression changes following leptospirotic attachment have been

previously described. Cell membrane insult as the primary cellular

lesion of leptospirosis was corroborated immunohistochemically,

with E-cadherin expression irregularities in leptospirotic patients

and loss of membrane E-cadherin in hepatocytes, associated with

liver-plate disarray (De Brito et al., 2006). Strikingly, this E-

cadherin downregulation might be attributed to feedback

inhibition mechanisms that eventually decrease Leptospira

colonization. It has been described that LRR proteins expressed

by the pathogenic Leptospira species can interact with E-cadherin

on the host cell surface, inducing E-cadherin/b-catenin and NF-kB
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signaling cross-talk that can ultimately dictate the fate of E-cadherin

and regulate Leptospira adhesion and invasion in kidney (Hsu

et al., 2021).
4 E-cadherin in inflammation and
disease pathogenesis

Ongoing research is increasingly focused on elucidating the role

of E-cadherin in initiation and perpetuation of inflammatory

processes and other diseases, in a multitude of epithelial tissues

and organs, given its ubiquitous presence. E-cadherin as a peculiar
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immunomodulatory player in inflammation remains largely

underexplored, and its regulator properties that dictate the fine

balance between immunity and tolerance remain obscure. Herein,

we report the role of E-cadherin, which mediates the functional

coupling between epithelial cells, and its effects on barrier

dysfunction in various tissues and organs, including the lungs,

oral mucosa, the intestine, and the placenta (Figure 4).
4.1 E-cadherin in lung diseases

A range of lung diseases, including idiopathic pulmonary

fibrosis, COPD, and asthma have been associated with loss of E-
FIGURE 4

Schematic overview of the systematic implications of epithelial barrier disruption via E-cadherin in different diseases. Pathologies in oral and
gastrointestinal mucosae, as well as placenta, lungs, and other tissues and organs, are complex, intertwined entities, that can manifest with barrier
dysfunction, inflammation, and/or EMT hallmarks. Such pathologies can engage microbiota as well as underlying immunological components, that
collectively drive and aggravate barrier dysfunction. COPD; chronic obstructive pulmonary disease; IBD, inflammatory bowel disease; GERD,
gastroesophageal reflux disease; LPRD, laryngophangeal reflux disease; PTB, preterm birth; pPROM, preterm pre-labor rupture of the membranes;
EMT, epithelial-to-mesenchymal transition.
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cadherin function and elevated sE-cad levels (Yuksel et al., 2021;

Mottais et al., 2023). Although E-cadherin loss and/or proteolytic

processing are observed in inflammatory conditions, it remains

unclear whether these changes are a primary cause of disease

pathophysiology or simply a secondary response.

In vitro and in vivo lung injury studies have demonstrated that

MMP-7 mediates the cleavage of extracellular E-cadherin,

promoting epithelial repair and facilitating cell migration through

the redistribution of E-cadherin-based adhesions in wounded

epithelium (McGuire et al., 2003). Interestingly, E-cadherin

interaction with the aEb7-integrin receptor or CD103, both of

which are expressed on pulmonary anti-fibrotic DCs, is regulated by

MMP-7. This interaction promotes the resolution of acute

neutrophilic inflammation and induces an anti-inflammatory

cytokine profile, thereby balancing epithelial repair with immune

activation (Manicone et al., 2009). Interestingly, sE-cad levels were

significantly elevated in the BAL fluids and serum of mice with

bleomycin-induced pulmonary fibrosis. sE-cad promotes EMT in

the alveolar epithelium and abnormal fibroblast migration.

Blocking sE-cad effectively reduced myofibroblast accumulation

and collagen deposition in the lungs following bleomycin

exposure. Additionally, transforming growth factor-b1 (TGF-b1)
was found to stimulate the shedding of sE-cad from A549 cells and

promote EMT, with these effects being reversed upon sE-cad

inhibition (Huang et al., 2024).

Studies by Ghosh et al. have shown loss of E-cadherin in the

lung epithelium of patients with COPD. Ghosh et al. reported that

knockout of E-cadherin in alveolar epithelial type II but not type I

cells in adult mouse models results in airspace enlargement.

Furthermore, the knockout of E-cadherin in airway ciliated cells,

but not club cells, increases airway hyperreactivity (Ghosh et al.,

2022). Additionally, cigarette smoke-induced epithelial injury has

previously been linked to E-cadherin-related barrier dysfunction

(Nishida et al., 2017; Ghosh et al., 2020). As anticipated,

significantly higher levels of sE-cad were found in the plasma of

COPD patients and symptomatic smokers compared to healthy

smokers and nonsmokers. Moreover, both plasma and epithelial

lining fluid (ELF) sE-cad levels were positively correlated with the

severity of airway limitation, with ELF sE-cad levels showing a

particularly strong correlation with MMP-7 levels (Shirahata

et al., 2018).

In the context of asthma development, common environmental

factors such as air pollutants are known to impair the airway

epithelial barrier by reducing E-cadherin expression. Exposure to

sub-toxic levels of soluble PM2.5, diesel exhaust, and other reactive

oxygen species (ROS)-generating pollutants has been shown to

decrease E-cadherin levels. This reduction in E-cadherin

contributes to airway barrier dysfunction, which can increase

susceptibility to bacterial infections. The silencing of the E-

cadherin gene due to air pollutants may be mediated by

dysregulated non-coding RNAs, which are overexpressed in

asthma and COPD patients (Aghapour et al., 2022). A study by

Michaudel et al. demonstrated that ozone-induced respiratory

barrier injury—characterized by protein leak, epithelial cell

desquamation, and the recruitment of neutrophils and alveolar

macrophages—precedes myeloid cell-driven lung inflammation,
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bypassing the protective effects of the IL-33/ST2 axis. Acute

ozone exposure disrupts IL-33-dependent homeostasis, leading to

decreased epithelial E-cadherin expression and increased

inflammatory cell infiltration in the absence of ST2 and IL-33.

