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An explainable web application
based on machine learning for
predicting fragility fracture in
people living with HIV: data from
Beijing Ditan Hospital, China
Bo Liu1,2, Qiang Zhang1,2* and Xin Li1,2*

1Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China,
2National Center for Infectious Diseases, Beijing, China
Purpose: This study aimed to develop and validate a novel web-based calculator

using machine learning algorithms to predict fragility fracture risk in People living

with HIV (PLWH), who face increased morbidity and mortality from such fractures.

Method: We retrospectively analyzed clinical data from Beijing Ditan Hospital

orthopedic department between 2015 and September 2023. The dataset

included 1045 patients (2015-2021) for training and 450 patients (2021-

September 2023) for external testing. Feature selection was performed using

multivariable logistic regression, LASSO, Boruta, and RFE-RF. Six machine

learning models (logistic regression, decision trees, SVM, KNN, random forest,

and XGBoost) were trained with 10-fold cross-validation and hyperparameter

tuning. Model performance was assessed with ROC curves, Decision Curve

Analysis, and other metrics. The optimal model was integrated into an online

risk assessment calculator.

Results: The XGBoost model showed the highest predictive performance, with

key features including age, smoking, fall history, TDF use, HIV viral load, vitamin D,

hemoglobin, albumin, CD4 count, and lumbar spine BMD. It achieved an ROC-

AUC of 0.984 (95% CI: 0.977-0.99) in the training set and 0.979 (95% CI: 0.965-

0.992) in the external test set. Decision Curve Analysis indicated clinical utility

across various threshold probabilities, with calibration curves showing high

concordance between predicted and observed risks. SHAP values explained

individual risk profiles. The XGBoostpowered web calculator (https://sydtliubo.

shinyapps.io/cls2shiny/) enables clinicians and patients to assess fragility fracture

risk in PLWH.

Conclusion: We developed a web-based risk assessment tool using the XGBoost

algorithm for predicting fragility fractures in HIV-positive patients. This tool, with its

high accuracy and interpretability, aids in fracture risk stratification andmanagement,

potentially reducing the burden of fragility fractures in the HIV population.
KEYWORDS

fragility fracture, PLWH, web calculator, machine learning, XGBoost, SHAP,
risk assessment
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Introduction

Fragility fractures, characterized by low-energy trauma and

decreased bone strength, pose a significant burden on individuals

living with HIV (PLWH) (Womack et al., 2011; Biver, 2022).

Despite advancements in antiretroviral therapy (ART) and

improved life expectancy, PLWH experience a higher prevalence

of fragility fractures compared to the general population (Shiau

et al., 2013; Hoy and Young, 2016). These fractures, particularly

those involving the hip, vertebrae, and wrist, are associated with

increased morbidity, mortality, and substantial healthcare costs

(Althoff et al., 2016). The increased risk of fragility fractures in

PLWH is multifactorial, involving a complex interplay of traditional

risk factors, HIV-related factors, and antiretroviral therapy (ART)

effects (Yong et al., 2011). Traditional risk factors, such as advanced

age, low body mass index, smoking, and alcohol consumption, play

a role. Additionally, HIV-related factors, including chronic

inflammation, immune dysregulation, vitamin D deficiency, and

potential direct effects of the virus on bone metabolism, contribute

to the increased fracture risk (Ahmed et al., 2023). Certain

antiretroviral drugs, particularly tenofovir disoproxil fumarate

(TDF), have been associated with bone mineral density (BMD)

loss and increased fracture risk (Ahmed et al., 2023). Identifying

and stratifying PLWH at high risk for fragility fractures is crucial for

implementing targeted prevention and management strategies.

Early intervention, such as lifestyle modifications, calcium and

vitamin D supplementation, and pharmacological therapies, can

potentially reduce the burden of fragility fractures in this

vulnerable population.

Several fracture risk assessment tools have been developed and

widely used in clinical practice, primarily for the general

population. The Fracture Risk Assessment Tool (FRAX),

developed by the World Health Organization (WHO), is one of

the most commonly used tools (McGee and Cotter, 2024). FRAX

calculates the 10-year probability of hip fracture and major

osteoporotic fracture based on clinical risk factors, with or

without BMD measurements (Stephens et al., 2016). Other

fracture risk assessment tools include the QFracture score, which

incorporates additional risk factors such as falls, diabetes, and

medications (Kanis et al., 2016), and the Garvan Fracture Risk

Calculator, which accounts for the number of falls and BMD

measurements at multiple sites (van den Bergh et al., 2010).

While these existing tools have proven valuable in fracture risk

assessment, they have limitations when applied to the HIV

population. FRAX and other tools were developed and validated
Abbreviations: PLWH, People Living With HIV/AIDS; HIV, Human

Immunodeficiency Virus; ART, antiretroviral therapy; LR, Logistic Regression;

DT, Decision Tree; KNN, k-Nearest Neighbors; SVM, Support Vector Machine;

RF, Random Forest; XGBoost, Extreme Gradient Boosting; LASSO, Least

Absolute Shrinkage and Selection Operator; FRAX, Fracture Risk Assessment;

ART, Active Antiretroviral Therapy; BMD, bone mineral density; LS, lumbar

spine; LFN, left femoral neck; TDF, tenofovir disoproxil fumarate; Hb,

hemoglobin; PLT, platelet.
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primarily in the general population, failing to account for the

unique risk factors and characteristics of PLWH. Factors such as

HIV-related inflammation, immune dysregulation, and ART effects

are not explicitly considered in these tools, potentially leading to

inaccurate risk estimates for PLWH. Furthermore, the majority of

existing tools rely heavily on BMD measurements, which may

underestimate fracture risk in PLWH (Yang et al., 2018). PLWH

can experience fractures at higher BMD levels compared to the

general population, suggesting that factors beyond BMD play a

significant role in fracture risk assessment for this population.

Given these limitations, there is a critical need for tailored

fracture risk assessment tools that incorporate HIV-specific risk

factors and leverage advanced analytical techniques to accurately

predict fracture risk in PLWH. Machine learning algorithms offer a

promising approach to address this need, as they can handle

complex, non-linear relationships and incorporate a wide range of

relevant risk factors (Vizcarra et al., 2023).

Machine learning algorithms have gained significant attention

in various fields, including healthcare, due to their ability to uncover

complex patterns and relationships within large datasets. In the

context of fracture risk prediction, machine learning approaches

offer several advantages over traditional statistical methods. Firstly,

machine learning algorithms can effectively handle non-linear

relationships and high-dimensional data, which are often present

in fracture risk assessment scenarios (Kong et al., 2020). Traditional

logistic regression models may oversimplify these complex

relationships, leading to suboptimal performance. Secondly,

machine learning algorithms can incorporate a wide range of risk

factors, including demographic, clinical, biochemical, and imaging

data, without making strong assumptions about their distributions

or interactions. This flexibility allows for a more comprehensive

assessment of fracture risk, capturing the intricate interplay of

various risk factors (Shim et al., 2020). Thirdly, certain machine

learning algorithms, such as ensemble methods (e.g., random

forests, gradient boosting), have demonstrated superior predictive

performance in fracture risk prediction tasks compared to

traditional models. These algorithms can effectively capture

complex patterns and handle non-linear relationships, potentially

improving the accuracy of fracture risk estimates. While machine

learning has shown promising applications in fracture risk

prediction for the general population, its potential in the context

of PLWH remains largely unexplored (Vizcarra et al., 2023). The

unique risk factors and characteristics of PLWH necessitate the

development of tailored machine learning models that can

accurately capture the nuances of fracture risk in this population.

