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Introduction: Clinicians encounter significant challenges in quickly and

accurately identifying the bacterial species responsible for patient bacteremia

and in selecting appropriate antibiotics for timely treatment. This study

introduces a novel approach that combines immune response data from

routine blood counts with assessments of immune cell activation, specifically

through quantitative measurements of Rho family GTPase activity. The combined

data were used to develop a machine-learning model capable of distinguishing

specific classes of bacteria and their associations.

Methods: We aimed to determine whether different classes of bacteria elicit

distinct patterns of host immune responses, as indicated by quantitative

differences in leukocyte populations from routine complete blood counts with

differential. Concurrently, we conducted quantitative measurements of activated

Rac1 (Rac1•GTP) levels using a novel ‘G-Trap assay’ we developed. With the G-

Trap, we measured Rac1•GTP in peripheral blood monocytes (PBMC) and

polymorphonuclear (PMN) cells from blood samples collected from 28

culture-positive patients and over 80 non-infected patients used as controls.

Results:Our findings indicated that 18 of the 28 patients with bacteremia showed

an increase of ≥ 3-fold in Rac1•GTP levels compared to the controls. The

remaining ten patients with bacteremia exhibited either neutrophilia or

pancytopenia and displayed normal to below-normal Rac1 GTPase activity,

which is consistent with bacteria-induced immunosuppression. To analyze the

data, we employed partial least squares discriminant analysis (PLS-DA), a

supervised method that optimizes group separation and aids in building a

novel machine-learning model for pathogen identification.

Discussion: The results demonstrated that PLS-DA effectively differentiates

between specific pathogen groups, and external validation confirmed the
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predictive model's utility. Given that bacterial culture confirmation may take

several days, our study underscores the potential of combining routine assays

with a machine-learning model as a valuable clinical decision-support tool. This

approach could enable prompt and accurate treatment on the same day that

patients present to the clinic.
KEYWORDS

GTPases, Rac1 activation, bacteremia diagnosis, PLS-DA algorithm, G-Trap assay, flow
cytometry, sepsis
Introduction

Timely identification of species causing bacteremia in different

patients is challenging for healthcare providers and delays effective

treatment. Blood culture is commonly used to identify bacterial

species associated with an infection but has limitations. Blood

culture is only 30% accurate due to several factors, including blood

volume restrictions, timing of blood draw, antibiotic treatment, and

viable organisms. False positives can also occur due to contamination,

particularly with Staphylococcus epidermidis (S. epidermidis), part of

the normal skin microbiota (Pancholi et al., 2018; Sweeney et al.,

2019; Tamma et al., 2019; Ducharme et al., 2020; Ehren et al., 2020;

He et al., 2021); Park et al. (2021). Most infections may not appear in

the bloodstream, and specific tests take time to produce accurate

results. Blood cultures are prone to insensitivity and delayed results

that take days. Therefore, an unmet need remains for accurately and

rapidly identifying the bacterial species that cause patient bacteremia

to enable appropriate and timely antibiotic administration.

The immune system of vertebrates protects against invading

pathogens through leukocyte activation. Hence, strategies targeting

the host response have improved sepsis diagnosis and treatment (de

Jong et al., 2016; Huang et al., 2018; Iankova et al., 2018; Gunsolus

et al., 2019). Studies have found that combining mRNA panels

monitoring host immune responses with machine learning can

accurately identify the type and location of an infection (Gunsolus

et al., 2019; Sweeney et al., 2019; Ducharme et al., 2020; He et al.,

2021). However, mRNA panels cannot differentiate between bacterial

species. A complete blood count with differential (CBC with

differential) is a standard blood test that evaluates the levels of red

and white blood cells, hemoglobin, hematocrit, platelets, and cell size,

shape, and color. It is an affordable and expected standard of clinical

care that provides information on immune activation status.

Innate immunity recognizes pathogenic microorganisms and

helps activate the secretion of secondary signals that stimulate

adaptive immunity. Toll-like receptors (TLRs) are essential

membrane-spanning recognition receptors on the surface of

immune cells that identify pathogenic biomarkers such as

bacterial lipopolysaccharides or diacylated lipoproteins expressed

on the outer membrane of gram-negative and gram-positive

bacteria, respectively (Koch and Zacharowski, 2009; Reynolds

et al., 2012). The encounter between bacteria and TLR-induced
02
host responses activates transcription factors, including nuclear

factor-kappa B, p38 mitogen-activated protein kinase, and

inter f e ron regu la tory fac tors , c ruc ia l for in i t i a t ing

proinflammatory signaling pathways (Kawai and Akira, 2007).

Depending on the assessment of host-pathogen risk factors,

proinflammatory cytokines such as tumor necrosis factor,

interleukin-1, and interleukin-6 are secreted to stimulate the

production and recruitment of neutrophils and macrophages.

Thus, changes in immune cell counts have long provided an

important clinical aid in the diagnosis of bacterial infection.