Additionally, the deposition of air pollutants leads to E-cadherin

depletion via an HMGB1-mediated mechanism, contributing to

abnormal alveolar cell turnover in emphysema (Michaudel et al.,

2018). Also it has been reported that loss of E-cadherin upon

pollutant exposure triggers cell senescence, chronic disruption of

alveolar differentiation, and apoptosis through downstream

effectors of the Hippo pathway, such as YAP/TAZ (Chang et al.,

2022). Furthermore, recent studies have also linked the

upregulation of FceRI, monomeric IgE, and IgE/FceRI
engagement with decreased junctional distribution of E-cadherin

in severe asthma. The crosstalk between FceRI and EGFR was found

to be associated with E-cadherin loss, triggering IL-33 synthesis and

release upon IgE-induced EGFR activation (Weng et al., 2023).

Heijink and colleagues observed that EGFR phosphorylation and

activation following E-cadherin silencing drives EGFR-dependent

recruitment of Th2 cells in allergic asthma, through the induction of

TARC/CCL2, a Th2-attracting molecule (Heijink et al., 2007).

Another mechanism by which environmental factors disrupt the

epithelial barrier involves proteolytically active allergens that cleave

E-cadherin, either directly through proteolytic activity or indirectly

by triggering pattern-recognition receptors (PRRs). Protease

allergens activate innate immune receptors such as protease-

activated receptors (PARs) and stimulate non-IgE-mediated

reactions, leading to the release of mediators (Yuksel et al., 2021).

For example, mite allergens induce proteolysis of ZO-1, occludin,

and other TJ proteins, while proteases released by pollen disrupt E-

cadherin and TJ proteins like occludin and claudin-1. Moreover,

proteases found in mite, fungi, and cockroach extracts activate

PAR1/2, which subsequently leads to the degradation of E-cadherin

(Yuksel et al., 2021). Finally, higher sE-cad levels are associated with

more severe asthma, correlating with sputum HMGB1 level and

glucocorticoid dosage required for daily management. In addition

to that, sputum sE-cad levels reflect asthma severity and inversely

correlate with decreases in FEV1 (Masuyama et al., 2003). Upon

allergen exposure, significant increases in sE-cad levels were

observed in the BAL fluids of mice. It is believed that sE-cad

contributes to airway inflammation in severe asthma through

ERK signaling, which upregulates VEGF and IL-6, and promotes

the infiltration of neutrophils and eosinophils into the airways

(Tang et al., 2024).
4.2 E-cadherin in oral diseases

Gingivitis and periodontitis are oral diseases characterized by

dysbiosis, periodontium destruction, and aberrant immune

responses of the host. In chronic inflammatory conditions, (i.e.,

periodontitis), E-cadherin expression in epithelium is significantly

downregulated during pocket formation (Nagarakanti et al., 2007;

Saliem et al., 2023). Notably, elevated sE-cad salivary levels were

shown to positively correlate with periodontitis severity (Kazem

et al., 2023). Notably, gingival crevicular fluid (GCF) E-cadherin
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significantly increased in gingivitis and periodontitis cases as

compared to controls (Hussein et al., 2024b). E-cadherin levels in

GCF has been shown to be a good predictor for nonsurgical

periodontal therapy outcomes in periodontitis patients (Hussein

et al., 2024a).

Several mechanisms are involved in the regulation of E-

cadherin in periodontitis. Specifically, a study by Hiyoshi et al.

has shown that NE disrupts the gingival epithelial barrier by

degrading E-cadherin, allowing periodontal pathogens to

penetrate the periodontal tissues (Hiyoshi et al., 2022). Also, in

the pathological epithelial lining of periodontal pockets, the

reduction of E-cadherin has been linked to the EMT phenotype

(Saliem et al., 2022, 2023; Kadeh et al., 2023). In an epigenetic study,

hypermethylation of CpG islands in the CDH1 gene was detected in

25% of patients with chronic periodontitis, whereas no such

hypermethylation was observed in healthy individuals (Loo et al.,

2010). In this context, epigenetic silencing has been previously

shown to contribute to the inactivation of E-cadherin (Strathdee,

2002). Finally, physiological mechanical stress (e.g., mastication,

interstitial pressure, and dental manipulations) compromised E-

cadherin intracellular levels and translocation (Lee et al., 2023;

Vitkov et al., 2023).
4.3 E-cadherin in gastrointestinal
mucosal diseases

E-cadherin plays a crucial role in maintaining intestinal

epithelial function and regulating the inflammatory immune

response. Disruption of E-cadherin-mediated cell-cell adhesion

has been linked to increased intestinal permeability, commonly

referred to as “leaky gut,” as well as enhanced infiltration of

inflammatory cells—two key pathophysiological features of IBD.

