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Guangzhou, China, 2State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious
Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of
Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis,
Guangdong Institute of Hepatology, Guangzhou, China, 3Department of Infectious Diseases, The Fifth
Affiliated Hospital of Zunyi Medical University, Zhuhai, China, 4Second Department of Elderly
Respiratory, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences,
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Background: Although highly active antiretroviral therapy (HAART) has greatly

enhanced the prognosis for people living with HIV (PLWH), some individuals fail

to achieve adequate immune reconstitution, known as immunological

nonresponse (INR), which is linked to poor prognosis and higher mortality.

However, the early prediction and intervention of INR remains challenging in

South China.

Methods: This study included 1,577 PLWH who underwent at least two years of

HAART and clinical follow-up between 2017 and 2022 at two major tertiary

hospitals in South China. We utilized logistic multivariate regression to identify

independent predictors of INR and employed restricted cubic splines (RCS) for

nonlinear analysis. We also developed several machine-learning models,

assessing their performance using internal and external datasets to generate

receiver operating characteristic (ROC) curves, calibration curves, and decision

curve analysis (DCA). The best-performing model was further interpreted using

Shapley additive explanations (SHAP) values.

Results: Independent predictors of INR included baseline, 6-month and 12-

month CD4+ T cell counts, baseline hemoglobin, and 6-month hemoglobin

levels. RCS analysis highlighted significant nonlinear relationships between

baseline CD4+ T cells, 12-month CD4+ T cells and baseline hemoglobin with

INR. The Random Forest model demonstrated superior predictive accuracy, with

ROC areas of 0.866, 0.943, and 0.897 across the datasets. Calibration was robust,

with Brier scores of 0.136, 0.102, and 0.126. SHAP values indicated that early CD4

+T cell counts and CD4/CD8 ratio were crucial in predicting INR.
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Conclusions: This study introduces the random forest model to predict

incomplete immune reconstitution in PLWH, which can significantly assist

clinicians in the early prediction and intervention of INR among PLWH.
KEYWORDS

HIV/AIDS, CD4+ T cell counts, highly active antiretroviral therapy, immune
reconstitution, immunological nonresponse
1 Introduction

Highly active antiretroviral therapy (HAART) is regarded

as the most efficacious approach to treating HIV infection,

effectively suppressing viral replication and facilitating immune

reconstitution (Yan et al., 2023). However, there is increasing

evidence that poor immune reconstitution remains a common

issue in clinical practice, with prevalence rates potentially

exceeding 10-40% (Ma et al., 2024; Yang et al., 2020; Liu et al.,

2024). Despite complete viral suppression by HAART, people living

with HIV (PLWH) who experience immune non-response (INR)

face increased risks of both AIDS-defining and non-AIDS-defining

illnesses (Garcıá et al., 2004; Achhra et al., 2010; Trickey et al.,

2017). Consequently, clinical guidelines recommend using clinical

immunological monitoring as an alternative biomarker of treatment

response to identify non-responders to HAART early (Deeks et al.,

2015; AIDS and Hepatitis C Professional Group et al., 2021).

Subsequently, the recovery of CD4+ T cell counts post-HAART

has gradually become one of the predictors of clinical prognosis in

PLWH (Committee TUCHC (CHIC) SS, 2007; Guiguet et al., 2009;

Pu and Wu, 2024).

Numerous cohort studies have evaluated factors associated with

CD4+ T cell recovery post-HAART, identifying that older age,

lower baseline CD4+ T cell counts, higher baseline HIV RNA levels,

reduced thymic function, increased T cell activation during

treatment, and detectable viremia are all linked to poorer CD4+ T

cell recovery (Kaufmann et al., 2005; Gazzola et al., 2009; Boatman

et al., 2019; Yang et al., 2020). In recent years, a variety of

mathematical models have been developed for the prevention and

treatment of HIV/AIDS (Nah et al., 2017; Mutoh et al., 2018; Wang

et al., 2021; Li et al., 2024), which have provided theoretical

guidance and recommendations for HIV treatment. However, the

current models predominantly rely on traditional linear approaches

such as logistic regression (Wang et al., 2024). This gap suggests a

need for more sophisticated modeling techniques that can integrate

a broader range of biological markers and dynamic changes over

time to enhance the prediction and management of HIV

treatment outcomes.

