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The microbiome-gut-testis axis has emerged as a significant area of interest in

understanding testicular cancer, particularly testicular germ cell tumors (TGCTs),

which represent the most common malignancy in young men. The interplay

between the gut and testicular microbiomes is hypothesized to influence

tumorigenesis and reproductive health, underscoring the complex role of

microbial ecosystems in disease pathology. The microbiome-gut-testis axis

encompasses complex interactions between the gut microbiome, systemic

immune modulation, and the local microenvironment of the testis. Dysbiosis in

the gut or testicular microbiomes may contribute to altered immune responses,

inflammation, and hormonal imbalances, potentially playing a role in the

pathogenesis of TGCTs. Concurrently, seminal microbiomes have been linked

to variations in sperm quality, fertility potential, and possibly cancer susceptibility,

underscoring the need for further evaluation. This review explores the emerging

role of the microbiome-gut-testis axis in the context of testicular cancer,

highlighting its implications for disease onset, progression, treatment efficacy,

and toxicity. Identifying potential microbial biomarkers, followed by microbiota

modulation to restore a balanced microbial community, might offer a novel

supportive strategy for improving treatment efficacy in refractory TGCT patients

while reducing chemotherapy-induced toxicity. We suggest a better

understanding of the association between dysregulated microbial

environments and TGCTs emphasizes potential pathways by which the gut

microbiome might influence testicular cancer.
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1 Introduction

Testicular cancer is the most common solid malignancy in men

aged 20 to 40 (Siegel et al., 2022). Most cases are classified as

testicular germ cell tumors (TGCTs), differing from typical solid

tumors due to their histological heterogeneity. Advances in

treatment, particularly the introduction of cisplatin into

therapeutic regimens, have led to significant progress in

managing TGCT patients (Einhorn and Donohue, 1977a, b).

Despite a high curability, a small subset of patients remains

resistant to treatment, prompting extensive research to uncover

the underlying mechanisms and identify reliable prognostic

biomarkers (Facchini et al., 2019). Current trends in TGCT

research comprise efforts to de-escalate therapy in stages with the

favorable disease to minimize the acute and long-term treatment-

induced toxicity, including the utilization of new approaches in

oncosurgery (Franzese et al., 2023). In patients with high-risk

disease and relapsed and/or refractory disease, research is

primarily focused on overcoming cisplatin resistance and thus

increasing the cure rate (Mele et al., 2021).

The gut microbiome exerts a pleiotropic effect on various

physiological and pathological processes, including cancer

(Nikolaieva et al., 2022). Increasing evidence suggests that

microbiome composition modulates the effect of anti-cancer

therapy and influences the toxicity of anti-cancer treatment

(Ciernikova et al., 2023a). Disruption of intestinal homeostasis is

associated with severe diseases and studies have documented the

role of specific microorganisms in tumorigenesis (Marshall and

Warren, 1984; Ciernikova et al., 2015; Viljoen et al., 2015;

D’Antonio et al., 2022; Tan et al., 2022; Ciernikova et al., 2023b).

The communication and connection between the gut microbiome

and distant organs, such as the brain, muscles, kidneys, and liver,

are mediated mainly by microbial signals and metabolites (Chalova

et al., 2023). However, studies on testicular tumors are rare. Animal

models helped clarify the bidirectional relationship between the gut

microbiome and the reproductive system, focusing on the role of

androgens. Based on these findings, the microbiome-gut-testis axis

has been proposed (Li et al., 2022).

Unfavorable microbiome composition, characterized by the

prevalence of pathogens and decreased microbial diversity,

negat ive ly affec ts the efficacy of chemotherapy and

immunotherapy (Alexander et al., 2017; Jia et al., 2024).

Preclinical and clinical studies documented that tumor-associated

microbiome can influence the metabolism and inactivation of anti-

cancer drugs (Ciernikova et al., 2022; Fu et al., 2023; Kong et al.,

2023; Sevcikova et al., 2023; Abe et al., 2024; Cao et al., 2024).

Importantly, gut and tumor microbiome alterations correlated with

the response to platinum-based treatment (Iida et al., 2013; Liu

et al., 2017; Chambers et al., 2022; Liu et al., 2023). Although

cisplatin is part of the first-line chemotherapy regimens given to

TGCT patients, minimal data is available regarding gut microbiome

analysis in TGCTs.