E-cadherin deficiency is associated with more pronounced colitis

and histopathological changes related to tissue repair, as well as

increased disease severity (Grill et al., 2015). Reduced E-cadherin

expression correlates with the duration and severity of symptoms in

IBD patients (Wilcz-Villega et al., 2014). In mucosal samples from

patients with chronic active UC, decreased E-cadherin was

primarily observed at the lateral membranes of enterocytes,

particularly near sites of active PMN transmigration (Kucharzik

et al., 2001). Furthermore, Motta et al. (2021) identified elastase 2A

(ELA2A), an epithelium-derived elastase distinct from leukocyte-

secreted NE, and linked epithelial elastolytic overload in colonic

cells of IBD patients to E-cadherin degradation. ELA2A

hyperactivity was associated with a pro-inflammatory phenotype,

leading to dysregulation of the cytokine profile (e.g., upregulation of

IL-8/CXCL8, a neutrophil chemoattractant) and activation of

intestinal mucosal immunity (Motta et al., 2021). In addition to

the “autocrine” regulation of downstream signaling processes

caused by the post-shedding E-cadherin disarrangement, a

“paracrine” loop involving the released soluble fragments has also

been hinted (Hu et al., 2016). Intriguingly, E-cadherin peptide

fragments themselves -found in chronic inflammatory states such

as IBD- possess biological properties that contribute to mucosal

wound healing (Gordon et al., 2019).
Frontiers in Cellular and Infection Microbiology 17
Exacerbated mucosal injury in adulthood may result from

neonatal stressor exposure and associated epigenetic changes.

Specific CDH1 polymorphisms, such as the CDH1 GTC risk

haplotype (a 3-SNP haplotype: rs12597188, rs10431923, and

rs9935563), which has an estimated allelic frequency of 21%, have

been linked to abnormal E-cadherin trafficking and are significantly

associated with an increased susceptibility to Crohn’s disease

(Muise et al., 2009). Elevated miRNA expression is a hallmark of

inflammation and EMT in IBD and is inversely correlated with

CDH1 expression in inflamed mucosa (Guz et al., 2020). In a “dual

insult” model of neonatal and adult colonic inflammation, TNF-a-
regulated epigenetic activation of miRNA-155 (miR-155) was found

to significantly suppress E-cadherin expression for a prolonged

period, compared to both single insult and control groups (Kline

et al., 2020). A study by Tian has shown that upregulation of miR-

155 inhibits post-transcriptional E-cadherin protein synthesis

through a RhoA-dependent mechanism (Tian, 2013). Also, miR-

21a-5p has been shown to be upregulated in exosomes derived from

intraperitoneal macrophages in a DSS-induced enteritis model. A

negative correlation was observed between exosomal miR-21a-5p

and E-cadherin expression in enterocytes (Lu et al., 2021).

The adhesive properties of E-cadherin on immune cells, such as

DCs, are also implicated in colitis development. Ihara et al. (2018)

found that E-cadherin was upregulated in a tissue-resident subset of

lamina propria CD11c+ DCs in CD11c-Cre TGF-br2fl/fl mice. E-

cadherin-mediated interactions between CD11c+ monocytes and

the intestinal epithelium promoted Notch signaling activation.

When combined with the abrogated inhibitory effects of TGF-b,
this interaction was colitogenic, driving dysbiosis and abnormal

epithelial differentiation (Ihara et al., 2018). Additionally, the

homing of E-cadherin+CD11+ monocyte-derived DCs to

mesenteric lymph nodes in colitic mice may play a key role in T-

cell-mediated gut inflammation, with TGF-b appearing to limit this

effect (Siddiqui et al., 2010). These DCs can activate naïve T-cells

through robust cytokine and chemokine secretion. Adoptive

transfer of these cells to immunodeficient hosts led to the

expansion of the E-cadherin+ DC population at sites of

accumulation and promoted Th17 responses. Notably, this subset

exhibited high MHC II expression, along with significantly elevated

levels of toll-like receptors and CCR2, compared to E-cadherin (-)

DCs, highlighting their heightened sensitivity to microbial triggers

and increased inflammatory potential (Siddiqui et al., 2010).

Furthermore, E-cadherin was found to engage in inhibitory

interactions with KLRG1 on group 2 innate lymphoid cells

(ILC2). Upon E-cadherin depletion, this interaction is disrupted,

resulting in increased Th2 cytokine levels and excessive ILC2

induction (Lu et al., 2021).

Finally, epithelial barrier dysfunction via E-cadherin proteolysis

has been increasingly implicated in the pathogenesis of

gastroesophageal reflux disease (GERD) (Jovov et al., 2011;

Samuels et al., 2023; Lu et al., 2024). The presence of a 35-kDa

intracellular C-terminal fragment and an increase in soluble N-

terminal fragments of E-cadherin in sera of GERD patients have

been previously reported. This is attributed to ADAM10-mediated

cleavage of E-cadherin, which leads to enhanced esophageal

epithelial permeability (Jovov et al., 2011). Also, pepsin-pH4 has
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been shown to cause E-cadherin fragmentation, which is not

salvaged by known E-cadherin sheddase inhibitors. Acidified

pepsin can cleave full-length E-cadherin (125 kDa), resulting in

38 and 33 kDa C-terminal E-cad/CTF1 and E-cad/CTF2 fragments,

respectively, indicative of regulated intramembrane proteolysis

(RIP). Furthermore, it can induce ADAM10 maturation and drive

transcriptional targets of E-cadherin RIP fragments such as MMPs

(Samuels et al. , 2023). Aside from GERD, E-cadherin

downregulation has also been reported in the pathogenesis of

laryngopharyngeal reflux disease (LPRD), with increased levels of

MMP-7-mediated degradation being observed in LPRD biopsies

(Reichel et al., 2008; Im et al., 2022).
4.4 E-cadherin in pregnancy complications

Spontaneous preterm birth (PTB) and preterm pre-labor

rupture of the membranes (pPROM) are major pregnancy

complications where E-cadherin alterations have been implicated

as part of the EMT process (López-Novoa and Nieto, 2009; Sisto

et al., 2021; Menon, 2022). Interestingly, preterm labor is triggered

by EMT-associated inflammation and immune imbalances at the

fetomaternal interface (Menon et al., 2020). Human amnion cells

can undergo non-canonical EMT, including the downregulation of

E-cadherin, in response to inflammatory mediators such as TNF-a.
This process predisposes the fetal membranes to weakening,

increasing the risk of preterm birth (De Castro Silva et al., 2020).