Ras-related C3 botulinum toxin substrate 1 (Rac1) is a key

member of the Rho family of small guanosine triphosphatases

(GTPases) and is crucial for host immunity. Rac1 is essential in

actin cytoskeleton reorganization, superoxide production, and cell

migration, central to a productive host immune response (Bokoch,

2005). Rac1 mobilizes leukocytes through the nuclear factor-kappa

B pathway and promotes the production of pro-inflammatory

cytokines, chemokines, and adhesion molecules. By integrating

immune receptor signals, activated Rac1 regulates the directed

movement and adhesion of immune cells, which is vital for blood

leukocyte chemotaxis and tissue extravasation during infections

(Figures 1A–C) (Benvenuti et al., 2004; Tybulewicz and Henderson,

2009; Ridley, 2011). Rac1 GTPase responds to chemotactic factors

and cytokine receptor activation by transitioning from an inactive

guanosine diphosphate-bound state to an active guanosine

triphosphate (GTP)-bound state. This activation process is

facilitated by guanine nucleotide exchange factors and GTPase-

activating proteins, making the activation status of Rac1 a sensitive

indicator of immune cell activation (Dharmawardhane and Bokoch,

1997; Perona et al., 1997; Van Aelst and D'Souza-Schorey, 1997;

Jones et al., 1998; Scheffzek et al., 1998; DerMardirossian and

Bokoch, 2005; Oakley et al., 2009; Tong and Tergaonkar, 2014).

Specifically, GTP-bound Rac1 (Rac1•GTP) interacts with effector

proteins such as p21-activated kinase (PAK1). The binding of

Rac1•GTP to PAK1 activates its kinase activity, which is

necessary for immune cell motility, structural changes, and

cytoskeletal alterations (Henning and Cantrell, 1998; Cantrell,

2003; Bokoch, 2005; Dumont et al., 2009; Cherfils and Zeghouf,

2013; Lemichez and Aktories, 2013; Saoudi et al., 2014; Tong and

Tergaonkar, 2014). Therefore, PAK1 binding can be used to

monitor Rac1 activation status.
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In our study, we utilized a novel, highly quantitative G-Trap assay

we developed that is based on PAK1-functionalized beads (Simons

et al., 2018) to measure Rac1•GTP levels in polymorphonuclear

leukocytes (PMNs) and peripheral blood mononuclear cells

(PBMCs) (Figure 1D). Blood samples were from patients with

culture-confirmed bacteremia and control patients with non-

infectious disease. Our research included samples from patients

infected with various bacterial species known to cause bacteremia.

The bacteria included gram-positive organisms, such as Staphylococcus

aureus (S. aureus), Methicillin-resistant Staphylococcus aureus

(MRSA), Streptococcus pyogenes (S. pyogenes), Streptococcus

pneumoniae (S. pneumoniae), and Staphylococcus lugdunensis (S.

lugdunensis). The gram-negative bacteria included Escherichia coli

(E. coli), Enterobacter aerogenes (E. aerogenes), Klebsiella pneumoniae

(K. pneumoniae), Pasteurella multocida (P. multocida), and

Pseudomonas aeruginosa (P. aeruginosa). Our study was based on

the premise that host immune responses to bacterial infections present

in distinct patterns dependent on the bacterial species. We analyzed

the host immune response patterns using a weighted linear

combination of immune variables found in peripheral blood.

Specifically, we focused on neutrophil, lymphocyte, and monocyte

counts, along with Rac1•GTP levels in PMNs and PBMCs. Together,

these factors formed a minimum basis set for our analyses.

Using the immune responsiveness data for Partial Least Squares

Discriminant Analysis (PLS-DA) (Eriksson et al., 1999), we can

rapidly identify and discriminate differences between the pathogens

responsible for bacteremia in a collection of peripheral blood

samples from a heterogeneous group of patients. We evaluated

the efficacy of identifying unknown bacteremia species using a

machine-learning training data set (Lien et al., 2022) and test

samples. Our model classified all test samples accurately,

demonstrating the potential for rendering clinical decision support

in the timely and precise administration of antimicrobial therapy

and limiting the spread of antibiotic resistance.
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Results

Baseline measurements of control
samples: Rac1•GTP levels in uninfected
patient PBMCs are sensitive to
environmental allergies, while levels in
PMNs remain stable

We examined peripheral blood samples from over 80 non-infected

individuals to establish a baseline for GTPase activity in control

subjects. Blood samples were collected from August to December,

with approximately 12 distinct patient samples analyzed weekly. We

observed that the median GTPase activity in PBMCs (i.e., lymphocytes,

monocytes, natural killer cells (NK cells), or dendritic cells) fluctuated

weekly in August-October. In contrast, the GTPase activity of PMNs

(i.e., neutrophils, basophils, and eosinophils) remained stable

(Figures 2A, B). We hypothesized that changes in local pollen counts

influenced innate lymphoid cell (ILC)-mediated allergic responses,

causing the observed variations in Rac1•GTP in PBMCs. (Arango

Duque and Descoteaux, 2014; Panda and Colonna, 2019) In support of

our hypothesis, a plot of pollen counts (Weather.com) in

Albuquerque, New Mexico, on the day blood samples were collected

demonstrated a robust and significant Pearson correlation (r = 0.78,

p = 0.005) between median GTPase activity in PBMC samples and

pollen counts. We used this signal variability to establish a baseline

signal range for uninfected patients in Albuquerque, NM.
Bacteria classification and measurement of
influence on host immune responses
to infection