The primary objective of this study is to develop and validate a

novel web-based calculator powered by machine learning

algorithms to predict the risk of fragility fractures in PLWH. By

leveraging the strengths of machine learning techniques and

incorporating HIV-specific risk factors, this tool aims to provide

accurate and personalized fracture risk assessments for individuals

living with HIV. Secondarily, this study seeks to identify the key risk

factors associated with fragility fractures in PLWH, evaluate the

performance of various machine learning models, and provide

interpretable predictions to aid clinical decision-making.
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Understanding the relative importance of different risk factors and

their interactions can inform targeted prevention and management

strategies for this vulnerable population. The significance of this

study lies in its potential to improve fracture risk stratification and

management for PLWH. By accurately identifying individuals at

high risk for fragility fractures, clinicians can implement

timely interventions, such as lifestyle modifications, targeted

pharmacological therapies, and close monitoring. This proactive

approach may ultimately reduce the burden of fragility fractures in

PLWH, mitigating associated morbidity, mortality, and healthcare

costs. Furthermore, the development of a user-friendly, web-based

calculator can facilitate the integration of advanced fracture risk

assessment into clinical practice, empowering healthcare

professionals and patients to make informed decisions regarding

fracture prevention and management.
Materials and methods

Study design and participants selection

A retrospective study was conducted using data obtained from

the orthopedic department of Beijing Ditan Hospital. The study
Frontiers in Cellular and Infection Microbiology 03
period spanned from 2015 to September 2023. Clinical data

variables were collected, including demographic information,

medical history, medication use, laboratory results, and bone

mineral density measurements. The dataset was split into a

training set (1045 patients, 2015-2021) and an external test set

(450 patients, 2021-September 2023). Figure 1 outlines the overall

methodology of this study.

Inclusion and exclusion criteria were as follows: Inclusion

Criteria: 1) Adults aged 18 years or older with a confirmed

diagnosis of HIV infection, as per the guidelines set by the

Chinese Center for Disease Control and Prevention (China CDC);

2) Patients admitted to the orthopedic departments of Beijing Ditan

Hospital from 2015 to 2023; 3) Patients diagnosed with fragility

fractures, regardless of the anatomical site; 4) Patients with available

bone mineral density measurements and clinical data related to

bone health and fracture risk; 5) Patients who provided written

informed consent to participate in the study.

Exclusion Criteria: 1) Patients with incomplete clinical data,

including missing information on co-morbidity or essential bone

mineral density parameters; 2) Patients with multiple fractures or

pathological fractures not related to fragility; 3) Patients with severe

comorbidities or opportunistic infections, such as Pneumocystis

pneumonia, tuberculosis, toxoplasmosis, Candida albicans, Kaposi’s
FIGURE 1

Flowchart of this study.
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sarcoma, or other conditions that could significantly impact bone

health or study outcomes; 4) Patients who declined to participate or

withdrew consent during the study period.
Data collection

The extensive set of variables considered in this study was

carefully curated based on existing literature and clinical expertise,

aiming to capture the multifactorial nature of fracture risk in

PLWH. These include demographic factors like age, gender, and

menopause status, as well as lifestyle factors like smoking and

alcohol consumption, which can decrease bone mineral density

(SChinas et al., 2024). HIV infection itself, its duration, and certain

antiretroviral therapies can adversely affect bone metabolism

through mechanisms such as inflammation and drug-induced

deficiencies (Biver, 2022). Comorbidities like hypertension,

diabetes, and hepatitis B/C contribute to bone loss and fracture

risk through impaired bone turnover and chronic inflammation

(Biver et al., 2017). Fall history and corticosteroid use are also

significant risk factors (Yin and Falutz, 2016; Womack et al., 2023).

Laboratory parameters like bone metabolism markers, complete

blood count, liver/kidney function tests, and bone mineral density

measurements were included to assess overall health, bone

turnover, and fracture risk in PLWH (Yin and Falutz, 2016). To

ensure data accuracy, two independent physicians reviewed and

extracted clinical data from records, minimizing biases.
Blood sample collection and processing

For the collection of fasting blood samples, Vacutainer tubes

containing EDTA (Becton Dickinson, Franklin Lakes, NJ, USA)

were used for venipuncture. These tubes were specifically chosen for

flow cytometry analysis and morphological examination. To ensure

proper clotting, serum samples were allowed to stand for 45

minutes before undergoing centrifugation at 3000 g for 10

minutes. After centrifugation, serum aliquots were carefully

maintained at a cooled temperature of -80°C.
HIV diagnosis, HIV viral load measurement
and T lymphocyte count

The diagnosis of HIV was established using the gold standard

HIV-1/2 antibody testing, which involved the utilization of enzyme-

linked immunoassay (ELISA) and rapid methods conducted by our

hospital’s laboratory doctors. Various equipment and reagents were

employed, including the 4th generation HIV kit (Abbott, UK),

detection reagent: Murex HIV Ag/Ab, mini-VIDSA analyzer, Bio-

Rad MODEL1575 plate washer, Axsym chemiluminescent

immunoassay analyzer (Abbott, UK), and ELECYS2010

chameleon enzyme immunoassay apparatus (Roche, Switzerland).
Frontiers i 04
To quantify plasma viral load, the Abbott RealTime HIV viral

load assay (m2000sp) from Abbott Molecular, IL, USA, was utilized.

This assay has a sensitivity threshold of 40 copies/mL. For the

determination of absolute CD4 cell counts in whole blood, standard

flow cytometry was performed using the Beckman Coulter Navios

device (Beckman, San Jose, CA, USA).

Fluorochrome-tagged monoclonal antibodies supplied by BD

Biosciences, San Jose, CA, were used for the characterization of

freshly isolated cell phenotypes and the identification of T cell

phenotypes. Specifically, anti-CD4 FITC (clone RPA-T4, RRID:

AB_2562052) and anti-CD8AF700 (clone RPA-T8, RRID:

AB_396953) antibodies were employed. The cells were incubated

with these antibodies for 15 minutes at room temperature in the

dark, followed by washing and analysis on a Beckman Coulter

Navios flow cytometer (Beckman, San Jose, CA, USA). T helper and

cytotoxic T cells were identified by their positive surface expression

of CD4 and CD8, respectively, with their percentages reported

relative to the gated total lymphocyte population.
Lumbar spine, left femoral neck, hip bone
mineral density measurement

Bone Mineral Density (BMD) was measured using dual-energy

X-ray absorptiometry (DXA) with the HOLOGIC Discovery Wi

(Hologic Inc., Marlborough, MA, USA). The lumbar spine (L1-L4)

and proximal femur (total hip and femoral neck) were scanned.