In this study, we aimed to identify risk factors for INR among

PLWH in South China who have been treated with standard HAART

for at least 2 years. The objective is to develop machine learning
02
predictive models that utilize multiple clinical indicators from

baseline, 6 months, and 12 months to predict whether they will

experience INR after two years of HAART. This model will assist

clinicians in timely predicting immune responses and implementing

interventions to enhance immune function. Additionally, the

calibration and diagnostic capabilities of the machine learning

models were evaluated in both internal and external validation sets.
2 Methods

2.1 Study design and participants inclusion
and exclusion criteria

This study is based on the follow-up cohorts of PLWH at

Nanfang Hospital and the Fifth Hospital of Zunyi, where

participants have been undergoing long-term treatment and

regular follow-ups at HIV clinics. A total of 1577 participants

were enrolled based on defined inclusion and exclusion criteria.

The inclusion criteria were: 1) a baseline CD4+ T cell counts of less

than 350 cells/mL at the initiation of HAART, with continuous

follow-up for 2 years, and two HIV RNAmeasurements of less than

50 copies/mL; 2) age 18 years or older, with complete baseline, 6-

month, 12-month, and 24-month CD4+ T cell counts. The

exclusion criteria included: 1) poor treatment adherence or a

history of treatment interruption; 2) concurrent malignancy or

long-term use of immunosuppressive medications; and 3)

incomplete clinical data. As illustrated in Figure 1, the cohort

from Nanfang Hospital was divided into a training set and an

internal validation set in a 7:3 ratio, while the cohort from the Fifth

Hospital of Zunyi was designated as the external validation set.
2.2 Ethics approval and consent
to participate

The research received approval from the Institutional Ethics

Committee of Nanfang Hospital (study identifier: NFEC-2021-448)

and adhered to the Helsinki Declaration of 1964, along with its

subsequent updates. Informed consent was obtained from

all participants.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1466655
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fcimb.2025.1466655
2.3 Data collection and definition

We systematically collected demographic and clinical parameters

of participants including age, gender, HAART regimens, HBsAg

positivity, anti-HCV positivity, HIV viral load, and laboratory

measurements at baseline, 6 months, 12 months, and 24 months

into treatment. These measurements encompassed CD4+ T cell counts,

CD8+ T cell counts, CD4/CD8 ratios, Platelet (PLT), creatinine (CR),

hemoglobin (HGB), white blood cell count (WBC), aspartate

aminotransferase (AST), alanine aminotransferase (ALT),

triglycerides (TG), total cholesterol (CHOL), and fasting plasma

glucose (FPG). The aforementioned data were obtained from clinical

records or databases.

Currently, there is no universally accepted definition for

immune reconstitution failure. In this study, INR was defined as

having two consecutive HIV RNA measurements <50 copies/mL

after two years of HAART, still maintaining a CD4+ T lymphocyte

count of <350 cells/µL (Cuzin et al., 2007; Gunda et al., 2017).
2.4 Construction, evaluation, and
interpretation of predictive models

In this study, variables from the training set that demonstrated

significance at a p-value <0.05 in univariate analysis were included

in the model construction. We employed several machine learning

algorithms to predict INR classification, including the Logistic
Frontiers in Cellular and Infection Microbiology 03
Regression Model (LRM), Random Forest (RF), XGBoost,

Support Vector Machine (SVM), Naive Bayes, Decision Trees,

neural network, and k-nearest Neighbors (KNN). To prevent

overfitting and enhance the generalizability of the models, a 10-

fold cross-validation method was employed for model evaluation,

with iterative refinements through repeated trials.

To further assess and compare the predictive performance of

these models, we constructed receiver operating characteristic

(ROC) curves and determined the area under the ROC curve

(AUC). An AUC value closer to 1 indicates better predictive

performance. Additionally, we utilized calibration curves to

evaluate the consistency between the observed and predicted

risks. The more the calibration curve of the model aligns with the

45 - degree line, and the closer the value of the Brier score is to 0, the

more the predicted probability matches the observed event

incidence. Furthermore, decision curve analysis (DCA) was used

to evaluate the clinical utility of the models. By comparing the net

benefits of the model with two default strategies (treating all or

none), DCA provides insights into the clinical value of the models.