Pre-eclampsia (PE) is also a common pregnancy complication

involving an inflammatory phenotype and immune perturbations at

the fetoplacental unit (Cornelius, 2018; Michalczyk et al., 2020). E-

cadherin shedding, regulation, and transport play crucial roles in

trophoblast differentiation, fusion, and physiological placental

formation (Shih et al., 2002; Aghababaei et al., 2015; Iwahashi

et al., 2018). However, preeclamptic extravillous trophoblasts

showed a decrease in their E-cadherin expression indicating the

significance of E-cadherin in trophoblast function (Blechschmidt

et al., 2007). Mechanistic studies in early-onset PE placental tissues

showed that E-cadherin expression is associated with the

downregulation of ribosomal protein L39 and the loss of its

suppressive control (Jie et al., 2021). Circular RNAs and miRNAs

have also been implicated in modulating E-cadherin expression,

contributing to the molecular events underlying PE pathogenesis

(Zhu et al., 2020).

Although E-cadherin expression typically declines during

progressing gestation, in pregnancies complicated by PE, placental

E-cadherin levels significantly increase at the protein level. This may

reflect abnormal cytotrophoblast proliferation relative to

syncytiotrophoblasts, indicating an imbalance in the trophoblastic

proliferative unit (Brown et al., 2005). This aligns with a study by

Benian et al., which displayed that elevated E-cadherin levels, as well

as IL-10 and TGF-b1, were significantly higher, were significantly

higher in plasma and placentae of PE patients (Benian, 2002).

Immunohistochemical discontinuity of E-cadherin expression in

the syncytiotrophoblastic basal membrane can constitute a marker

of impaired placental barrier integrity, and by extension pregnancy-

induced hypertension or PE (Pęksa et al., 2022). Despite that, E-
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cadherin upregulation in the syncytiotrophoblast of preeclamptic

placentae has not been considered a disease severity marker (Li

et al., 2014).

In placenta accreta and percreta, trophoblastic E-cadherin is

significantly reduced (Duzyj et al., 2015; Incebiyik et al., 2016).

Similarly, the reduction in E-cadherin expression of placental villi

has been reported in gestational trophoblastic diseases (Li et al.,

2003; Xue et al., 2003). Loss of E-cadherin, induced by Snail

upregulation under hypoxic conditions, can activate a5-integrin
signaling and promote extravillous trophoblast invasiveness

(Arimoto-Ishida et al., 2009).
4.5 E-cadherin in other diseases

E-cadherin plays an important role in pancreatitis and

autodigestive inflammatory diseases. Specifically, cathepsin C

(CTSC) has been reported as an activator of NE, which degrades

E-cadherin. Notably, in models with CTSC deletion, E-cadherin

cleavage—though not neutrophil motility—was reduced, resulting

in milder disease (John et al., 2019). Importantly, E-cadherin

breakdown can be entirely mediated by NE, without the need for

the proteolytic activity of native pancreatic enzymes (Mayerle

et al., 2005).

In atopic dermatitis, E-cadherin has been identified as a

proteolytic substrate of granzyme B, a serine protease that, along

with perforin, is known to mediate lymphocyte-induced apoptosis

(Turner et al., 2021). This suggests that E-cadherin functions as a

“double-faced” molecule, playing roles in both adhesion and

signaling. Its degradation, particularly during neutrophil

transmigration mediated by NE, not only causes epithelial injury

but also promotes the proliferation of surviving epithelial cells to

facilitate repair or potentially drive pathological remodeling. The

shedding of E-cadherin’s ectodomain ultimately supports re-

epithelialization by promoting b-catenin signaling and its

translocation to the nucleus, potentially upregulating canonical

Wnt signaling to mitigate collateral epithelial damage (Zemans

et al., 2011).

Several proteolytic cascades are involved in E-cadherin

degradation and the disassembly of AJs, including a variety of

enzymes such as zinc-dependent MMPs, ADAMs, cathepsins,

kallikrein-7, plasmin, and calpain, all of which catalyze the

proteolytic cleavage of E-cadherin (Rios-Doria et al., 2003;

Grabowska, 2012). In eczematous dermatitis, soluble stimuli like

LPS, proinflammatory cytokines, and TGF-b significantly increase

ADAM10-dependent E-cadherin shedding, impairing keratinocyte

cohesion and contributing to the disease’s molecular pathology

through the activation of MAPK signaling, which regulates sE-cad

release (Maretzky et al., 2008). Of note, enhanced metalloprotease-

catalyzed production of sE-cad has also been linked to EGFR

activation (Zuo et al., 2011). Furthermore, ADAM15-mediated

ectodomain shedding plays a role in stabilizing HER2 and HER3

heterodimerization, leading to receptor activation and proliferative

signaling (Najy et al., 2008).