BMD results were expressed as grams per square centimeter (g/cm²)

and T-scores or Z-scores as appropriate. For patients under 50 years

of age, Z-scores were used to assess BMD: Normal: Z-score > -2.0;

Low bone mass: Z-score ≤-2.0; For patients 50 years and older, the

World Health Organization (WHO) criteria were applied using T-

scores: Normal: T-score≥-1.0; Osteopenia: T-score between -1.0 and

-2.5; Osteoporosis: T-score≤-2.5. Regular calibration and quality

control procedures were followed to ensure accuracy. BMD data

were integrated into the study database for analysis. Accurate BMD

assessment is critical in the PLWH, who are at increased risk for

bone density loss and fragility fractures, especially those on TDF.
Definition of fragility fractures in PLWH

Fragility fractures, which are the outcome of interest in studies

involving in PLWH, are defined as fractures that occur as a result of

minimal trauma or low-energy injuries, such as a fall from standing

height or less (Womack et al., 2021; Vizcarra et al., 2023). These

fractures are typically associated with decreased bone mineral

density (BMD) and reduced bone strength, making individuals

more susceptible to fractures even with minimal force. Fragility

fractures can occur in various bones, including the vertebrae

(spine), hip, wrist, and others. They are often indicative of

underlying conditions such as osteoporosis or low bone mass,

which may be exacerbated in PLWH due to factors like chronic
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1461740
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2025.1461740
inflammation, ART use, hormonal imbalances, and lifestyle factors

contributing to accelerated bone loss and increased fracture risk.

These fractures can have significant consequences, including pain,

disability, loss of independence, and increased mortality. Therefore,

understanding and preventing fragility fractures in PLWH is crucial

for improving their overall health outcomes.
Statistical analysis

The data were analyzed using R version 4.1.3 (https://www.R-

project.org). Statistical significance was established at a P-value of

less than 0.05. Continuous variables were expressed as mean ±

standard deviation (SD) or interquartile range (IQR) and compared

using one-way ANOVA or the Kruskal-Wallis U test based on

distribution. Categorical variables were presented as percentages (n,

%) and compared using the Chi-squared test or Fisher’s exact test

as appropriate.

For feature selection, multivariable logistic regression, Least

Absolute Shrinkage and Selection Operator (LASSO), Boruta, and

Recursive Feature Elimination with Random Forest (RFE-RF) were

employed. Six machine learning models were trained: logistic

regression, decision trees, Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), random forest, and Extreme Gradient

Boosting (XGBoost). The models were trained using 10-fold cross-

validation and hyperparameter tuning via random grid search.

Model performance was evaluated using receiver operating

characteristic (ROC) curves, Decision Curve Analysis (DCA), and

additional relevant metrics. The best-performing model was

incorporated into a web-based risk assessment calculator designed

to predict fragility fractures in PLWH. Calibration plots were

utilized to assess the accuracy of the models in predicting the

actual risk. Additionally, SHapley Additive exPlanations (SHAP)

values were used to interpret the influence of each variable on the

model’s predictions, providing insights into individual risk profiles.

This methodological approach ensured robust model development

and validation, with the final model made accessible through an

online platform (https://login.shinyapps.io/) to aid clinicians and

patients in evaluating fracture risk.
Feature selection

Feature selection was a crucial step in the model-building process,

aimed at identifying the most relevant subset of features for the target

variable. Our study employed a comprehensive, multi-stage approach

combining four different feature selection methods: multivariable

logistic regression, LASSO regression, Boruta algorithm, and

Random Forest-based Recursive Feature Elimination (RFE-RF).

Specifically, the process of feature screening is as follows:
Fron
1. The univariate logistic regression and multivariable logistic

regression was performed, and variables with p-values less

than 0.05 were selected;
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2. LASSO regression were applied to further refine the feature

subset. The union of variables identified by these two

methods was considered for further analysis;

3. Boruta algorithm and RFE-RF, both based on Random

Forest classifiers, were employed to rank the importance of

the remaining features;

4. Guided by these importance scores and informed by

relevant literature (Yin and Falutz, 2016; Biver, 2022;

Ahmed et al., 2023; McGee and Cotter, 2024), less

influential variables were eliminated, culminating in the

final selection of 10 features.
By combining statistical significance, regularization techniques,

ensemble methods, and domain knowledge, the most informative

and predictive features were identified, enhancing the model’s

performance and interpretability.
Model development and evaluation

The machine learning algorithm models were developed using

R version 4.1.3, utilizing the Tidymodels package. Tidymodels is a

suite of packages designed for machine learning that adheres to tidy

principles and ensures reproducibility. In this study, six machine

learning algorithms—Logistic Regression (LR), Decision Tree (DT),

k-Nearest Neighbors (KNN), Support Vector Machine (SVM),

Random Forest (RF), and Extreme Gradient Boosting (XGBoost)

—were utilized to construct the diagnostic model for fragility

fractures in PLWH.

The development of the models employed the six machine

learning algorithms. Each classification algorithm underwent

hyperparameter tuning through 10-fold cross-validation. After

selecting the optimal hyperparameters, the models were retrained

on the complete training subset to finalize the final models. These

final models were then assessed on the external test cohort. The

evaluation of the trained models’ performance included comparing

ROC curves and PR curves for both the training and external test

cohorts. Additionally, Decision Curve Analysis (DCA) curves,

calibration curves, and heatmaps of various metrics such as

specificity, sensitivity, and other performance indicators were

generated. These comprehensive evaluations ensured a thorough

assessment of each model’s adequacy and efficacy.
Interpretability and online risk assessment
tools using optimal models

Model interpretation was carried out using SHAP (SHapley

Additive exPlanations) values to explain the predictions of the

optimal model, particularly the XGBoost model. SHAP values

were used to assess the variable importance for all samples,

highlighting the most influential features across the dataset.

Additionally, SHAP waterfall plots were generated for individual

samples, providing detailed insights into how each feature

contributed to the prediction for specific cases.
frontiersin.org

https://www.R-project.org
https://www.R-project.org
https://login.shinyapps.io/
https://doi.org/10.3389/fcimb.2025.1461740
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2025.1461740
Ultimately, the XGBoost model emerged as the most optimal

model, displaying superior performance metrics. This model was

then deployed on the ShinyApps website (https://www.shinyapps.io/

), creating an accessible online computing platform. This platform

enables real-time risk assessment for fragility fractures in PLWH. It

is designed to be user-friendly, providing both clinicians

and patients with accessible risk predictions and detailed

interpretations of each prediction, thereby enhancing clinical

decision-making and potentially reducing the incidence of

fragility fractures in this vulnerable population.
Results

Characteristics and baseline of HIV-
positive patients with and without
fragility fractures

Table 1 summarizes the baseline characteristics of 1,495 HIV-

positive patients, categorized into non-fracture (n=1,268) and

fracture groups (n=227). The fracture group was older (42.3 vs.