To improve the interpretability of machine learning models, which

are often regarded as “black box” models due to their complex and

opaque decision-making processes, we applied Shapley Additive

Explanations (SHAP) analysis. SHAP is a cooperative game theory-

based approach that quantifies each feature’s contribution by assessing

its influence on model predictions. A SHAP value greater than 0

indicates a positive contribution of the feature to the prediction, while a

value less than 0 indicates a negative contribution. The larger the SHAP
FIGURE 1

Study flow diagram. VIF, variance inflation factor; SVM, support vector machine; KNN, k-nearest neighbors; ROC, receiver operating characteristic;
DCA, decision curve analysis; SHAP, SHapley Additive exPlanations.
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value, the greater the feature’s influence on the prediction. In our study,

we visualized these contributions using importance ranking charts,

which highlight the relative weight of each feature in influencing the

outcome. Additionally, we employed partial dependence plots to

demonstrate how each feature affects the predicted results,

illustrating the relationship between individual features and the

model’s output while considering the influence of other variables.
2.5 Statistical analysis

In our analysis, datasets that conformed to a normal

distribution were described using the mean ± standard deviation,

and comparisons between two groups were conducted using

Student’s t-test. For datasets that were non-normally distributed,

comparisons were made based on the median and interquartile

range, with the Mann-Whitney U test applied for statistical

evaluation. Categorical variables were summarized as frequencies

and percentages and analyzed using either the chi-square test or

Fisher’s exact test, as appropriate. Independent risk factors for INR

were identified through univariate and multivariate logistic

regression analysis. To evaluate the dose-response relationship

between continuous variables and INR, we employed restricted

cubic splines (RCS). This method enables the visualization and

quantification of potential non-linear associations, and by analyzing

the shape of the dose-response curve, we can identify critical
Frontiers in Cellular and Infection Microbiology 04
thresholds where the relationship between the predictor and the

outcome changes. It is important to note that all aspects of data

analysis and graphical representation were performed using R

version 4.2.1. All tests conducted in this study were two-tailed,

and a p-value <0.05 was considered statistically significant.
3 Result

3.1 Baseline characteristics and follow-up
data changes in PLWH

In the longitudinal cohort study of PLWH to predict the risk of

INR during follow-up, we retrospectively included 903 PLWH from

Nanfang Hospital and 674 PLWH from the Fifth Hospital of Zunyi

University, who had been under treatment for more than two years.

These cohorts served as the internal and external datasets, respectively.

As shown in Table 1, Nanfang Hospital enrolled 903 participants, with

532 achieving immune response (IR) and 371 not achieving IR, while

the Fifth Hospital of Zunyi University included 674 participants, with

408 in the IR group and 266 in the INR group. In both cohorts, the INR

group exhibited significantly higher ages and viral loads compared to

the IR group, while CD4+ T cell counts were notably lower in the INR

group. There were no significant differences between the two groups in

terms of gender, HAART regimens, and the prevalence of baseline

HBsAg and anti-HCV.
TABLE 1 The baseline clinical characteristics of the internal and external datasets.

Characteristics
Nanfang Hospital, N= 903

The Fifth Affiliated Hospital of Zunyi Medical
University, N = 674

IR, N = 532 INR, N = 371 P value IR, N = 408 INR, N = 266 P value

Age, years 31.00 [24.75, 41.25] 35.00 [27.50, 46.50] <0.001 30.00 [25.00, 40.00] 36.50 [29.00, 46.00] <0.001

Gender 0.064 0.578

Female 41 (7.71%) 42 (11.32%) 61 (14.95%) 44 (16.54%)

Male 491 (92.29%) 329 (88.68%) 347 (85.05%) 222 (83.46%)

HAART Regimen 0.225 0.039

INSTI based 140 (26.32%) 116 (31.27%) 29 (7.11%) 33 (12.41%)