In renal tissue damage and inflammation, E-cadherin is found to

be down-regulated upon cisplatin-induced acute renal injury (AKI),
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whereas E-cadherin levels amelioration is suggested to alleviate the

inflammatory effects and rescue from AKI (Gao et al., 2018). E-

cadherin overexpression in M2 macrophages (IL-4/IL-13-induced,

alternatively activated macrophages) has been shown to attenuate the

inflammatory cytokine response to LPS stimulation, indicating a

protective, anti-inflammatory role of E-cadherin on immune cells

(Van Den Bossche et al., 2015). Conversely, a pro-inflammatory

capacity of sE-cad has been identified, contributing to TNF-a
production in synovitis via its interaction with lectin receptor

LRG1 on T-cells (Lode Melis et al., 2014).

In prostate tissue, intact membrane E-cadherin has been found

to be considerably downregulated with age and inflammation

(Pascal et al., 2021). In fact, one of the hallmarks of benign

prostate hyperplasia, termed “inflammaging” (i.e., chronic slow-

progressing inflammation in the aging prostate), was phenotypically

enhanced even in E-cadherin deficient mice without complete

deletion (CDH1+/- mice), accompanied by increased prostatic

macrophage infiltration and bladder overactivity (Pascal

et al., 2022).

In posterior capsular opacification, a complication of cataract

surgery, proliferation, migration, and EMT/fibrotic characters of

residual lens epithelial cells are observed. IL-8 seems to promote

EMT by mediating CXCR1/2/NF-kB/p65 signal and subsequent

RhoA activation, suppressing the expression of E-cadherin and ZO-

1 to facilitate cell migration (Si et al., 2024). Downregulation of

junctional proteins, including E-cadherin, claudins and occludin

has been reported in other scar epithelia, including idiopathic

subglottic stenosis (Berges et al., 2024).
5 Therapeutic strategies for barrier
restoration/rescue of E-cadherin

Understanding the molecular mechanisms that regulate E-

cadherin function is crucial for developing novel therapeutic

strategies aimed at preserving epithelial barrier integrity and

preventing bacterial infections. Several approaches have been

proposed to modulate or restore E-cadherin function, which is

essential for maintaining epithelial integrity and preventing disease

progression. Various modalities have been explored, including

small molecules and compounds that stabilize the E-cadherin-

catenin complex (Tafrihi and Nakhaei Sistani, 2017), cadherin

and cadherin-mimetic peptides (Li et al., 2019; He et al., 2020),

and antibodies that target specific cadherins (Micalizzi et al., 2022).

These strategies have shown great potential for treating diseases

linked to impaired epithelial barriers and for restoring E-cadherin

function. Below, we discuss potential treatments aimed at

enhancing E-cadherin expression and improving epithelial barrier

function (Table 3).
5.1 Vitamin D supplementation

Interestingly, supplemental vitamin D was recently reported to

reinforce E-cadherin-based junctions by suppressing TNF-a-
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induced NF-kB signaling and consequently downregulating

degradative MMP-9 production in vitro (Oh et al., 2019).

Vitamin D can regress LPS-triggered inflammation in oral

keratinocytes by hindering NF-kB activation (Zhao et al., 2018).

Vitamin D in its 1.25(OH)2D3 form is also known to regulate EMT

and activity of TGF-b and Wnt/b-catenin signaling pathways, in

addition to controlling E-cadherin turnover through modulating

expression profiles of effectors on E-cadherin degradation and

membranal stabilization, like p120ctn, Kaiso, and NEDD9 (Sari

et al., 2020). Promisingly, vitamin D treatment exerts its protective

effects in vivo by rescuing E-cadherin expression and enhancing

binding affinity and membranal sequestration of b-catenin in

conjunction with attenuating transcriptional activity and nuclear

fraction of the latter (Xin et al., 2017). MART-10, a noncalcemic

calcitriol analogue, significantly inhibited MMP-2 and MMP-9

synthesis more potently compared to 1a,25(OH)2D3, while it

blocked the EMT process by bolstering E-cadherin expression

and downregulating suppressive transcription factors Snail and

Slug (Chiang et al., 2014).
5.2 Microbial metabolites and
commensal microorganisms

10-Hydroxy-cis-12-octadecenoic acid (HYA), a bioactive

product of fatty acid metabolism in probiotic microorganisms

such as Lactobacillus spp., has previously exhibited barrier-

recovering effects. In DSS-colitis mice, orally administered HYA

restored TJ molecules and alleviated intestinal inflammation

through G protein-coupled receptor 40 (GPR40) (Miyamoto

et al., 2015). In experimental periodontitis, activation of GPR40

by HYA ameliorated gingival barrier function and repressed local

inflammatory cytokine production in vivo. Notably, HYA was

found to endow E-cadherin with proteolytic resistance against P.

gingivalis, suggestively through post-translational modifications

conferred in a HYA-GPR40-ERK-dependent manner (Yamada

et al., 2018).

Gut symbionts are well-known to display anti-inflammatory

properties, with Akkermansia muciniphila being a representative

Gram(-) anaerobe. In calvarial infection and experimental

periodontitis, A. muciniphila attenuated P. gingivalis-induced

bone destruction and inflammatory responses; the gut symbiont

suppressed pro-inflammatory IL-12 secretion and gingipain

generation, whereas it raised anti-inflammatory IL-10, and

improved the expression of junctional markers integrin-b1, E-
cadherin and ZO-1 (Huck et al., 2020). Lactobacillus gasseri

ATCC33323 supplementation was shown to protect the intestinal

mucosal barrier and alleviate colitic lesions in mice, by ameliorating

inflammatory cell infiltration and inflammatory markers (IL-1b, IL-
6, TNFa). Importantly, it led to recovery of junctional proteins like