38.4 years, p<0.001) and had a higher prevalence of menopause

(75.0% vs. 47.5%, p=0.028), diabetes (25.1% vs. 16.5%, p=0.002),

and HBV/HCV co-infection (18.5% vs. 12.1%, p=0.011). This group

also demonstrated higher smoking rates (p<0.001) and longer HIV

infection duration (64.3 vs. 56.5 months, p=0.030). Importantly,

fracture patients had lower CD4+ T-cell counts (389 vs. 572 cells/

μL, p<0.001), higher HIV RNA loads (p=0.009), and poorer

nutritional and bone health, indicated by lower hemoglobin (134

vs. 151 g/L, p<0.001), albumin (42.3 vs. 46.4 g/L, p<0.001), and

vitamin D levels (20.4 vs. 26.2 ng/mL, p<0.001), as well as lower

bone mineral densities (p<0.001 for all). These findings underscore

significant differences in health status and risk factors between

PLWH with and without fragility fractures, highlighting the need

for targeted clinical management in the fracture group.
Patient characteristics for training set and
external test set

Supplementary Table 1 summarizes the baseline characteristics

of 1,495 PLWH, split into training (n=1,045) and test datasets

(n=450). The proportion of patients with fractures was similar in

both groups (15.1% vs. 15.3%, p=0.978). The majority were male

(91.8% overall), with comparable ages (38.9 years in total, p=0.192).

Menopause rates (52.8% overall, p=0.313), BMI (23.1 kg/m²,

p=0.771), and smoking habits showed no significant differences,

though smoking rates varied slightly (p=0.046). Drinking,

hypertension, diabetes, HBV/HCV co-infection, fall history, and

corticosteroid use were consistent across datasets. Infection

duration (57.7 months, p=0.159), TDF use (69.4%, p=0.193), and

HIV RNA load distributions were similar. CD4, CD8 counts, CD4/

CD8 ratio, WBC, Hb, PLT, ALB, Ca, P, VD, lipid profiles, UA,

eGFR, and bone mineral densities (LS BMD, LFN BMD, Hip BMD)

showed no significant differences between the groups. Overall, the
Frontiers in Cellular and Infection Microbiology 06
training and test datasets were well-matched, providing a robust

basis for further analysis.
Feature selection for model

To enhance the practicality and operability of our predictive

model, we first conducted univariate logistic regression analysis on a

set of potential variables to identify those significantly associated with

fragility fractures in PLWH. Variables with significant p-values were

then included in the multivariate logistic regression analysis to

control for confounding factors. Our findings revealed that out of

the initial pool of variables, the following were significant predictors

in the multivariate analysis: Age, current smoking status, diabetes,

history of falls, TDF usage, HIV RNA load (1000-100000 copies/mL),

CD4 count, WBC, hemoglobin (Hb), albumin (ALB), vitamin D

(VD), and lumbar spine bone mineral density (LS BMD). These

results are summarized in Table 2.

To further refine our model, we employed LASSO regression

analysis, which selected the following variables: CD4 count, Hb,

platelet count (PLT), ALB, VD, lumber spine BMD, current

smoking status, diabetes, history of falls, TDF usage, and HIV

RNA load (1000-100000 copies/mL) (Supplementary Figure 1).

This step ensured that we captured the most relevant predictors

while reducing potential multicollinearity. Additionally, we utilized

the Boruta algorithm (Figure 2A) and Recursive Feature

Elimination with Random Forest (RFE-RF, Figure 2B) to validate

and cross-check our feature selection process.

This comprehensive approach, supported by existing literature,

confirmed that the top 10 most important variables for our final

model were: Age, current smoking status, diabetes, history of falls, TDF

usage, HIV RNA load, CD4, white blood cell count (WBC), Hb, and

lumbar spine BMD. This meticulous feature selection process ensured

that our model was both efficient and accurate, providing robust

predictive capabilities for identifying the risk of fragility fractures

in PLWH.
Development and evaluation of a
diagnostic model in training dataset and
external test dataset

In the model training, a positive class represented the presence of

fragility fractures, while a negative class indicated the absence of such

fractures in PLWH. In the training dataset, the models demonstrated

high discriminative ability as evidenced by their ROC-AUC scores: DT

achieved 0.941 (95% CI: 0.918−0.964), RF 0.97 (95% CI: 0.96−0.98),

XGBoost 0.984 (95% CI: 0.977−0.99), SVM 0.965 (95% CI: 0.953

−0.978), KNN 0.982 (95% CI: 0.974−0.991), and Logistic Regression

0.967 (95%CI: 0.957−0.977) (Supplementary Figure 2C). These models

also performed well in the external test dataset with the following ROC-

AUC scores: DT 0.892 (95% CI: 0.837−0.946), RF 0.966 (95% CI: 0.945

−0.987), XGBoost 0.979 (95% CI: 0.965−0.992), SVM 0.956 (95% CI:

0.935−0.977), KNN 0.972 (95%CI: 0.955−0.99), and LR 0.966 (95%CI:

0.951−0.982) (Figure 3C). The PR-AUC metrics further supported the
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TABLE 1 Baseline characteristics of HIV-positive patients with and without fragility fractures.

Variable
All No Yes

P-value
N=1495 N=1268 N=227

Gender: Male (n, %) 1372 (91.8%) 1169 (92.2%) 203 (89.4%) 0.206

Age (Years) 38.9 (11.5) 38.4 (11.0) 42.3 (13.6) <0.001

Menopause (n, %) 65 (52.8%) 47 (47.5%) 18 (75.0%) 0.028

BMI (kg/m2) 23.1 (3.46) 23.2 (3.49) 22.7 (3.26) 0.055

Smoke (n, %) <0.001

Former 111 (7.42%) 70 (5.52%) 41 (18.1%)

Now 187 (12.5%) 149 (11.8%) 38 (16.7%)

Drinking (n, %) 300 (20.1%) 259 (20.4%) 41 (18.1%) 0.466

Hypertension (n, %) 174 (11.6%) 155 (12.2%) 19 (8.37%) 0.120

Diabetes (n, %) 266 (17.8%) 209 (16.5%) 57 (25.1%) 0.002

HBV_HCV (n, %) 195 (13.0%) 153 (12.1%) 42 (18.5%) 0.011

Fall_history (n, %) 387 (25.9%) 212 (16.7%) 175 (77.1%) <0.001

Corticosteroids_used (n, %) 180 (12.0%) 150 (11.8%) 30 (13.2%) 0.631

Duration_infection (n, %) 57.7 (47.1) 56.5 (46.4) 64.3 (50.2) 0.030

TDF (n, %) 1037 (69.4%) 825 (65.1%) 212 (93.4%) <0.001

HIV_RNA_load (n, %) 0.009

1000-100000 245 (16.4%) 192 (15.1%) 53 (23.3%)