NNRTI based 380 (71.43%) 245 (66.04%) 342 (83.82%) 216 (81.20%)

PI based 12 (2.26%) 10 (2.70%) 37 (9.07%) 17 (6.39%)

Baseline HBsAg 0.179 0.360

HBsAg negative 472 (88.72%) 318 (85.71%) 368 (90.20%) 234 (87.97%)

HBsAg positive 60 (11.28%) 53 (14.29%) 40 (9.80%) 32 (12.03%)

Baseline AntiHCV 0.744 0.811

AntiHCV negative 526 (98.87%) 368 (99.19%) 397 (97.30%) 258 (96.99%)

AntiHCV positive 6 (1.13%) (0.81%) 11 (2.70%) 8 (3.01%)

Baseline HIV load, log10(copies/ml) 4.31 [3.74, 4.74] 4.50 [3.87, 4.90] 0.003 4.55 [4.14, 4.98] 4.84 [4.37, 5.17] <0.001

Baseline CD4+T cells, cells/ml 252.00 [199.75, 298.00] 122.00 [59.00, 191.50] <0.001 249.00 [183.00, 301.00] 121.50 [34.25, 192.75] <0.001
fr
HAART, highly active antiretroviral therapy; INSTI, integrase strand transfer inhibitor; NNRTI, non-nucleoside reverse transcriptase inhibitor; PI, protease inhibitor; HBsAg, hepatitis B surface
antigen; AntiHCV, anti-hepatitis C virus antibody.
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We visualized the clinical characteristics of PLWH at each follow-

up point using line graphs (Figure 2) and compared the levels between

the IR group and the INR group. We observed that at each follow-up

point, the IR group exhibited higher levels of CD4+ T cells, CD4/CD8

ratio, WBC counts, HGB levels, and PLT levels compared to the INR

group. However, differences in CD8+ T cells, liver function markers

such as ALT and AST, lipid levels including TG and CHOL, renal

function as indicated by CR, and FPG were only present at certain

follow-up points. A similar analysis was conducted in the external

dataset (Supplementary Figure 1), and the results were consistent. The

only exception was that the CD8+ T cell levels were also higher in the

IR group compared to the INR group.
3.2 Independent risk factors associated
with poor immune response in PLWH

To investigate the factors influencing INR, we conducted a

univariate logistic analysis that identified 20 significant variables

(Figure 3). Given the potential for multicollinearity among these

variables, we conducted a collinearity test on variables with a p-

value < 0.05 from the logistic univariate analysis by calculating the
Frontiers in Cellular and Infection Microbiology 05
variance inflation factor (VIF) (Supplementary Figure 2). Since all

parameters had a VIF value less than 10, all were included in the

multivariate analysis and identified independent factors for INR as

Baseline-CD4 (OR = 0.995, P = 0.030), 6M-CD4 (OR = 0.992, P <

0.001), 12M-CD4 (OR = 0.993, P < 0.001), Baseline-HGB (OR =

1.023, P = 0.002), and 6M-HGB (OR = 0.968, P = 0.014).

To further analyze the relationship between baseline parameters

and INR, we conducted the same analysis and found that in the

multivariate analysis (Supplementary Figure 3), age (OR = 1.021, P =

0.010), HIV load (OR = 0.725, P = 0.009), baseline CD4 (OR = 0.983,

P < 0.001), baseline WBC (OR = 0.842, P = 0.008) and baseline HGB

(OR = 1.012, P = 0.014) were independently associated with INR.
3.3 Dose-response relationship between
6M-CD4, 12M-CD4, baseline-HGB, 6M-
HGB and INR

Through RCS analysis, we further investigated the relationship

between independent factors and INR incidence (Figure 4). We

observed that 6M-CD4 and 6M-HGB showed a linear relationship

with INR (overall p<0.05, nonlinearity p>0.05), with threshold
FIGURE 2

The changes in the clinical characteristics of PLWH within the internal dataset across four follow-up points The changes in various clinical
characteristics at different follow-up time points including CD4+T cells (A), CD8+T cells (B), CD4/CD8 ratio (C), WBC (D), HGB (E), PLT (F), ALT (G),
AST (H), TG (I), CHOL (J), CR (K), and FPG (L). WBC, white blood cells; HGB, hemoglobin; PLT, platelets; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; TG, triglycerides; CHOL, cholesterol; CR, creatinine; FPG, fasting plasma glucose.
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concentrations of 273 cells/mL and 127.47 g/L, respectively.