E-cadherin, ZO-1, claudin-1, and occludin, retaining the

localization of E-cadherin/b-catenin and E-cadherin/p120ctn

complexes. Specifically, it promoted E-cadherin expression via

regulation of CDH1 transcription by NR1I3, which potentially

contributed to the anti-inflammatory effects (Qian et al., 2024).
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5.3 Protease inhibitors

Inhibition of E-cadherin-degrading proteases such as MMPs

and bacterial proteases is a principal approach to abrogate the

destabilizing effects of E-cadherin cleavage. The group of Haderer

and others used broad-spectrumMMP inhibitor batimastat (BB-94)

as a blocker of E-cadherin degradation in Caco-2 and live SBP-

inducing bacteria (E. coli and P. mirabilis) co-culture setup

(Haderer et al., 2022). Of note, batimastat was one of the first

MMP inhibitors to be used in clinical trials, particularly in

malignant ascites (Parsons et al., 1997). Yet, it remains classified

as an experimental drug as it did not progress to widespread clinical

use in humans, paving the way for the development of other MMP

inhibitors with improved pharmacological properties.

Inhibitor GI254023X, a hydroxamate-based inhibitor

preferentially blocking ADAM10, was found to abrogate E-cadherin

shedding in a dose-dependent manner, retaining E-cadherin cell

surface expression and preventing b-catenin translocation after

ionomycin treatment in HaCaT keratinocytes (Maretzky et al., 2005).

More recently, amprenavir, an identified HIV protease inhibitor, has

shown some promise in antireflux chemopreventive potential, rescuing the

esophageal epithelial barrier from acidified pepsin-mediated barrier
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disruption, and protecting against E-cadherin cleavage, and MMP

induction. In this study using BAR-T cells, 10 µM amprenavir fully

salvaged pepsin-mediated cell dissociation and notably rescued E-cadherin

RIP, with increased full-length E-cadherin and decreased 33 and 38 kDa

fragments compared to acidified pepsin alone. 1 µM amprenavir only

partially protected from pepsin-induced dissociation and yielded a slight

increase of full-length E-cadherin. Also, 10 mM amprenavir led to

statistically significant inhibition of pH4 pepsin-mediated upregulation of

MMPs -1, -7, -9, and -14 (Blaine-Sauer et al., 2023).
5.4 Antibody-based modalities

Bandyopadhyay et al. showed that activating E-cadherin

monoclonal antibodies (mAbs) promoted epithelial barrier function

in vitro and in vivo and hindered inflammatory progression in IBD

(Bandyopadhyay et al., 2021). The human E-cadherin activating

antibody Fabs selectively mitigated the loss of barrier function and

reduced the decrease in TEER in epithelial cells exposed to

inflammatory stimuli, such as RSV-L19 infection, in vitro.

Additionally, it enhanced barrier function by increasing TEER in

resting C2BBe1 Caco2 cells, where there was constitutive
TABLE 3 Summary of various therapeutic strategies aimed at restoring and stabilizing the epithelial barrier and E-cadherin function.

Therapeutic Approaches Description References

Vitamin Supplementation

Vitamin D reinforces E-cadherin junctions by suppressing TNF-a-induced NF-kB
signaling, reducing MMP-9 production, regulating EMT, and modulating TGF-b and Wnt/
b-catenin pathways.
Vitamin D in its 1.25(OH)2D3 form rescues E-cadherin expression and enhances b-catenin
binding.
MART-10, a noncalcemic calcitriol analogue, inhibits MMP-2 and MMP-9 synthesis and
blocks EMT by bolstering E-cadherin expression.

(Chiang et al., 2014; Xin et al.,
2017; Zhao et al., 2018; Oh et al.,
2019; Sari et al., 2020)

Microbial Metabolites and
Commensal Microorganisms

HYA from Lactobacillus spp. restores TJ molecules, reduces inflammation, and protects E-
cadherin from proteolysis.
Akkermansia muciniphila reduces P. gingivalis-induced bone destruction and inflammation
and enhances junctional marker expression.
Lactobacillus gasseri ATCC33323 safeguards the intestinal barrier, reduces inflammation,
and bolsters the expression of E-cadherin and other junctional markers.

(Miyamoto et al., 2015; Yamada
et al., 2018; Huck et al., 2020;
Qian et al., 2024)

Degradation Blockade and
Protease Inhibitors

BB-94 inhibits E-cadherin-degrading MMPs.
GI254023X, an ADAM10 inhibitor, prevents E-cadherin shedding and b-catenin
translocation.
Amprenavir, an HIV protease inhibitor, rescues the esophageal epithelial barrier from
acidified pepsin-mediated disruption.

(Maretzky et al., 2005; Haderer
et al., 2022; Blaine-Sauer
et al., 2023)

Antibody-based Modalities

E-cadherin monoclonal antibodies (mAbs) enhance epithelial barrier function and limit
IBD progression.
E-cadherin activating mAbs reduce loss of barrier function and inflammatory progression
in IBD.

(Bandyopadhyay et al., 2021)

Miscellaneous

Banxia Xiexin Decoction inhibits F. nucleatum colonization and E-cadherin/b-catenin
signaling in colitis-to-cancer progression.
Chitosan (Q) modulates E-cadherin-aEb7 axis, enhances epithelial cell migration and
wound healing, and increases E-cadherin expression.
Non-viable heat-killed bacteria exposure such as tyndallized bacteria significantly enhances
E-cadherin levels in bronchial cells and reinforces airway epithelium´s barrier function and
repair potential, potentially counteracting EMT.
Ferrostatin-1 inhibits allergen and pollutant-caused ferroptosis and allows E-cadherin
recovery in vitro and in vivo.