>100000 117 (7.83%) 101 (7.97%) 16 (7.05%)

CD4 (cells/ul) 544 (309) 572 (315) 389 (218) <0.001

CD8 (cells/ul) 924 (509) 951 (520) 771 (409) <0.001

CD4 CD8_Ratio 0.68 (0.46) 0.70 (0.48) 0.58 (0.34) <0.001

WBC (109/L) 6.20 (2.05) 6.12 (1.97) 6.64 (2.40) 0.002

Hb (g/L) 148 (20.5) 151 (18.5) 134 (24.3) <0.001

PLT (109/L) 230 (65.5) 229 (62.7) 236 (79.4) 0.226

ALB (g/L) 45.8 (5.42) 46.4 (4.98) 42.3 (6.42) <0.001

Ca (mmol/l) 2.31 (0.12) 2.31 (0.12) 2.29 (0.12) 0.037

P (mmol/l) 1.02 (0.29) 1.02 (0.30) 1.05 (0.22) 0.047

VD (ng/mL) 25.3 (6.05) 26.2 (5.93) 20.4 (3.96) <0.001

TC (mmol/l) 4.40 (0.94) 4.39 (0.95) 4.44 (0.91) 0.496

TG (mmol/l) 1.64 (1.00) 1.63 (1.01) 1.68 (0.95) 0.523

LDL_C (mmol/l) 2.70 (1.07) 2.67 (0.82) 2.84 (1.95) 0.192

HDL_C (mmol/l) 1.12 (0.32) 1.13 (0.32) 1.08 (0.27) 0.006

UA (umol/l) 379 (100) 378 (101) 384 (97.2) 0.367

eGFR (ml/min/1.73m2) 108 (17.3) 109 (16.7) 103 (19.9) <0.001

LS_BMD (g/cm3) 0.945 (0.128) 0.962 (0.124) 0.852 (0.111) <0.001

LFN_BMD (g/cm3) 0.766 (0.123) 0.778 (0.120) 0.699 (0.117) <0.001

Hip_BMD (g/cm3) 0.889 (0.132) 0.901 (0.130) 0.821 (0.119) <0.001
F
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BMI, Body Mass Index; HBV, Hepatitis B Virus; HCV, Hepatitis C Virus; TDF, Tenofovir Disoproxil Fumarate; HIV_RNA_load, HIV RNA Load; CD4, CD4 T Cells; CD8, CD8 T Cells;
CD4_CD8_Ratio, CD4/CD8 Ratio; WBC, White Blood Cell Count; Hb, Hemoglobin; PLT, Platelet Count; ALB, Albumin; Ca, Calcium; P, Phosphorus; VD, Vitamin D; TC, Total Cholesterol;
TG, Triglycerides; LDL_C, Low-Density Lipoprotein Cholesterol; HDL_C, High-Density Lipoprotein Cholesterol; UA, Uric Acid; eGFR, Estimated Glomerular Filtration Rate; LS_BMD, Lumbar
Spine Bone Mineral Density; LFN_BMD, Left Femoral Neck Bone Mineral Density; Hip_BMD, Hip Bone Mineral Density.
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TABLE 2 Univariate and multivariate logistic binary regression analyses of fragility fractures in HIV-positive patients.

Variables
Univariate binary logistic regression Multivariate binary logistic regression