Conversely, a nonlinear relationship was evident between

Baseline-CD4, 12M-CD4, Baseline-HGB, and INR (overall

p<0.05, nonlinearity p<0.05). The risk of INR rapidly increased

when Baseline-CD4 was below 165 cells/ml, 12M-CD4 was below

293 cells/ml, and Baseline-HGB was less than 125.23 g/L.
3.4 Model construction and verification

We divided the internal dataset into a training set for model

construction and an internal validation set following a 7:3 split,

while the external dataset served as the models’ external validation

set. We compared the baseline clinical characteristics across the

three datasets (Supplementary Table 1). The median age of PLWH

in all three datasets was 32 years old, and the proportion of INR was

similar across the datasets. Notably, the external validation set had a

higher proportion of female PLWH and a lower proportion using

INSTI-based treatment regimens.

Subsequently, we incorporated significant variables in the

univariate analysis in Figure 3 into model construction, including

Baseline and 6-month/12-month CD4+ T cells, CD4/CD8 ratio,

WBC, HGB, PLT and etc. Using these variables, we developed eight

predictive models employing machine learning methods. We then

validated the stability and generalizability of these eight models

across the training, internal, and external validation sets.

Ultimately, the RF model exhibited the best clinical predictive

performance across all datasets, with AUROC values of 0.866,

0.943, and 0.897, respectively (Figures 5A–C). In terms of

calibration, the RF model outperformed other models in all three

datasets, with Brier scores of 0.136, 0.102, and 0.126 (Figures 5D–F).

In clinical utility assessment, the DCA curves of the RF model were
Frontiers in Cellular and Infection Microbiology 06
consistently higher than the “treat all” and most other model lines

across the majority of threshold probabilities, indicating significant

clinical application value (Figures 5G–I).
3.5 Interpretability of the optimal model

Given the RF model’s outstanding predictive capability across

both internal and external validation datasets, we ultimately

designated it as the best-performing model. To clarify the clinical

relevance of specific features, this research quantified their

importance using SHAP values. The variables were prioritized by

their impact on predicting INR risk (Figure 6A), identifying the top

five predictors in PLWH after two years of HAART as 6-month CD4

+ T cells, 12-month CD4+ T cells, baseline CD4+ T cells, 6-month

CD4/CD8 ratio, and 12-month CD4/CD8 ratio. Consequently, CD4+

T cell counts measured between 6 and 12 months post-treatment are

critical for assessing immune reconstitution.

Through the summary plot (Figure 6B), we detailed the positive and

negative relationships between features and outcomes, finding that

higher CD4+T cell counts were associated with a lower probability of

INR, and older age correlated with a higher probability of INR.

Subsequently, we illustrated the impact of model variables in

predictions for an example of PLWH with IR and INR respectively

(Figures 6C, D). Finally, we generated a partial dependence plot

(Figure 6E). Specifically, the critical threshold for CD4+ T cell counts

was observed around 350 cells/µL at 12 months, 250 cells/µL at 6

months, and 150 cells/µL at baseline. For the 6-month CD4/CD8 ratio,

maintaining a value near 0.5 was associated with minimizing INR risk.

When the parameter values fall below these critical thresholds, the risk of

INR increases. Nevertheless, it is noteworthy that the partial dependence

analysis did not detect significant correlations between variables and age.
FIGURE 3

Univariate and multivariate analysis of immune non-reconstitution. WBC, white blood cells; HGB, hemoglobin; CHOL, cholesterol; FPG, fasting
plasma glucose; PLT, platelets.
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4 Discussion

In this study, we collected data from 1577 PLWH who received

at least two years of HAART from two centers. On one hand, we

analyzed the changes in clinical parameters at different follow-up

points and identified independent risk factors for INR using

univariate and multivariate logistic regression. On the other hand,

we systematically constructed machine learning predictive models

using dataset from Nanfang Hospital, which was further validated

and assessed for sensitivity, specificity, and calibration using

internal and external datasets. Our findings indicate that the RF

model emerged as the best predictor for INR. To our knowledge,

this was the first machine learning predictive model specifically

developed to predict the occurrence of INR among PLWH in South

China. This model not only provides a valuable tool for clinical

decision-making but also enhances our understanding of the

dynamics and predictors of immune recovery in this population.