Gram-positive and gram-negative bacteria elicit immune

responses that manifest as changes in white blood cell counts and
FIGURE 1

White blood cell motility is critical for the inflammatory response to infection. The regulation of the actin cytoskeleton by Rho family GTPases (e.g.,
Rac1) and their kinases is crucial for leukocyte migration to sites of inflammation, making them essential biomarkers for identifying sources of
bacteremia. (A) White blood cells include PMN: polymorphonuclear cells (neutrophils, eosinophils, and basophils) and PBMC: peripheral blood
mononuclear cells (lymphocytes, monocytes, natural killer cells, and dendritic cells). Image courtesy of Visible Body (https://www.visiblebody.com/
learn/biology/blood-cells/blood-overview). A complete blood count with differential reflects changes in leukocyte counts caused by various
pathogens. (B) The separation of whole blood components using a Ficoll gradient allows for the isolation of PMNs and PBMCs, which are
subsequently analyzed with the G-Trap assay that quantitatively measures activated Rac1 (Rac1•GTP) levels in lysates of PBMCs and PMNs. (C) Serial
analysis of PBMCs from representative patients with an active immune response to bacteremia revealed that two patients were resistant to broad-
spectrum antibiotic treatment, while one responded positively. Additionally, one patient exhibited immune suppression, as indicated by low
Rac1•GTP levels.
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are linked to changes in Rac1•GTP levels in leukocytes, triggering

their activation and mobilization to sites of infection. It was our goal

to test if data obtained from routine blood counts combined with

assessments of immune cell activation, specifically through

quantitative measurements of Rho family GTPase activity, could

differentiate responses to individual bacterial species.

To do so, we first compared Rac1•GTP levels in PMNs and

PBMCs from the uninfected patients (81 included in the final

analysis) to those found in 61 serial samples drawn from 28

patients with blood culture-positive bacterial infections. Samples

were from patients with bacteremia caused by 10 different gram-

positive or gram-negative bacterial species. The range of Rac1•GTP-

mediated immune responses to infection was determined by plotting
Frontiers in Cellular and Infection Microbiology 04
the Rac1•GTP levels in cell populations of activated PBMCs and

PMNs from representative serial patient samples and found to be ≥ 3-

fold above controls in samples (Figures 3A, B). In contrast, the

Rac1•GTP levels in some patient samples were < 3-fold above and

often below control levels (Figures 3C, D). We attribute the lower

Rac1•GTP levels to several factors, including immunosuppression, an

increased population of immature neutrophils (pandemic) in some

patients, and pathogen-induced depletion of neutrophils

(neutropenia) in others (Seigel et al., 2012; Liu et al., 2022). The

observed ‘immunosuppression’ was not limited to the rarer

bacteremia-inducing species (P. aeruginosa, S. lugdunensis) shown

in Figures 3C, D but was also present in patients infected by the more

common species causal in bacteremia (E. coli and S. aureus), where
FIGURE 3

(A, B) Rac1•GTP content measured in PBMCs and PMNs from patients with bacteremia reveals GTPase activities ≥ 3-fold above controls. Rac1•GTP
was measured in lysates from serial peripheral-blood samples (PMN or PBMC as indicated on the plots) recovered from Tricore Research
laboratories post-admission and before a positive culture result. Each patient is identified numerically. Infecting pathogen abbreviations in
parentheses on the plot are identified as follows: P. multocida (PM) and E. coli (EC) are gram-negative. Gram-positive species are S. aureus (SA) and
methicillin-resistant S. aureus (MRSA).(C, D) Representative graphs of Rac1•GTP levels in serial lysates from PBMCs or PMNs from patients. Rac1•GTP
levels were < 3-fold above and often below control levels due to host immune suppression. Gram-negative species: P. aeruginosa (PA), K.
pneumoniae (PA). Gram-positive species S. lugdunensis (SL). Datapoints on each plot represent the standard error of the mean.
FIGURE 2

(A) Correlated changes in GTPase activity in PBMCs and pollen count on the day of blood sample collection. Each day represents the average of 12
patient samples. Pearson correlation (r = 0.78, p = 0.05). (B) Overlapping histograms of Rac-1 GTPase activity in leukocytes from TriCore diagnostic
blood draws of uninfected patients and measured using the G-Trap assay. The fluorescence value for each patient is represented as the Median
Chanel Fluorescence (MCF) readout from the G-Trap assay. The median values for polymorphonuclear neutrophils (PMN) and peripheral blood
mononuclear cells (PBMC) in the patient population tested are 1334 and 2220, respectively.
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the Rac1•GTP levels across cases, span a wide range (Figure 4). These

data suggest that Rac1•GTP levels act as a sensitive indicator of

immune responsiveness for identifying different classes of bacteria.

The immune response to infection changes white blood cell

counts and provides an additional dynamic and quantitative

measure of immune system function in patients with bacteremia.

Different bacterial strains may affect these cell counts in various ways.

For instance, when neutrophils ingest microbes, such as E. coli, P.

aeruginosa, and S. aureus, they trigger “phagocytosis-induced cell

death”, resulting in apoptosis (Kobayashi et al., 2018). For

classification purposes, neutrophil counts in infected patients were

sorted into three categories relative to controls: a) above the normal

range (neutrophilia), b) within the range of control counts, and c)

below the range of control counts (neutropenia) (Figure 4A). Some

cases were distributed across more than one category, e.g. (E. coli (a,

b, c); K. pneumoniae (b, c); S. pyogenes (a, b) and S. aureus (a, b)).