(Di Vincenzo et al., 2024; Jiang
et al., 2024; Ma et al., 2024; Moine
et al., 2024)
Therapeutic approaches and highlighted modalities are indicated in bold.
TNF-a, tumor necrosis factor alpha; NF-kB, nuclear factor kappa B; MMP, matrix metalloproteinase; EMT, epithelial-to-mesenchymal transition; TGF-b, transforming growth factor b1; 19-
nor-2a-(3-hydroxypropyl)-1a,25-Dihydroxyvitamin D3; HYA, 10-hydroxy-cis-12-octadecenoic acid; TJ, tight junction; BB-94, batimastat; ADAM, A- disintegrin and metalloproteinase; HIV,
human immunodeficiency virus; mAbs, monoclonal antibodies; IBD, inflammatory bowel disease.
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downregulation of junctional proteins. Treatment with E-cadherin

activating mAbs significantly limited IBD progression in IL10-/- mice

with spontaneous UC, as measured with histology, lesion severity

scores, and non-invasive biomarkers fecal lipocalin 2 and albumin

protein content in mice stool, implying a restoration of the barrier

function (Bandyopadhyay et al., 2021).
5.5 Miscellaneous

Alternative approaches that prevent E-cadherin-mediated

bacterial adhesion to epithelial cells have also been described.

Banxia Xiexin Decoction, a clinically effective traditional Chinese

treatment for colitis was founded to delay the colitis-to-cancer

progression by inhibiting F. nucleatum colonization on colonic

epithelial cells. This occurs by interfering with the binding of

adhesin FadA to E-cadherin expressed on the colonic epithelium

as well as dampening the activation of the E-cadherin/b-catenin
downstream signaling, as observed by downregulation of targets b-
catenin, Axin2, and Cyclin D1 (Jiang et al., 2024).

Polysaccharides chitin and more specifically, oral administration

of its derivative chitosan (Q) was found to modulate the E-cadherin-

aEb7 (CD103) axis, involving TLR4 and IFNAR signaling to

reinforce the intestinal barrier integrity. E-cadherin and aEb7
interaction plays a critical role in anchoring intraepithelial

lymphocytes to the epithelium, where they establish their intestinal

barrier residence. Q was shown to enhance epithelial cell migration,

wound healing and increase E-cadherin expression in IEC-18 cells in

vitro and isolated IECs in vivo, priming CD103 induction in

lymphocytes and promoting their localization on the epithelium.

This process is thought to drive a stronger immunosurveillance and

potentially protect against pathogens (Moine et al., 2024).

Lately, heat-killed non-viable probiotics have been explored as a

potential strategy for mounting immune responses in infections and

promoting barrier function in wound healing. Intriguingly, the use

of non-viable heat-killed bacteria, such as tyndallized bacteria (TB)

was shown to significantly enhance E-cadherin levels in bronchial

cells. Moreover, TB exposure contributed to airway epithelium´s

barrier function and repair potential, in conjunction with reduced

release of TGF-b1, which could have a counteracting effect on EMT

(Di Vincenzo et al., 2024).

Interestingly, ferroptosis inhibitors, such as ferrostatin-1, have

been shown to alleviate alveolar epithelial damage by restoring E-

cadherin. Ferroptosis, namely regulated death accompanied by iron

accumulation and lipid peroxidation, has been associated with

exposure to environmental pollutants and allergens and appears to

inversely correlate with E-cadherin-mediated epithelial integrity.

Strikingly, in ferroptosis models induced by birch pollen allergen

Bet v, ferrostatin-1 treatment rescued E-cadherin levels both in vitro

and in the lung of Bet v 1-challenged asthmatic mice (Ma et al., 2024).
6 Discussion

Once bound to the epithelium, pathogenic bacteria may cross

epithelial barriers and invade the underlying host tissues.
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Intercellular adhesion proteins, such as E-cadherin, have been

exploited as host cell entry receptors by many pathogenic microbes

for mediating host-pathogen interactions. Of note, viral, fungal

and parasitic infections have also been reported to disrupt the

epithelial barrier function by targeting E-cadherin (Matthews

et al., 2003; Krishna et al., 2005; Pärnänen et al., 2010; Su et al.,

2011; Wächtler et al., 2012; Li et al., 2016; Osman et al., 2022; Phan

et al., 2023). Deciphering these host-pathogen interaction

mechanisms has enabled researchers to understand novel

constituents of various cell signaling events and other molecular

phenomena, such as the endocytosis machinery leveraged by

various invading infectious agents. While the cellular

mechanisms elicited upon infection and the molecular and

structural patterns of recognition employed have been well

explored in the case of certain host-pathogen interactions, as

discussed above, there is an increasing requirement for a deeper

understanding of the remaining interactions in systematic

diseases, such as inflammation (e.g., along the oral-gut axis),

placental diseases, cancer, and other epithelial pathologies.

Notably, studying the epithelial barrier and CAMs, such as E-

cadherin, in the context of immune responses and paracrine

communication, is contributing to a new paradigm shift in host

physiology and disease pathogenesis. Interestingly, there is an

ever-growing body of literature highlighting how commensal

microbiota, the host immune system, and epithelia are

intertwined and involved in complex cross-talks (Goto, 2019;

Schreiber et al., 2024). The role of E-cadherin in inflammation

and EMT is not limited to a single tissue or organ but extends to a

multitude of epithelial tissues due to its ubiquitous presence. Its

involvement in leukocyte recruitment, maintenance of epithelial

barrier integrity, and modulation of inflammatory signaling

pathways underscores its significance in the inflammatory

response. Further exploration of the mechanisms by which E-

cadherin modulation influences barrier dysfunction will yield

important insights into the pathogenesis of related disorders and

the increased susceptibility to infectious diseases.