Machine learning’s capability to identify high-dimensional

nonlinear relationships among clinical features for outcome

prediction has been extensively applied in the field of HIV/AIDS

research (Rivero-Juárez et al., 2020; Mazrouee et al., 2021; He et al.,

2022; Huang et al., 2023). For example, researchers have utilized
Frontiers in Cellular and Infection Microbiology 07
machine learning methods on electronic health records (EHR) data

to precisely identify the burden of comorbidities in PLWH (Yang et al.,

2021). In recent years, traditional linear models have been used to

predict INR (Gunda et al., 2017; Li et al., 2019; Zhang et al., 2023), and

these models have provided auxiliary value in specific clinical practices.

Unlike previous studies on INR prediction, this research included a

comprehensive set of variables such as liver and kidney functions, lipid

and glucose levels, and considers clinical indicators from multiple

follow-up points. A machine learning model was constructed, taking

into account not only these diverse clinical indicators but also ensuring

rigorous internal and external validation of the model. This

comprehensive approach enhances the predictive accuracy and

reliability of the model, thereby making a significant contribution to

clinical decision-making and the management of PLWH.

In the line graphs, we observed that the levels of WBC, HGB, and

PLT were significantly higher in the IR group, and multivariate

logistic regression analysis indicated that baseline and 6-month HGB

levels are independent risk factors for INR. Hematological alterations

are prevalent complications in individuals with HIV/AIDS, linked to

reduced quality of life and higher mortality rates (Koka and Reddy,

2004; Firnhaber et al., 2010; Shen et al., 2015). Both direct and

indirect influences of HIV infection on hematopoietic progenitor cells
FIGURE 4

Dose relationship between clinical characteristics and INR in internal dataset. The restricted cubic splines of the association between INR prevalence
and clinical parameters including Baseline CD4+T cell (A), 6M CD4+T cell (B), 12M CD4+T cell (C), baseline HGB (D), and 6M-HGB (E).
HGB, hemoglobin.
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disturb bone marrow equilibrium and affect the proliferation and

differentiation of cells in hematopoiesis, mainly leading to anemia

and thrombocytopenia in peripheral blood (Huibers et al., 2020;

Tsukamoto, 2020). Moreover, studies have shown that the

improvement in CD4+ T cell counts following HAART leads to a

decreased prevalence of cytopenias in PLWH, suggesting that HIV-

related cytopenias are driven by HIV infection and immune

suppression (Choi et al., 2011; Woldeamanuel and Wondimu,

2018). Therefore, this study not only reaffirms the connection

between anemia and cytopenias with low CD4+T cell counts but
Frontiers in Cellular and Infection Microbiology 08
also highlights the predictive value of thrombocytopenia and anemia

in PLWH for INR. Considering that anemia and thrombocytopenia

are treatable conditions associated with higher mortality rates in

PLWH, it is essential to monitor blood cell count changes throughout

HIV infection. This monitoring helps identify the onset of these

hematological disorders and enables the implementation of vital

clinical interventions to avert complications.

To improve the interpretability of the model prediction process,

we utilized SHAP values to quantify the impact of each variable on

the model's predictions. The results indicated that the CD4+T cell
FIGURE 5

The machine learning models construction and performance evaluation. (A-C) ROC curves of models in the training, internal validation, and external
validation cohorts. (D-F) Calibration plots of models in the training, internal validation, and external validation cohorts. (G-I) DCA curves of models in
the training, internal validation, and external validation cohorts. SVM, support vector machine; XGBoost, extreme gradient boosting; KNN, k-
nearest neighbors.
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counts at 6M and 12M were crucial factors affecting the occurrence

of INR among PLWH. Previous research has frequently reported

that baseline CD4+T cell counts was an effective predictor for INR

(Rb-Silva et al., 2019; Bayarsaikhan et al., 2021), with studies

suggesting that a baseline CD4+T cell counts ≥200 cells/mm (Ma

et al., 2024) was independently associated with inconsistent

immune response development in multivariate analysis (Muzah

et al., 2012). However, this study highlights that, compared to

baseline CD4 levels, the CD4+T cell counts at 6M and 12M require

more attention. This shift in focus suggests a dynamic approach to

monitoring immune recovery, emphasizing the importance of

ongoing evaluation beyond initial treatment phases.