More detailed analyses of infections caused by gram-negative bacteria

(E. coli and K. pneumoniae) and gram-positive bacteria (S. aureus and

S. pyogenes) with the highest numbers of patients are shown in

Figure 4B. The highest levels of Rac1•GTP are notably produced in

category c patients, who also exhibited extremely low neutrophil

counts due to infections caused by gram-negative bacteria such as E.

coli and K. pneumoniae. In contrast, infections caused by gram-

positive bacteria, such as S. aureus, were more likely to cause

neutrophilia, though the neutrophils are inactive. Our analyses of

the collective data indicate that different bacterial species have unique

effects on innate and adaptive immune functions.
Patterns of immune response variables
depend on the species of bacteria

Our study is founded on the premise that the expression

patterns of specific immune response variables—Rac1·GTP (in
Frontiers in Cellular and Infection Microbiology 05
PMN or PBMC), neutrophils, lymphocytes, and monocytes—are

unique to each species and sufficiently distinct to identify

bacterial species.

Neutrophils (N). Unlike other pathogens, K. pneumoniae

infection causes minimal changes in neutrophil counts relative to

controls (see panel a in Figure 5A). E. coli and K. pneumoniae result

in small numbers of neutropenic patients. The gram-positive S.

aureus and S. pyogenes elicit significantly higher neutrophil counts

than controls. Thus, K. pneumoniae is separated from the other

species. Lymphocytes (L). Lower lymphocyte counts in all groups are

attributed to their redistribution within the lymphatic system and

the acceleration of apoptosis (Lowsby et al., 2015) (see panel b in

Figure 5A). Consequently, lymphocyte counts are generally not

discriminative among species.

Monocytes (M). Patients infected with S. aureus show

significantly increased monocyte levels compared to others (see

panel c in Figure 5A). Monocytes play a key role as an early defense

mechanism against S. aureus, (Mellergaard et al., 2020) making

them a valid discriminant factor for identifying S. aureus infections

among the declared group of unknowns.

Neutrophil-to-Lymphocyte ratio (N/R). In Figure 5B, we

analyzed the balance between acute inflammation and adaptive

immunity using the N/R. The N/R indicates systemic inflammation

based on complete blood count values. (Buonacera et al., 2022)

Changes in N/R can arise from an increase in neutrophils, a

decrease in lymphocytes, or a combination of both. As the disease

progresses, neutrophil counts tend to increase while lymphocyte

counts decrease. The N/R value for K. pneumoniae is similar to that

of the control group; in contrast, patients infected with E. coli, S.

pyogenes, and S. aureus exhibit significantly higher N/R values than

the controls. Our data show that the gram-positive bacteria S.

pyogenes and S. aureus significantly elevate neutrophil counts,

resulting in a higher N/R. However, S. aureus produces

chemotaxis inhibitory proteins that impair neutrophil function,
FIGURE 4

(A) Rac1•GTP levels measured in individual patient blood leukocytes (PBMC and PMN) who were diagnosed with bacterial infections due to gram-
negative strains (E. coli (EC, n=22), K. pneumoniae (KP, n=7), P. multocida (PM, n=3) P. aeruginosa (PA, n=3)) or gram-positive strains (S. pyogenes
(SP, n=12), S. pneumoniae (SPn, n=8), S. aureus (SA, n=10), MRSA (n=2)). (B) Depleted cell counts in late-stage samples are caused by cell-ingested
EC (1, 2, 3) and KP (1, 2), which kills the cells. To suppress an overactive immune system, SA and SP can inactivate neutrophil function, which may be
manifested as notably elevated neutrophil counts (neutrophilia). The double-headed arrows match the low neutrophil counts with Rac1•GTP levels in
gram-negative bacteria. Gram-positive bacteria correlate between peak numbers of neutrophils and Rac1•GTP suppression. The error bars represent
the median with the interquartile range. (A, B) The two top horizontal dotted lines denote the upper limit of GTPase activity found in control PBMCs
and the lower limit of GTPase activity found in PMNs. The two bottom dashed lines represent the upper and lower limits of control neutrophil
counts. (a) The zone containing neutrophils is considered to be activated or deactivated based on GTPase activity and elevated cell counts. (b) Zone
of impaired immune cell mobilization. (c) Zone of phagocytosis-induced cell death (Kobayashi et al., 2018). Ellipsoids in panel B indicate depleted or
elevated neutrophil counts and associated GTPase response.
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(Kobayashi et al., 2018) distinguishing S. aureus from E. coli and, to

a lesser extent, S. pyogenes infections.

Rac1•GTP. In Figures 5C, D, the Rac1•GTP content in K.

pneumoniae infections is comparable to the control group, while

E. coli shows the highest levels among the tested groups. To assess

the unit activity of the cell populations, we normalized Rac1•GTP

content to the number of cells. Only the cells activated by E. coli

exhibited a significant difference in Rac1•GTP content per unit cell

compared to infection by the other bacterial species.

In summary, K. pneumoniae is distinguishable from its cohort

due to its similarity to the controls, while E. coli stands out because

of significant Rac1•GTP expression in infected hosts. The gram-

positive bacteria S. aureus and S. pyogenes can be differentiated from

the gram-negative bacterium E. coli by their association with

neutrophilia and low levels of Rac1•GTP, which result from

impaired neutrophil function (Kobayashi et al., 2018). The link

between S. aureus and elevated monocyte counts (Mellergaard et al.,

2020) further distinguishes it from S. pyogenes.
Classification and discrimination of cases
based on bacterial species

To support our qualitative model, we used multivariate

statistical analysis to identify bacteria-specific immune response

patterns, helping to differentiate and group patients with the same
Frontiers in Cellular and Infection Microbiology 06
infection using Partial Least Squares Discriminant Analysis (PLS-

DA). To conduct a PLS-DA analysis, we separated the bacteria-free

controls and cases infected with either gram-positive or gram-

negative bacteria into “tolerance volumes” (Eriksson et al., 1999).