In this review, we provide the latest knowledge on the role of the

gut microbiome in men´s reproductive health, along with study

findings on testicular and semen microbiomes. The impact of

microbial communities on the efficacy of cisplatin treatment, a
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first-line therapy for TGCT patients, will also be discussed.

Importantly, we will outline possible associations between

microbiome composition and TGCT therapeutical outcomes.
2 Testicular germ cell tumors

In 2020, a total of 74,500 cases of testicular tumors were

diagnosed worldwide, predominantly affecting men of European

descent (Sung et al., 2021). Despite the growing incidence of the

disease, the mortality rate from testicular cancers has stabilized or

shown a declining trend (Huang et al., 2022). In most high- or

middle-income countries, cisplatin treatment is widely available,

contrasting with limited-resource countries (Cherny et al., 2017).

Increased awareness has contributed to earlier diagnosis, improving

patient outcomes (McGuinness et al., 2017).

TGCTs account for 95% of all testicular cancers, with a 10-year

survival rate surpassing 95% (Hanna and Einhorn, 2014; Fung et al.,

2018, 2019). TGCTs can be generally categorized into tumors

arising from precursor germ cell neoplasia in situ (GCNIS) and

GCNIS-unrelated tumors (Rajpert-De Meyts et al., 2016).

According to the classification, GCNIS-related tumors comprise

two major histologic types: seminomas and non-seminomas. Non-

seminomas can be further classified into various subtypes, including

embryonal carcinoma, teratoma, or extraembryonic elements such

as choriocarcinoma and yolk sac tumors (Oosterhuis and Looijenga,

2019; Paffenholz et al., 2020).

Although the etiology of TGCT remains largely unclear, various

genetic and environmental events that occur during fetal testicular

development and to some extent, after birth contribute to its onset

(Looijenga et al., 2010). Known and potential risk factors include a

personal history of cancer in the contralateral testis, a family history

of the disease, ethnic differences, body mass index, a diet with high

consumption of dairy products, red meat, and baked products,

cryptorchidism, age, and precocious puberty, hormonal levels, sex

hormone activity, GCNIS, genetic and epigenetic changes,

infertility, infections, cigarette and tobacco smoking, and

occupational and environmental exposures (Stevenson and

Lowrance, 2015; Pallotti et al., 2020; Andelkovic et al., 2023;

Crocetto et al., 2023; Yazici et al., 2023; Di Maggio et al., 2024).
3 Microbiome-gut-testis axis

The human gut microbiome represents an ecological community of

bacteria, viruses, archaea, yeast, fungi, and parasites that colonize the gut

(Weiner et al., 2023). The six predominant bacterial phyla that form the

microbiome are Bacteroidetes, Firmicutes, Actinobacteria,

Proteobacteria, Fusobacteria, and Verrucomicrobia. Among these,

Bacteroidetes and Firmicutes collectively comprise about 90% of the

gut microbiota (Van Hul et al., 2024), and the balance in Firmicutes/

Bacteroidetes ratio is critical for maintaining health (Magne et al., 2020).

Microbiome composition contributes to the regulation of male

fertility and reproductive health by influencing testicular function

and sperm production (Ma et al., 2024). The microbiome-gut-testis

axis is a complex, bidirectional communication system where
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changes in the gut microbiome can promote systemic alterations

and inflammatory responses that negatively affect the testicular

environment and sex hormone production (Magill and Macdonald,

2023). Conversely, androgens, important hormones synthesized

in the male testes, can influence gut microbiome composition

through complex mechanisms (Harada et al., 2016; Li et al.,

2022). A healthy lifestyle, diet, supplements, or phytoconstituents

support male reproductive health by promoting gut microbiome

balance (Dubey et al., 2024). On the other hand, broad-

spectrum antibiotics, toxins, endocrine disruptors, and heavy

metals can impair intestinal homeostasis, adversely affecting

male reproductive health and hormone levels. Gut dysbiosis,

characterized by an imbalance in the intestinal microbiota with a

prevalence of unfavorable and harmful microorganisms, increases

pro-inflammatory markers. The disrupted intestinal barrier

facilitates the translocation of pathogens and pro-inflammatory

cytokines into the bloodstream (Leelani et al., 2023).