OR (95% CI) P-value OR (95% CI) P-value

Gender (n, %) 1.40 (0.86, 2.20) 0.176

Age (Years) 1.03 (1.02, 1.04) <0.001 0.96 (0.93, 0.98) 0.001

BMI (Kg/M2) 0.96 (0.92, 1.00) 0.063

Smoke (n, %) <0.001

Former 4.15 (2.71, 6.31) 1.45 (0.58, 3.62) 0.429

Now 1.81 (1.20, 2.66) 0.30 (0.13, 0.70) 0.0049

Drinking (n, %) 0.86 (0.59, 1.23) 0.408

Hypertension (n, %) 0.66 (0.39, 1.05) 0.083

Diabetes (n, %) 1.70 (1.21, 2.36) 0.003 0.31 (0.15, 0.66) 0.003

HBV_HCV (n, %) 1.65 (1.13, 2.39) 0.011 1.40 (0.67, 2.88) 0.367

Fall_history (n, %) 16.8 (12.0, 23.8) <0.001 85.1 (42.4, 183) <0.001

Corticosteroids_used (n, %) 1.14 (0.73, 1.71) 0.559

Duration_infection (months) 1.00 (1.00, 1.01) 0.027 1.00 (0.99, 1.00) 0.294

TDF (n, %) 7.59 (4.59, 13.5) <0.001 21.0 (9.17, 52.1) <0.001

HIV_RNA_load (n, %) 0.013

1000-100000 1.70 (1.20, 2.40) 3.05 (1.44, 6.59) 0.004

>100000 0.98 (0.54, 1.66) 0.45 (0.14, 1.38) 0.171

CD4 (cells/ul) 0.79 (0.74, 0.83) <0.001 0.80 (0.66, 0.97) 0.021

CD8 (cells/ul) 0.91 (0.88, 0.94) <0.001 0.97 (0.89, 1.06) 0.545

CD4/CD8 Ratio 0.49 (0.33, 0.72) <0.001 0.62 (0.19, 1.71) 0.407

WBC (109/L) 1.12 (1.05, 1.19) <0.001 1.16 (1.05, 1.30) 0.005

Hb (g/L) 0.97 (0.96, 0.97) <0.001 0.96 (0.94, 0.97) <0.001

PLT (109/L) 1.17 (0.94, 1.44) 0.156

ALB (g/L) 0.88 (0.86, 0.91) <0.001 0.95 (0.91, 0.99) 0.013

Ca (mmol/l) 0.29 (0.09, 0.94) 0.040 1.05 (0.98, 1.16) 0.055

P (mmol/l) 1.38 (0.90, 2.08) 0.133

VD (ng/mL) 0.82 (0.79, 0.84) <0.001 0.77 (0.72, 0.81) <0.001

TC (mmol/l) 1.05 (0.90, 1.22) 0.510

TG (mmol/l) 1.04 (0.91, 1.19) 0.543

LDL_C (mmol/l) 1.12 (1.00, 1.29) 0.047 1.24 (0.89, 1.73) 0.223

HDL_C (mmol/l) 0.53 (0.32, 0.87) 0.011 0.63 (0.25, 1.50) 0.307

UA (umol/l) 1.06 (0.93, 1.22) 0.380

eGFR (ml/min/1.73m2) 0.85 (0.78, 0.92) <0.001 0.91 (0.78, 1.07) 0.281

LS_BMD (g/cm3) 0.47 (0.41, 0.53) <0.001 0.48 (0.36, 0.62) <0.001

LFN_BMD (g/cm3) 0.54 (0.47, 0.62) <0.001 0.91 (0.61, 1.37) 0.633

Hip_BMD (g/cm3) 0.57 (0.50, 0.65) <0.001 0.98 (0.66, 1.38) 0.932
F
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OR, Odds Ratio; CI, Confidence Interval.
BMI, Body Mass Index; HBV, Hepatitis B Virus; HCV, Hepatitis C Virus; TDF, Tenofovir Disoproxil Fumarate; HIV_RNA_load, HIV RNA Load; CD4, CD4 T Cells; CD8, CD8 T Cells;
CD4_CD8_Ratio, CD4/CD8 Ratio; WBC, White Blood Cell Count; Hb, Hemoglobin; PLT, Platelet Count; ALB, Albumin; Ca, Calcium; P, Phosphorus; VD, Vitamin D; TC, Total Cholesterol;
TG, Triglycerides; LDL_C, Low-Density Lipoprotein Cholesterol; HDL_C, High-Density Lipoprotein Cholesterol; UA, Uric Acid; eGFR, Estimated Glomerular Filtration Rate; LS_BMD, Lumbar
Spine Bone Mineral Density; LFN_BMD, Left Femoral Neck Bone Mineral Density; Hip_BMD, Hip Bone Mineral Density.
Bold implies that the p-value is statistically significant.
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robustness of these models. In the training dataset, the PR-AUC scores

were: DT 0.8335, RF 0.8786, XGBoost 0.9275, SVM 0.8269, KNN

0.9326, and Logistic Regression 0.8411 (Supplementary Figure 2B). In

the external test dataset, the PR-AUC scores were: DT 0.7787, RF

0.8547, XGBoost 0.9009, SVM 0.7758, KNN 0.8865, and Logistic

Regression 0.8642 (Figure 3B).
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Among these models, the XGBoost algorithm demonstrated the

best overall performance. In the training dataset, the XGBoost model

achieved a ROC-AUC of 0.984 and a PR-AUC of 0.9275. In the

external test dataset, it achieved a ROC-AUC of 0.979 and a PR-AUC

of 0.9009, indicating strong predictive power and generalizability

(Figures 2C, D). Further the calibration curves and Decision Curve
FIGURE 3

Performance comparison of the six models in the external test queue. (A) Heatmaps of each metric for the six models; (B) PR curves for the six
models; (C) ROC curves for the six models; (D) DCA curves for the six models.
FIGURE 2

(A) Feature screening using Boruta’s algorithm; (B) Feature importance ranking plot using RFE-RF; (C) Line plot of ROC-AUC for each model with
10-fold cross-validation on the training dataset; (D) 95% confidence intervals of the PR-AUC for each model obtained by 10-fold cross-validation on
the training dataset.
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Analysis (DCA) reinforced the reliability of the XGBoost model. The

calibration curves plot indicated good agreement between predicted

and observed probabilities of fragility fractures (Supplementary

Figure 3), while the DCA showed that the XGBoost model provided

a high net benefit across a range of threshold probabilities

(Supplementary Figure 2D; Figure 3D).

In conclusion, the development and evaluation of these

diagnostic models, particularly the XGBoost model, highlighted

their potential utility in accurately predicting fragility fractures

among PLWH, thereby facilitating early intervention and

management in this vulnerable population.
Optimal predictive performance of the
XGBoost model for fragility fractures
in PLWH

As shown in Table 3, our study demonstrate that the XGBoost

model exhibited the highest predictive performance among the six

machine learning models evaluated for predicting fragility fractures

in PLWH. In the training set, the XGBoost model achieved a ROC-

AUC of 0.984 (95% CI: 0.977−0.99), a PR-AUC of 0.928, an

accuracy of 0.944, a sensitivity (recall) of 0.924, a specificity of

0.948, a precision of 0.760, and an F1-score of 0.834. In the external

test set, it achieved a ROC-AUC of 0.979 (95% CI: 0.965−0.992), a

PR-AUC of 0.901, an accuracy of 0.936, a sensitivity (recall) of

0.899, a specificity of 0.942, a precision of 0.738, and an F1-score of

0.810 (Figure 3A).

The Precision-Recall (PR) curve and Decision Curve Analysis

(DCA) confirmed the model’s effectiveness and clinical utility. The

PR-AUC was 0.928 in the training set and 0.901 in the external test

set (Supplementary Figures 4, 5), indicating a good balance between

precision and recall. The DCA demonstrated a positive net benefit
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across various threshold probabilities, supporting the model’s

practical applicability in clinical settings.

In comparison with the FRAX model, which was constructed

using similar variables from our dataset, the XGBoost model

outperformed the FRAX-based logistic regression model in

predicting fragility fractures in PLWH. The ROC-AUC of the

XGBoost model was 0.984 (95% CI: 0.977−0.99) in the training set,

whereas the FRAXmodel achieved a ROC-AUC of 0.89 (95% CI: 0.85

−0.92). These results highlight the superior predictive performance of

the XGBoost model for the PLWH population, which has unique risk

factors not fully captured by the FRAX model, which was developed

for the general population. In summary, the XGBoost model proved

to be the optimal choice for predicting fragility fracture risk in

PLWH, exhibiting high performance metrics and clinical relevance.

The deployment of this model as a web-based calculator provides a

valuable tool for healthcare providers, facilitating early identification

and intervention to reduce the burden of fragility fractures in this

vulnerable population.
Model interpretation for the
XGBoost model

To ensure a comprehensive understanding of the selected

variables, we employed the SHAP (SHapley Additive exPlanations)

algorithm to highlight their predictive importance in the optimal

XGBoost model for fragility fractures among PLWH. Figure 4A

visually demonstrates the key features of the XGBoost model,

including age, smoking status, history of falls, tenofovir disoproxil

fumarate (TDF) use, HIV viral load, vitamin D levels, hemoglobin,

albumin, CD4 count, and lumbar spine bone mineral density (BMD).

Each dot represents a sample, with red indicating higher risk values

and blue indicating lower ones. The SHAP values on the x-axis
TABLE 3 Results of diagnostic performance metrics for each model for PLWH fragility fractures in the training set and external test dataset.