Using multiple linear regression based on Equation 1, we

established spatial separation between uninfected cases and

patients infected with gram-positive or gram-negative bacteria

(Figure 6A) (Mendez et al., 2020).

sip = n(RAC1(PBMC),p •½ RAC1(PBMC)�i + n(RAC1(PMN),p •½ RAC1(PMN)�i
+n(N)p •  N½ �i+n(N)p •  L½ �i+n(N)p •  M½ �i

(1)

The variable influence on projection (VIP) graph shows the

relative weights of (X) variables used to predict the sample

association with gram-positive and gram-negative species

infections and control samples. X-variables with VIP scores, such

as Rac1•GTP levels in PMN (Rac1(PMN)), Rac1•GTP in PBMC

(Rac1(PBMC)), and L, are more significant in discriminating

between classes in PLS-DA as shown for the response (Y)

variables represented by gram bacteria class and controls

(Figure 6B). The Rac1(PMN or PBMC) vectors bisect the

classification clusters, indicating the equal influence of bacterial

species. The strong correlation between the N and gram-positive

species is consistent with the prevalence of high neutrophil counts

associated with gram-positive bacterial infection. Neutrophils are

the primary immune cells that respond to S. pyogenes, also known

as gram-positive Group A streptococcus (Edwards et al., 2018).
FIGURE 5

(A) Complete Blood Count graphs of (a) Neutrophil counts (b) Lymphocytes (c) Monocytes derived from samples collected from control and
bacteremia cases due to E. coli (EC), K. pneumoniae, (KP) S. aureus (SA), and S. pyogenes (SP) infections. (B) Plots of Neutrophil/Lymphocyte Ratio
(N/R) in control and bacteremia cases. (C) Rac1•GTP is measured in neutrophil lysates (PMN); (a) aggregate GTPase activity of the total cell
population. (b) GTPase activity per cell for each sample. (D) Rac1•GTP measured in PBMC lysates. (a) aggregate GTPase activity of total cell
population. (b) GTPase activity per cell for each sample; * p ≤ 0.05; **p ≤ 0.01; *** p ≤ 0.001; ****p ≤ 0.0001. Statistics ordinary one-way ANOVA
multiple comparisons (Dunnett); horizontal line indicates the median with interquartile range. ns: not significant.
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The separation of bacteria by classification is linked to the

signature immune response mechanisms of gram-positive and

gram-negative species. TLRs recognize pathogen-associated

molecular patterns on the surface of bacteria and are essential to

innate immune defenses. Gram-positive bacteria cells have

peptidoglycan cell walls detected by TLR2 (Koch and

Zacharowski, 2009; Reynolds et al., 2012), while gram-negative

bacteria cells have thin peptidoglycan and lipopolysaccharides in

their outer membranes, activating TLR4 and sometimes TLR2/5.

Pathogen recognition receptors regulate Rac1 GTPase-mediated

leukocyte recruitment by activating class-specific signaling

pathways that produce cytokines and other molecules (Jones

et al., 1998; Ridley, 2001; 2006), thereby orchestrating the innate

and adaptive immune response to infection.

To set the stage for predicting the identity of specific infectious

agents ahead of or without positive blood culture confirmation, we

sorted patient samples infected with E. coli, K. pneumoniae, S.

pyogenes, and S. aureus into ‘separate tolerance’ volumes (Eriksson

et al., 1999). We excluded samples of rare bacteria, of which only

four or fewer were available per species, e.g., P. multocida, P.

aeruginosa, and Group B streptococcus. However, Equation 1 in

the PLS-DA model failed to resolve the intra-class bacterial species.

We reasoned that our five original variables were not sufficiently

robust to resolve intra-class species differences. We, therefore,

increased our variables to eight by adding white blood cell count

(WBC), the sum of lymphocytes and monocytes (L+M), and the N/

L (Equation 2), which represents the balance between acute

inflammation and adaptive immunity (Seigel et al., 2012).

sip = n(RAC1(PBMC),p •½ RAC1(PBMC)�i + n(RAC1(PMN),p •½ RAC1(PMN)�i + n(N)p •  N½ �i
+n(L)p •  L½ �i+n(M)p •  M½ �i+n(WBC)p •  WBC½ �i+n(L+M)p •  L + M½ �i+n(N=L)p •  N=L½ �i

(2)
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Adding extra experimental variables enhanced the (VIP) scores

(Figure 7A), resulting in improved separation of the intra-class

bacterial species on the discriminant hyperplane (PLS3 vs. PLS4)

(Figure 7B). The L+M loadings vector was correlated with E. coli

infections. In contrast, the N/L and WBC loadings were correlated

with K. pneumoniae. Gram-negative bacteria (E. coli and K.

pneumoniae) were distributed along the PLS3 component axis,

whereas the gram-positive bacteria (S. aureus and S. pyogenes)

were associated with the PLS4 axis. Rac1(PMN) and Rac1(PBMC)

had the most significant impact on identifying E. coli as the

infectious agent, which is consistent with the tendency of E. coli

bacteria to elicit more robust innate and adaptive immune

responses than the other bacterial species in this study (cf.