It’s noteworthy that after interpreting the RFmodel using SHAP, we

found that CD4+T cell levels and the CD4/CD8 ratio remained themost

influential factors in themodel. However, earlier research has shown that

older age could contribute to insufficient CD4+ T-cell recovery in

PLWH, indicating that age can substantially affect the long-term

restoration of CD4+ T cells (Burgos et al., 2022; Chen et al., 2022).

Additionally, research has included the age at the initiation ofHAART in
Frontiers in Cellular and Infection Microbiology 09
the logistic prediction model for INR (Zhang et al., 2023). Although age

was a recognized factor in predicting INR, the partial dependence plot

from the partial correlation analysis did not show a clear distributional

association between age and CD4+ T cell counts, which might suggest

more complex underlying relationships that are influenced by other

factors included in the model. Machine learning models, especially those

like RF, can capture complex, nonlinear interactions that might not be

evident or are assumed away in traditional linear models.

The occurrence of INR is closely associated with cytokine

dysregulation (Vos et al., 2024). Chronic inflammation induced

by HIV infection can lead to sustained elevations of IL-6 and TNF-

a , which impair bone marrow function and suppress

hematopoiesis, resulting in reduced T cell production (Huibers

et al., 2020; Wan et al., 2023). This process may contribute to

anemia and thrombocytopenia, further hindering immune

recovery. Additionally, individuals with INR exhibit elevated

levels of immunosuppressive cytokines, such as IL-10 and TGF-b,
which inhibit T cell proliferation (Zicari et al., 2019).

Simultaneously, overexpression of PD-1 on CD4+ T cells
FIGURE 6

Random Forest Model Interpretability. (A) The Feature-ranking plot of the Random Forest Model for predicting INR in PLWH. (B) The mean SHAP
value of the Random Forest model for predicting INR in PLWH. (C) The force plot of the Random Forest model example with an INR PLWH. (D) The
force plot of Random Forest model example with an IR PLWH. (E) The partial dependence plot between SHAP value and top 4 important features.
WBC, white blood cells; HGB, hemoglobin; PLT, platelets.
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promotes immune exhaustion, leading to limited proliferation and

increased apoptosis (Zhang et al., 2021). In this study, CD4+ T cell

counts were identified as significant predictors of INR, suggesting

that chronic inflammation and T cell exhaustion may be potential

mechanisms contributing to INR development.

Our study possesses significant strengths. We have constructed

machine learning predictive models for early identification of INR in

PLWH, integrating multiple clinical indicators from baseline, 6-

month, and 12-month follow-up points. The internal and external

validations of the model have demonstrated its stability. Furthermore,

the parameters used in the model are commonly available in standard

clinical settings, requiring no additional measurements. This will

assist clinicians in timely predicting immune responses and

implementing interventions. Despite these strengths, we

acknowledge some constraints in our research. To begin with, its

retrospective nature may be affected by inherent drawbacks related to

the study design. Additionally, as the study population is exclusively

from South China, this raises uncertainties regarding the applicability

and generalizability of our proposed predictive model to other

populations or ethnic groups. Furthermore, due to limitations in

time, resources, and study design, our research lacks mechanistic

investigations like cytokine analysis, which could have provided

further insights into the immune responses differentiating between

responders and non-responders. These limitations highlight areas for

future research to expand the model’s robustness and ensure its

efficacy across diverse demographic settings.
5 Conclusion

This study demonstrates that the Random Forest model has

good performance in predicting the risk of INR among PLWH,

facilitating early identification and intervention for INR in

clinical settings.
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