The reciprocal interactions between the gut microbiome and the

testes, proposed as the microbiome-gut-testis axis, highlight the

impact of microbiota-derived metabolites on androgen production

and metabolism, as well as normal spermatogenesis and

reproductive processes (Figure 1).
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Intestinal microorganisms can modulate androgen metabolism,

affecting the androgen levels (Collden et al., 2019). Reciprocally,

androgens alter the composition of the gut microbiome by affecting

the intestinal barrier and environment (Li et al., 2022). An in vivo

experiment found no significant differences in the gut microbiome

between testosterone-treated mice and control subjects. Despite this,

four metabolites, including amino acid derivatives and lipids, were

elevated in the testosterone group, while 18 other metabolites showed

a decrease (Moadi et al., 2024). Supplementation with Lactobacillus

reuteri increased testosterone levels in male mice (Lee et al., 2016).

Similarly, synbiotics containing Lactobacillus paracasei increased

testosterone levels in men (Maretti and Cavallini, 2017).

The crosstalk between the gut microbiome and testes has been

supported by microbiota modulation with probiotics and fecal

microbiota transplantation (FMT), showing fecal transplant from

mice on a high-fat diet to normal-diet mice reduced

spermatogenesis and decreased sperm motility. Prevotella copri

was identified as a contributor to impaired sperm motility and

increased endotoxin levels in the blood (Ding et al., 2020). Certain

probiotics, such as Lactobacillus rhamnosus PB01, enhanced sperm

dynamics in mice fed a high-fat diet (Dardmeh et al., 2017).

Accordingly, Lactobacil lus rhamnosus NCDC-610 and
FIGURE 1

The link between the gut microbiome and testes. Lifestyle factors, including diet, probiotics, physical activity, stress, medications, and toxins
significantly influence gut microbiome composition. Subsequently, altered microbial communities affect testicular functions through the production
of microbial and microbiota-derived metabolites, vitamins, nutrients, toxins, and reactive oxygen species (ROS). According to numerous findings, the
gut microbiome is in direct interaction with the testes, regulating androgen production, spermatogenesis, and overall reproductive capacity (adapted
from (Li et al., 2022). Ca, calcium; vit, vitamin; IFN-g, interferon-gamma; IgA, immunoglobulin A; IL, interleukin; LPS, lipopolysaccharides; M,
macrophage; SCFAs, short-chain fatty acids; TGF-b, transforming growth factor-beta; Th cell, helper T cell; TNF-a, tumor necrosis factor-alpha;
Treg cell, regulatory T cell.
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Lactobacillus fermentum NCDC-400 with fructooligosaccharides

reduced restraint stress-induced sperm deficits in vivo. Moreover,

these probiotics demonstrated a protective effect against oxidative

stress by decreasing IL-6, IL-10, and TNF-a (Akram et al., 2023). In

humans, supplementation with two probiotic strains, Lactobacillus

rhamnosus CECT8361 and Bifidobacterium longum CECT7347,

improved sperm motility, and reduced sperm DNA fragmentation

in asthenozoospermic males (Valcarce et al., 2017). Similarly, Helli

et al. reported enhanced sperm concentration and motility, along

with reduced oxidative stress and pro-inflammatory markers, in

infertile men supplemented with probiotics (Helli et al., 2022). Yan

et al. documented an improved semen quality after fecal transplant

of alginate oligosaccharide (AOS)-modified gut microbiota to

young mice with type 2 diabetes. Underlying mechanisms

included an improved metabolomic profile with elevated levels of

butyric acid, docosahexaenoic acid (DHA), eicosapentaenoic acid

(EPA), testosterone in the bloodstream and/or testes (Yan

et al., 2022).