Dataset Model ROC_AUC PR_AUC Accuracy Sensitivity Specificity Precision Recall F1-score

Traindata

DT 0.941 0.833 0.900 0.911 0.897 0.613 0.911 0.733

RF 0.970 0.879 0.922 0.911 0.923 0.679 0.911 0.778

Xgboost 0.984 0.928 0.944 0.924 0.948 0.760 0.924 0.834

SVM 0.965 0.827 0.918 0.911 0.919 0.667 0.911 0.770

KNN 0.982 0.933 0.936 0.943 0.935 0.720 0.943 0.816

Logistic 0.967 0.841 0.879 0.968 0.864 0.558 0.968 0.708

Testdata

DT 0.892 0.779 0.871 0.855 0.874 0.551 0.855 0.670

RF 0.966 0.855 0.931 0.899 0.937 0.721 0.899 0.800

Xgboost 0.979 0.901 0.936 0.899 0.942 0.738 0.899 0.810

SVM 0.956 0.776 0.918 0.812 0.937 0.700 0.812 0.752

KNN 0.972 0.886 0.942 0.855 0.958 0.787 0.855 0.819

Logistic 0.966 0.864 0.878 0.899 0.874 0.564 0.899 0.693
DT, Decision Tree; RF, Random Forest; Xgboost, Extreme Gradient Boosting; SVM, Support Vector Machine; KNN, K-Nearest Neighbors; Logistic, Logistic Regression.
Bold implies that the p-value is statistically significant.
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indicate the impact of each feature on the model’s output. Figure 4B

depicts the hierarchical organization of these risk factors, underlining

their significance in the model. Figure 4C and Figure 4D are SHAP

force plots, providing detailed feature contributions for individual

predictions. Each feature’s impact on the final prediction is illustrated

with arrows, where the length and color of the arrows indicate the

magnitude and direction of the feature’s effect.

Supplementary Figure 6 provides a variable dependence plot for

each feature, illustrating the relationship between each variable and

the outcome variable. Specifically, we observed that all continuous

variables (age, HIV viral load, vitamin D levels, hemoglobin,

albumin, CD4 count, and lumbar spine BMD) were negatively

correlated with the outcome, indicating they act as protective

factors (Supplementary Figure 6A). In contrast, all categorical

variables (smoking status, history of falls, and TDF use) were

positively correlated with the outcome, identifying them as risk

factors (Supplementary Figure 6B). The negative correlation

of continuous variables can be attributed to their roles in

maintaining bone health and immune function. Higher levels of

vitamin D, hemoglobin, and albumin are associated with better

bone density and strength, while higher CD4 counts and lumbar

spine BMD reflect better immune function and bone health,

reducing fracture risk. Conversely, the positive correlation of

categorical variables such as smoking status, history of falls, and

TDF use aligns with their known associations with increased

fracture risk. Smoking and falls contribute to bone weakening and

injury risk, while long-term TDF use has been linked to reduced

bone mineral density in PLWH.
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Online web assessment tool for fragile
fractures in PLWH

The integration of the XGBoost model into a publicly accessible

web-based calculator (https://sydtliubo.shinyapps.io/cls2shiny/) allows

clinicians and patients to assess the risk of fragility fractures in real-

time (Figure 5). This tool is designed to be user-friendly, providing

an easy-to-understand risk assessment and detailed interpretation

of each prediction, thus facilitating informed clinical decisions and

potentially reducing the burden of fragility fractures among PLWH.
Discussion

In this study, we aimed to develop and validate a web-based risk

assessment calculator using machine learning algorithms to predict

the risk of fragility fractures in PLWHs. The XGBoost machine

learning model demonstrated excellent predictive performance in

assessing fragility fracture risk. It achieved an area under the

receiver operating characteristic curve (ROC-AUC) of 0.984 (95%

CI: 0.977−0.99) in the training set and 0.979 (95% CI: 0.965−0.992)

in the external test set. These results indicate the model’s ability to

accurately predict fracture risk in PLWH. Through feature

selection, we identified several key risk factors associated with

fragility fractures in PLWH. These factors include age, smoking,

fall history, tenofovir disoproxil fumarate (TDF) use, HIV viral

load, vitamin D levels, hemoglobin levels, albumin levels, CD4

count, and lumbar spine bone mineral density (BMD). By
FIGURE 4

Interpretation of the best model (XGBoost) using SHAP. (A) SHAP beeswarm plot of features; (B) Ranking of feature importance by SHAP; (C) SHAP
waterfall plot of each feature contribution for patients who did not experience fragility fractures; (D) SHAP waterfall plot of the contribution of each
feature to patients with fragile fractures.
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considering these factors, the web-based calculator can provide a

comprehensive assessment of fracture risk.

To the best of our knowledge, this study is the first to develop a

web-based calculator specifically tailored for predicting fragility

fracture risk in PLWH. By leveraging machine learning algorithms,

our model outperformed previous studies in fracture risk prediction

(Vizcarra et al., 2023). Existing literature on fracture risk prediction

mainly focuses on the general population or specific subgroups, often

excluding PLWH. The unique challenges faced by PLWH, including

increased fracture risk and associated morbidity and mortality,

necessitate a tailored approach. Our study addresses this gap by

providing a specialized tool that considers both traditional and HIV-

specific risk factors. Furthermore, our study contributes to the field by

incorporating interpretable predictions through SHAP values. These

values allow clinicians to understand the influence of each risk factor

on the predicted fracture risk, enabling personalized risk stratification

and management (Uragami et al., 2023). The web-based calculator

developed in this study fills an important void in clinical practice by

providing a user-friendly tool for fracture risk assessment in PLWH.

Its integration into existing clinical workflows and guidelines has the

potential to reduce the burden of fragility fractures in this population

and improve patient outcomes.

Several fracture risk prediction tools, such as FRAX (Fracture

Risk Assessment Tool) and QFracture, have been developed and

widely used in the general population (Kanis et al., 2008; van den

Bergh et al., 2010; Kanis et al., 2016). However, these tools have
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limited applicability to PLWH due to their failure to account for the

unique risk factors associated with HIV infection and antiretroviral

therapy (ART). These HIV-specific factors, including viral load,

CD4 count, and the direct and indirect effects of ART on bone

metabolism, play a crucial role in the heightened fracture risk

observed in this population (Yin and Falutz, 2016; McGee and

Cotter, 2024). To address this gap, a web-based risk assessment

calculator has been developed utilizing machine learning

algorithms, specifically the powerful XGBoost model. This

calculator is tailored to the specific risk factors of PLWH by

incorporating both HIV-specific factors (viral load, CD4 count)

and traditional fracture risk factors (age, gender, smoking, vitamin

D levels, bone mineral density, etc.). By considering this

comprehensive set of relevant variables and their complex

interactions, the calculator can provide more accurate and

personalized fracture risk assessments for PLWH.

The heightened vulnerability to fragility fractures among those

living with HIV is driven by an intricate interplay of various

interconnected elements. Aging itself predisposes individuals to

bone loss and fractures, a condition exacerbated by the direct and

indirect impacts of HIV infection and its treatments (Mallon, 2014).