It is tempting to speculate that personalized and precision

medicine are gaining momentum and becoming more prominent.

Focusing on the host microbiome as a critical regulator of the

epithelial barrier, along with understanding the interplay of host

immune components, could open new avenues for designing and

developing tailored, more effective therapeutics.
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Glossary

ADAM A-disintegrin and metalloproteinases
Frontiers in Cellular a
AKI acute renal injury
AJs adherens junctions
a-cat a-catenin
AMOTL2 angiomotin-like 2
APC anaphase-promoting complex
BAL bronchoalveolar lavage
BAR B-cell antibody receptor
BB-94 batimastat
BFT/FRA fragilysin
b-cat b-catenin
b-TrCP beta-transducin repeats-containing protein
CAMs cell adhesion molecules
CagA cytotoxin-associated gene A
cbHtrA Coxiella burnetii HtrA
CCL2 chemokine (C-C motif) ligand 2
CDC42 cell division cycle 42
CK1 casein kinase 1
C-myc cellular myelocytomatosis oncogene
COPD chronic obstructive pulmonary disease
CPB2 Clostridium perfringens beta2
CRC colorectal cancer
CTSC cathepsin C
CTF carboxy-terminal fragment
CXCL8 chemokine (C-X-C motif) ligand 8
CXCR1/2 CXC chemokine receptors 1/2
DCs dendritic cells
DNMT DNA methyltransferase
DSS dextran sulfate sodium
EGF epidermal growth factor
EGFR epidermal growth factor receptor
ELF epithelial lining fluid
ELA2A elastase 2A
EMT epithelial-to-mesenchymal transition
EPLIN epithelial protein lost in neoplasm
ERK extracellular signal-regulated kinase
ExlA exolysin
ExoA exotoxin A
Fabs fragment antigen-binding regions
FadA protein adhesion A
FceRI high-affinity IgE receptor
FEV1 forced expiratory volume
GERD gastroesophageal reflux disease
GelE gelatinase
GPR40 G protein-coupled receptor 40
GSK3b glycogen synthase kinase-3 beta
HA hemagglutinin
nd Infection Microbiology 30
HER human epidermal growth factor receptor
HIV human immunodeficiency virus
HMGB1 high mobility group box 1
Hla a-hemolysin
HtrA high temperature requirement A
HYA 10-hydroxy-cis-12-octadecenoic acid
IBD inflammatory bowel disease
IECs intestinal epithelial cells
IFNAR interferon-alpha/beta receptor
ILC2 group 2 innate lymphoid cells
IL interleukin
ILY intermedilysin
IgE immunoglobulin E
K19 keratin 19
KLRG1 killer cell leucine-rich alpha-2-glycoprotein
LATS1/2 large tumor suppressor kinase 1/2
LRR20 leptospira leucine-rich repeat 20
LPRD laryngopharyngeal reflux disease
LPS lipopolysaccharide
LRG1 leucine rich alpha-2-glycoprotein 1
MAPK mitogen-activated protein kinase
MART-10 19-nor-2a-(3-hydroxypropyl)-1a,25-Dihydroxyvitamin D3
MHC II major histocompatibility complex class II
miRNA micro ribonucleic acid
MLC myosin light chain
MMP matrix metalloproteinase
MOI multiplicity of infection
mAbs monoclonal antibodies
NE neutrophil elastase
NEDD9 neural precursor cell expressed developmentally down-

regulated protein 9
NF-kB nuclear factor kappa B
NO nitric oxide
NP nasopharyngeal
NTF amino-terminal fragment
OMVs outer membrane vesicles
PAR protease-activated receptor
PCP planar cell polarity
PE pre-eclampsia
PFO perfringolysin O
PGE2 prostaglandin E2
PLY pneumolysin
PM2.5 fine particulate matter (diameters generally 2.5 micrometers

and smaller)
PMNs polymorphonuclear neutrophils
pPROM preterm pre-labor rupture of the membranes
PRRs pattern-recognition receptors
PsaA Pneumococcal surface adhesin A
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PTB preterm birth
Frontiers in Cellular a
RIP regulated intramembrane proteolysis
ROCK Rho-associated protein kinase
ROS reactive oxygen species
RhoA Ras homolog family member A
RSV respiratory syncytial virus
SAV1 Salvador family WW domain containing protein 1
SBP spontaneous bacterial peritonitis
sE-cad soluble E-cadherin fragment
SNP single nucleotide polymorphism
Spa S. aureus protein A
ST2 suppression of tumorigenicity 2
TARC thymus and activation-regulated chemokine
TAZ transcriptional co-activator with PDZ-binding motif
TcdA/TcdB Clostridioides difficile toxin A/B
TCF/LEF T-cell factor/Lymphoid enhancer factor
nd Infection Microbiology 31
TEAD transcriptional enhanced associate domain
TEER transepithelial electrical resistance
TB tyndallized bacteria
TGF-b1 transforming growth factor-b1
Th2 T helper 2
TIR translocated intimin receptor
TJs tight junctions
TLR toll-like receptor
TNF tumor necrosis factor
UC ulcerative colitis
UPS ubiquitin-proteasomal system
VacA vacuolating cytotoxin A
VEGF Vascular endothelial growth factor
YAP yes-associated protein
ZEB-1 zinc finger E-box-binding homeobox 1
ZO zonula occludens
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