Figures 5C, D).

External Set Validation. For PLS-model predictions, a new

observation is considered to be similar to the training set if it is

located inside the tolerance volume. To achieve this goal, we

randomly selected 2-3 samples from each group infected by a

distinct pathogen and de-identified the species. Instead, we used

the PLS-DA model to predict the unknown species based on the

relative data fit to the existing tolerance volumes. The test set was

only used to measure the performance of the model. The prediction

error measure Q2 is the default parameter used in PLS-DA

discriminations, which focuses on how well the class label can be

predicted from test samples and new data. Q2 depends on the inter-

class separation and the intra-class variability. The validation model

showed that the EC and K. pneumoniae coordinates were rotated by

180° along the PLS3 axis compared to the original model (as

indicated in Figure 7C). Despite this change, our model could

correctly classify all test samples, which demonstrated high

accuracy with a predictive ability of Q2 = 0.88.
FIGURE 6

(A) Variable influence on projection (VIP) of: (a) bacteria-related response variables, including Gram(POS), Gram(NEG), control (CTRL) samples, and
(b) experimental predictor variables, including peripheral blood mononuclear cells (PBMC), lymphocytes (L), monocytes (M), neutrophils (N)). (B)
Partial Least Squares-Discriminant Analysis (PLS-DA) showing quadrant distribution of control samples and samples from patients with bacteremia
caused by gram-negative (Gram(POS) and gram-positive (Gram(NEG) species. Response loadings (brown) are closely correlated with PC scores.
Experimental loadings (blue) show a correlation of lymphocytes (L) and neutrophils (N) with control samples and gram-positive bacteria, respectively.
S. aureus infections elicit the production of high neutrophil counts; thus, the correlation with N. Gram-negative species: E. coli (EC) are bright red; E.
aerogenes (EA) are blue; K. pneumoniae (KP) are dark red; P. multocida (PM) are dark purple; P. aeruginosa (PA) are brown. Gram-positive species: S.
aureus (SA) is orange, MRSA is light purple, and S. pyogenes (PA) is green. Controls: uninfected cases.
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Discussion

Our study aimed to determine if multivariate analysis of

immune variables based on complete white blood cell counts and

Rac1•GTP levels in innate and adaptive immune cells—are

adequate to identify the bacterial species associated with

bacteremia in various patients. Rac1 plays several crucial roles

related to host immunity by: a) mobilizing leukocytes, thereby

triggering the expression of genes that code for proinflammatory

cytokines , chemokines , cel l adhesion molecules , and

immunoreceptors, b) activating transcription factors that promote

cell growth and expansion of antigen-specific lymphocytes (Turner

et al., 1998), and c) regulating immune cell motility, adhesion, and

transcription. Thus, Rac1 integrates upstream and downstream

GTPase responses that lead to immune cell motility-driven

cytoskeletal dynamics, adhesion, and transcription (Jones et al.,

1998; Ridley, 2000). Elevated or suppressed levels of Rac1•GTP,

along with a complete blood cell count, can help identify the species

causing bacteremia. As an immune signaling node, Rac1 GTPase

activity measurement avoids the need and costs of measuring

multiple variables in real-time (cf. Figure 7) and subsequent

analysis on various platforms at high costs. The differential

diagnosis of an infection involves determining which pathogen is

most likely causing the disease. Bacterial strains evade host innate

immune responses by blocking chemo-attractants and inhibiting

neutrophil mobilization (Surewaard et al., 2013; de Oliveira et al.,

2016) (Haas et al., 2004), often targeting GTPase-dependent

immune mechanisms (Mao and Finnemann, 2015). This

suppression can weaken the adaptive immune response

(Kobayashi et al., 2018). Our study highlights the critical role of

Rac1•GTP and associated white blood cell counts in segregating

patient samples into clusters based on unique immune response

patterns associated with different bacterial species.

Our discussion is limited to the most abundant species in our

study cohort: E. coli, S. aureus, S. pyogenes, and K. pneumoniae.
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Patients with an E. coli infection typically exhibit high neutrophil

counts and Rac1•GTP. In contrast, those with an S. aureus infection

have low Rac1•GTP levels, even though they may show high

neutrophil counts. This is because S. aureus impairs neutrophil

function and produces anti-inflammatory metabolites (Frodermann

et al., 2011). Depleted cell counts in late-stage samples occur due to

cell-ingested EC (1, 2, 3) and KP (1, 2) (in Figure 4B), initiating

“phagocytosis-induced cell death” to suppress an overactive

immune system. S. aureus is a significant cause of bacteremia and

sepsis, leading to serious infections, including central line-

associated bloodstream infections, skin infections, pneumonia,

and toxic shock syndrome (Haslinger-Loffler et al., 2005;

Greenlee-Wacker et al., 2014). Therefore, the ability to

discriminate E. coli and S. aureus infections is a significant advance.