Disrupted microbial homeostasis affects the production of

Vitamins A and K, calcium, and folic acids, potentially leading to

impaired testicular function (Cai et al., 2022). A decline in gut

absorption of vitamin A was associated with a reduced population

of a specific bacterial group, Ruminococcaceae_NK4A214. This

imbalance led to lower vitamin A levels being delivered to the

testes through the bloodstream, which caused damage to sperm

production (Zhang et al., 2022). An imbalance in gut bacteria can

increase inflammatory signals, triggering immune cells like dendritic

cells and macrophages to become more active. These immune cells

can enter the testes via the lymphatic system, blood vessels, or other

pathways, disrupting the delicate immune environment needed for

healthy sperm (Cai et al., 2022). Increased immune activity in the

testes and epididymis has been shown to harm sperm development

and function (Fijak et al., 2018; Zheng et al., 2021).
4 The associations between testicular
and seminal microbiomes and
reproductive outcomes

Male infertility is one of the known risk factors for testicular

cancer (Maiolino et al., 2023). Bryan et al. documented the presence

of Chlamydia trachomatis in 16.7% of testicular biopsies in infertile

men (Bryan et al., 2019). In men with normal sperm count, only

small quantities of bacteria were found in testicular specimens

using massive ultra-deep pyrosequencing. However, individuals

with the absence of sperm in the ejaculate had higher bacterial

DNA but decreased microbial diversity, specifically the absence

of Bacteroidetes and Proteobacteria (Alfano et al., 2018).

Wilharm et al. noted that testicular microbiota influenced the

immunoregulatory function of the testes (Wilharm et al., 2021).

A case report involving two male patients with sperm count

difficulties described that testicular tissue homogenate from patient

with no sperm count contained Firmicutes (53%), Bacteroidetes

(12%), Actinobacteria (12%), Proteobacteria (8%), Fusobacteria

(8%), SR1 bacteria (7%), Saccharibacteria (3%), and candidate
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Parcubacteria (1%). The second patient with low sperm count

showed high levels of Proteobacteria (64%) in testicular tissue, with

lower levels of Firmicutes (13%), Bacteroidetes (15%), and

Actinobacteria (7%) (Altun et al., 2021). The testicular microbiome

contributes to the bacterial composition of ejaculate. In testicular

sperm from the testes of infertile men, ten significantly present

bacterial genera were detected, including Blautia, Cellulosibacter,

Clostridium XIVa, Clostridium XIVb, Clostridium XVIII, Collinsella,

Prevotella, Prolixibacter, Robinsoniella, andWandonia (Molina et al.,

2021). Another study reported elevated levels of Aerococcus, greater

seminal a- and b-diversities, and a significant reduction in Collinsella

in the semen of infertile men (Lundy et al., 2021b).

Brandao et al. suggested the seminal microbiome might affect

fertility and seminal quality, and identify an abundance of

Anaerococcus, Bacillus, Burkholderia, Corynebacterium,

Finegoldia, Haemophilus, Lactobacillus, Prevotella, Proteus,

Pseudomonas, Rhodococcus, Staphylococcus, Streptococcus, and

Veillonella in seminal samples (Brandao et al., 2021). Some results

indicated no statistically significant differences in seminal

microbiome composition between healthy controls and infertile

patients, with Tissierellaceae, Lactobacillaceae, Streptococcaceae,

Prevotellaceae, and Corynebacteriaceae dominating in both

analyzed groups (Amato et al., 2020). On the other hand,

numerous microbiome analyses found alterations in the semen

microbiome between healthy and infertile men. The underlying

mechanisms by which microbes contribute to male infertility,

however, remain largely unexplored (Balmelli et al., 1994; Jarvi

et al., 1996; Kiessling et al., 2008; Weng et al., 2014; Monteiro et al.,

2018; Chen et al., 2023).

A meta-analysis involving 24 studies showed that Prevotella

negatively impacted sperm quality, while the presence of

Lactobacillus protected the quality parameters. Increased presence

of Ureaplasma urealyticum was detected in infertile men (Farahani

et al., 2021). Higher levels of metabolite S-adenosylmethionine

(SAM) were found in the semen of infertile men. This compound

may contribute to infertility because it influences processes like

managing oxidative stress, modifying DNA, and supporting cell

growth. Changes in SAM levels can negatively affect sperm

production and quality. Research also showed that increased

levels of Prevotella were linked to lower sperm concentration

(Lundy et al., 2021a).
5 Exploring the role of microbiome in
testicular cancer research

The connection between microbiome composition and some

genitourinary tumors, including bladder and prostate cancer, has

been well established (Kustrimovic et al., 2023; Russo et al., 2024).