Smoking exerts detrimental effects on bone metabolism,

compounding the risk when combined with HIV-related factors

(Boyer et al., 2023). A history of falls, which can precipitate fragility

fractures, is more common due to HIV-associated conditions like

muscle wasting, neuropathy, and medication side effects (Womack
FIGURE 5

Interface of the online web application using the best XGBoost model.
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et al., 2021). Certain antiretroviral drugs, notably tenofovir

disoproxil fumarate (TDF), have been linked to decreased bone

mineral density (BMD) and heightened fracture susceptibility,

potentially through nephrotoxic mechanisms that impair bone

metabolism (Delpino and Quarleri, 2020). The HIV virus itself

can contribute to bone loss through the direct effects of viral

proteins on bone cells, as well as indirectly via chronic

inflammation and immune dysregulation associated with higher

viral loads and lower CD4 counts (Ofotokun et al., 2012; Lewy et al.,

2019). Nutritional deficiencies, such as vitamin D deficiency and

low hemoglobin and albumin levels, which reflect overall health

status, further compromise bone health (Hileman et al., 2016).

Ultimately, low BMD, particularly in the lumbar spine, serves as a

direct measure of bone strength and a powerful predictor of fracture

risk in this population (Chang et al., 2021). This multifaceted

interplay of age-related, HIV-specific, and traditional osteoporosis

risk factors converges to amplify the vulnerability of PLWH to

fragility fractures, necessitating a comprehensive and personalized

approach to risk assessment and management (Negredo

et al., 2016).

The XGBoost model, a powerful ensemble learning algorithm,

can effectively capture complex nonlinear relationships and

interactions between the diverse risk factors associated with

fragility fractures in PLWH (Uragami et al., 2023; Wu and Park,

2023). By incorporating HIV-specific variables (viral load, CD4

count, ART regimen) alongside demographic, clinical, and lifestyle

factors, an optimized XGBoost model can provide highly accurate

and personalized fracture risk assessments. A key advantage of

XGBoost is its interpretability, facilitated by techniques like SHAP.

SHAP offers a unified approach to explaining the output of machine

learning models by quantifying the contributions of each feature to

the model’s predictions (Belle and Papantonis, 2021). SHAP can

unravel the intricate interplay between HIV-related factors and

traditional fracture risk factors, revealing their relative importance

and potential interactions. For example, SHAP could help identify

subgroups of PLWH with specific combinations of risk factors (e.g.,

lower CD4 count, prolonged ART exposure, vitamin D deficiency)

that render them particularly vulnerable to fragility fractures

(Premaor and Compston, 2020). By visualizing SHAP values,

clinicians can gain insights into the most influential risk factors

for each individual patient, enabling tailored interventions and

preventive strategies. Moreover, SHAP can elucidate the complex,

non-linear relationships between predictors and fracture risk, which

may be difficult to discern using traditional statistical methods. This

improved interpretability can enhance clinical decision-making,

foster trust in the machine learning model, and ultimately

contribute to better fracture risk management in the PLWH.

While the XGBoost model offers superior predictive performance,

the integration of SHAP-based interpretability is crucial for

translating these predictions into actionable clinical insights,

ensuring the responsible and ethical deployment of machine

learning in healthcare settings.

However, it is important to acknowledge the limitations of our

study. As a retrospective study, there is a potential risk of selection
Frontiers in Cellular and Infection Microbiology 13
bias and unmeasured confounding factors. Prospective validation in

a larger, multi-center cohort would further strengthen the

generalizability of our findings. Furthermore, while our dataset

included a comprehensive set of risk factors, it is possible that

additional factors, such as genetic markers or biomarkers, could

further improve the predictive performance of the model. Future

studies incorporating these additional variables may enhance the

accuracy of fracture risk assessment. Finally, it is essential to note

that our study focused specifically on PLWH.While the calculator is

tailored for this population, its applicability to other high-risk

groups or the general population may be limited and requires

further investigation. Additionally, our study did not incorporate

time-dependent variables, which are critical in models like FRAX.

While the FRAXmodel uses a Cox proportional hazards model with

time variables, our machine learning-based XGBoost model is a

diagnostic model without time as a factor. The potential use of

survival models that incorporate time variables could be an

interesting direction for future research.
Conclusion

Our study successfully developed and validated a novel web-

based risk assessment tool for predicting fragility fractures in

PLWH using machine learning algorithms. The XGBoost model

demonstrated superior predictive performance, achieving high

discrimination and calibration in both the training and external

test sets. The model incorporated clinically relevant features,

including age, smoking status, fall history, antiretroviral therapy,

HIV viral load, vitamin D levels, hemoglobin, albumin, CD4 count,

and lumbar spine BMD. The user-friendly web calculator, powered

by the XGBoost algorithm, provides a valuable resource for

clinicians and patients to assess fracture risk and guide preventive

measures. The interpretability of the model’s predictions through

SHAP values further enhances its clinical utility by explaining

individual risk profiles. This web-based tool has the potential to

improve fracture risk stratification and management in the PLWH,

ultimately reducing the burden of fragility fractures and associated

complications. In conclusion, our study presents a significant

advancement in fracture risk prediction for PLWH. The

contribution of our study lies in addressing a significant gap in

clinical practice by providing a specialized tool tailored for fracture

risk assessment in PLWH. By considering both traditional and

HIV-specific risk factors, our web-based calculator offers a

comprehensive approach to identifying high-risk patients and

informing fracture prevention and management strategies.
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SUPPLEMENTARY FIGURE 1

Feature selection using the Least Absolute Shrinkage and Selection Operator

(LASSO). (A) By verifying the optimal parameter (lambda) in the LASSO model,
the partial likelihood deviance (binomial deviance) curve was plotted versus

log(lambda) and dotted vertical lines were drawn based on 1 standard error
criteria.11 variables with nonzero coefficients were selected by optimal

lambda; (B) coefficient profile plot was produced against the log

(lambda) sequence.

SUPPLEMENTARY FIGURE 2

Performance comparison of the six models on the training dataset. (A)
Heatmaps of each metric for the six models; (B) PR curves for the six
models; (C) ROC curves for the six models; (D)DCA curves for the six models.

SUPPLEMENTARY FIGURE 3

Calibration plots of the six models in the training dataset (A) and external test

dataset (B).

SUPPLEMENTARY FIGURE 4

Evaluation metrics of the best model (XGBoost) in the training set. (A) ROC

curve of XGBoost model; (B) Confusion matrix of XGBoost model; (C) PR
curve of XGBoost model; (D) KS curve of XGBoost model.

SUPPLEMENTARY FIGURE 5

Evaluation of the best model (XGBoost) on the external test set. (A) ROC curve

of XGBoost model; (B) Confusion matrix of XGBoost model; (C) PR curve of
XGBoost model; (D) KS curve of XGBoost model.

SUPPLEMENTARY FIGURE 6

SHAP values for each variable. (A) SHAP values for continuous variables

(vitamin D, lumbar spine bone density, albumin, hemoglobin, CD4 and age);
(B) SHAP values for categorical variables (history of falls, TDF use, smoking

and HIV viral load). A positive SHAP value means likely to have a fracture; a
negative value means unlikely to have a fracture. SHAP, Shapley

additive explanations.
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