S. pyogenes is the leading cause of maternal sepsis (puerperal

sepsis) occurring within six weeks of childbirth, significantly

contributing to maternal and infant mortality worldwide

(Grondahl-Yli-Hannuksela et al., 2021). Invasive S. pyogenes can

lead to Toxic Shock Syndrome, which occurs in 20% to 33% of

pregnancy-related cases. This condition is responsible for

approximately 50% of fatal cases, sometimes within just 24 hours

of the onset of symptoms. Therefore, prompt diagnosis and the

early administration of appropriate antibiotic therapy are essential

(Hamilton et al., 2013; Stevens and Bryant, 2023). Elsewhere,

pathogen-specific bacteremia urinary tract infections (Al-Hasan

et al., 2010) account for 1-6% of healthcare visits, where the

treatment cost in the US alone is approximately $1.6 billion

annually (Sulham and Hammelman, 2021). Globally, 404.61

million urinary tract infections were reported in 2019, with E. coli

and K. pneumoniae as the most common cause (Yang et al., 2022).

K. pneumoniae can also cause severe infections in newborns, cancer

patients, and those with weakened immune systems (Follador et al.,

2016; Chang et al., 2021). Treating E. coli and K. pneumoniae

bacteremia can be challenging because of the overuse of antibiotics

targeting E. coli, which is the more prevalent pathogen (Girometti
FIGURE 7

Partial Least Squares-Discriminant Analysis (PLS-DA) shows a quadrant distribution of controls and patients based on bacterial species found in blood
culture. (A) Variable influence on projection (VIP) of response variables (bacteria-species) and experimental variables (PMN, PBMC, lymphocytes (L),
monocytes (M), neutrophils (N)). The relative influence of loadings is derived from 8 variables in Equation 1. The increase in weight differential in the
response variables (Y) yields greater separation. (B) The Case ID letters refer to infecting pathogen SA: S. aureus, SP: S. pyogenes, EC: E. coli, KP: K.
pneumoniae. Controls (center of the graph) Observed (principal components) and predicted (bacteria loadings) plots for each response show good
agreement. (C) Cross-validation to confirm the PLS-DA classification model using the training set and test set (teal data points inside dotted
rectangles) in predicting class memberships with the test set samples; Q2 for the new model is 0.88, where Q2 evaluates the error between the
predicted response variable y and the known y.
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et al., 2014; Xu et al., 2015; Sung et al., 2021). This makes it crucial to

identify the pathogen accurately and rapidly to prevent prescribing

unnecessary antibiotics and limit antibiotic resistance. As shown in

Figure 7, the measure of Rac1•GTP using the G-Trap assay can

accurately differentiate S. aureus, S. pyogenes, E. coli, and K.

pneumoniae with distant separations. This allows healthcare

workers to customize treatment and adjust the antibiotic regimen

in real time based on the patient’s immune response.

We acknowledge that the limitations of our study will be

addressed in future research to verify the effectiveness of the

machine-learning approach in managing antimicrobial usage. Our

data set is small. However, in limited numbers for the rare species in

our cohort, we could still accurately identify the class (gram-positive

or gram-negative) of bacteria species. We achieved our primary

objective of developing a proof-of-concept assay to evaluate patient

immune functionality as a biomarker for the rapid assessment of

presumptive bacteremia. Since this was a masked pilot study,

characterizing the trajectory from bacteremia to recovery was not

possible, and it presented limited individualized insight into

intervention strategies due to the minimal dataset and

comprehensive access to clinical patient variables.

In sum, our study validated and demonstrated that quantitative

assessment of immune cell activation through white blood cell

counts and Rac1•GTP levels is associated with the convergence of

leukocyte activation signaling pathways (Infante and Ridley, 2013).

G-Trap tests can help narrow antibiotic prescriptions based on local

antibiograms and streamline differential diagnosis (Southwick,

2020a; b) The correlation between infection of named bacterial

species and infected patients can inform antibiotic prescription and

de-escalation in real-time.
Materials and methods

G-Trap effector beads

G-Trap is a flow cytometry assay that uses bead-based protein

immobilization to quickly measure the activity status of GTPases in

cells or tissue lysates. (Simons et al., 2018) Multiplex format assay

bead sets are functionalized with different glutathione-S-

transferase-effector proteins at the surface of each set. Users can

incubate bead sets individually or in a multiplex format with lysates

for rapid, selective capture of active, GTP-bound GTPases from a

single sample. Flow cytometry detects the bead-borne GTPase and

quantitatively measures the amount of active GTPase per bead

using labeled secondary antibodies.
Effector proteins

We used the glutathione-S-transferase-effector protein chimera

p21-activated kinase protein binding domain, a Rac1 effector

protein purchased from Millipore Sigma.
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Antibodies

Monoclonal Rac1 antibodies (Cat. # ARC03) were purchased

from Cytoskeleton.
Buffers

The 2X Radioimmunoprecipitation Assay Buffer, commonly

known as RIPA, consists of 100 mM Tris (tris(hydroxymethyl)

aminomethane) titrated with HCl to pH 7.4, 300 mM NaCl, 2

mM ethylenediaminetetraacetic acid, 2 mM NaF, 2 mM Na3VO4,

2% NP-40, and 0.5% sodium deoxycholate. Just before adding it to

the culture medium, include 2 mM phenylmethylsulfonyl fluoride

and 2X protease inhibitors. HHB Buffer contains 7.98 g/L HEPES

(2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid, Na salt),

6.43 g/L NaCl, 0.75 g/L KCl, 0.095 g/L MgCl2, and 1.802 g/L glucose.

The HPSMT buffer, an intracellular mimic, is made up of 30 mM

HEPES, pH 7.4, 140 mM KCl, 12 mM NaCl, 0.8 mM MgCl2, and

0.01% Tween 20 (Polyethylene glycol sorbitan monolaurate).
Study design

The University of New Mexico Health Sciences Center Human

Research Protections Office Institutional Review Board approved this

study (UNM IRB#18-068). The study was classified as category (5),

which refers to data, documents, records, and specimens (blood

samples, in our case). It is important to note that our Institutional

Review Board approval for the pilot study did not include access to

comprehensive clinical data. After a positive diagnosis of a non-

infectious disease state or confirmed bacteremia, we collected residual

blood samples directly from the clinical lab.We obtained blood samples

from 120 patients with non-infectious diseases. When patients showed

signs of bacteremia, their physicians ordered daily blood samples to test

for bacterial growth. Any extra samples were stored in the clinical

laboratory at 4°C until a bacterial culture was confirmed. In this

manner, serial blood test samples (61 samples) from 28 patients with

a confirmed diagnosis of bloodstream infection were collected after

standard-of-care testing at TriCore Reference Laboratories. TriCore

Reference Laboratories provided the investigators with complete blood

counts with differential for each subject.
Isolation of PBMCs and PMNs
diagnostic samples

Whole blood samples were kept at 4°C. PBMCs consist of

lymphocytes (T, B, and natural killer (NK) cells) and monocytes.

PMNs, comprising primarily neutrophils with a small fraction of

eosinophils, basophils, and mast cells, were isolated using a Ficoll-

based density gradient using 1 ml of blood for all samples. The

PBMC and PMNs layers were carefully recovered in 800 μl volumes,
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mixed with 800 μl PBS, centrifuged, and removed the excess

solution, leaving the pellet in 25 μl volume. The pellet was lysed,

and soluble Rac1-GTP was recovered using PAK1-functionalized

beads, then labeled with anti-Rac1 primary and fluorescent

secondary antibodies before being analyzed using a flow cytometer.
Functional assessment of PBMCs and
PMNs with Rac1•GTP binding assays

The pel leted cel ls are lysed by adding 25 μl 2X

Radioimmunoprecipitation assay buffer at 4°C and centrifuged at 4°

C in a cold room. Forty-five microliters of cleared lysate were analyzed

for Rac1•GTP content using G-Trap beads functionalized with PAK1

effector beads, (Simons et al., 2018) utilizing an Accuri C6 flow

cytometer equipped with BD Accuri C6 Software for data collection

and analysis. We used the CBC with differential data from Tri-Core to

determine how much Rac1•GTP was produced by single cells.
Multivariate data analysis: model training,
validation, and testing

Due to lack of complete blood count (CBC) data in 6 cases, the

final data set used for the multivariate analysis, drawn from 22

patients, consisted of 61 data points: (K. pneumoniae (7)) S. aureus

(16), MRSA (2), S. pyogenes (10), E. coli (16), P. aeruginosa (3), P.

multocida (3), Group B streptococcus (4), E. aerogenes (2)). For

control experiments, 80 samples from 80 patients were treated for

non-infectious disease causes.

We used GraphPad Prism 10.0 (GraphPad Software, La Jolla, CA)

for principal component analysis and SIMCA-P 9.0 software (Eriksson

et al., 1999) (Umetrics, Umeå, Sweden) for partial least squares

discriminant analysis (PLS-DA). PLS-DA is a classification method

similar to a supervised application of principal component analysis. In

PLS-DA, one knows the class membership (bacterial species)

contained in the algorithm’s categorical variables. The purpose of

PLS-DA is to predict sample class membership in matrix Y based on

measured immune response data inmatrixX. PLS-DA achieves this by

reducing the dimensionality of the data through a transformation that

results in latent variables (LVs). These LVs are derived from linear

combinations of the original immune variables (N, L, M Rac1(PMN,

Rac1(PBMC))) that attempt to explain the maximum covariance

between X and Y. In other words, PLS-DA uses analytes with

significant quantitative variations and tries to correlate them to the

sample class information in Y. Other meaningful results are scores and

loadings that describe the samples and the immune variables,

respectively. A scores plot ideally shows sufficient separation of the

class input as a part of the analysis (i.e., the responses in Y).

On the other hand, a loadings plot would demonstrate the

variables (i.e., N, L, M Rac1(PMN, Rac1(PBMC))) that significantly

differentiate the sample classes (i.e., the spatial distribution of

bacterial species). Samples have scores on each determined LV,

and the immune variables have loadings for each LV. These scores

and loadings are used to estimate Y. Therefore, PLS-DA helps

predict the sample membership for both calibration/training sets of
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samples used to build the model and new samples in the future,

where knowledge of class membership is unknown.

Validation and testing
The Q2 is a prediction error measure used in PLS-DA

discriminations to evaluate how well the class label can be

predicted from new data. This study used a limited data set of

test samples (10 controls and 2-3 samples chosen from each

bacteremia species). The Q2 diagnostic statistic validates PLS-DA

models. This is done by evaluating the error between the predicted

categorical variable (ŷ) and the known variable (y). Q2 is defined as

1 minus the ratio of the Prediction Error Sum of Squares (PRESS)

over the Total Sum of Squares (TSS) of the response vector y (Q2 = 1

- PRESS/TSS) (Cruciani et al., 1992).
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