Signatures of Helicobacter pylori were documented in 90% of

prostate cancer cases (Banerjee et al., 2019), while higher levels of

Schistosoma, Pseudomonas, Streptococcus, Mycobacterium,

Bacteroidetes, and Klebsiella were associated with bladder cancer

carcinogenesis (Zhang et al., 2023). However, TGCTs are of

embryonic origin, representing a unique entity with distinct
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biological, clinical, and therapeutic aspects. Thus, findings from

other genitourinary cancers cannot be overgeneralized.

Currently, no direct causality has been confirmed between the

microbiome and TGCT risk or development. The role of the

microbiota in TGCTs has yet to be investigated particularly to its

potential involvement through the microbiome-gut-testis axis.

Overall, 16S rRNA gene amplicon sequencing and shotgun

metagenomic analysis are preferentially used for bacterial

taxonomy resolution (Elie et al., 2023). 16S rRNA gene is a

microbial biomarker conserved among bacteria, and its sequence

contains nine hypervariable regions interspersed with conserved

regions (Lan et al., 2016). Shotgun metagenomic analysis offers a

strategy to reveal functional metabolic pathways. A small RNA

sequencing technique was used to analyze the seminal plasma

microbiome from patients with TGCTs or precancerous

conditions to explore gene expression profiles, including those of

viruses and phages (Morup et al., 2023). Acaryochloris marina,

Burkholderia spp. YI23, Halovirus HGTV-1, Thioalkalivibrio spp.

K90mix, and Desulfurivibrio alkaliphilus had a higher prevalence in

patients with TGCTs or precursor lesions compared to controls.

Conversely, higher levels of Streptomyces phage VWB were found in

the control group, suggesting its contribution to healthy testicular

development (Morup et al., 2023). In a case study, a patient with

testicular seminoma and teratoma experienced notable health

benefits after FMT, including normalized stool consistency,

decreased levels of anxiety, and an improved ability to tolerate a

wide range of foods (Alvaro et al., 2019).

Cancer-testis antigens (CTAs) are normally found only in healthy

testes, but their abnormal expression has been observed in various

types of cancer (Shim et al., 2023). An in vitro experiment

demonstrated that the supernatants from Lactobacillus acidophilus

and Lactobacillus crispatus significantly reduced the transcriptional

activity of CTAs, specifically ODF4, PIWIL2, RHOXF2, and

TSGA10, in cancer cell lines. Recent studies showed that

Lactobacillus species may downregulate CTA expression through

multiple epigenetic mechanisms (Azam et al., 2014). Studies have

linked exposure to bisphenol A (BPA) to an increased incidence of

testicular cancer (Delbes et al., 2006; Khan et al., 2021). Oral

supplementation with Lactobacillus rhamnosus and Lactobacillus

plantarum after BPA exposure effectively removes BPA from the

gut, serum, and testes, reduces oxidative stress, and lowers levels of

inflammatory cytokines (Wu et al., 2024). In an animal model using

Tilapia (Oreochromis niloticus), a dietary supplement containing

probiotics and vitamin C was shown to mitigate cadmium-induced

damage, including bleeding and testicular edema (Hayati et al., 2020).

Yin et al. performed comprehensive microbiome analysis in

patients with renal cell and renal pelvis cancer, bladder carcinoma,

prostate, and testicular cancer (Yin et al., 2023) using data from the

UK biobank (Sudlow et al., 2015) and Finngen consortium (Kurki

et al., 2023). According to the findings, an increased risk of testicular

cancer was associated with a higher Peptostreptococcaceae and the

Romboutsia genus. On the other hand, the abundance of

Subdoligranulum correlated with reduced susceptibility to testicular

tumorigenesis (Yin et al., 2023). Giampazolias et al. described that an

increase in vitamin D modified the gut microbiome to boost cancer

immunity (Giampazolias et al., 2024). A clinical study with 120 newly
Frontiers in Cellular and Infection Microbiology 05
diagnosed or relapsed TGCT patients revealed an association

between low plasma vitamin D levels and poor treatment response

with higher disease recurrence (Lesko et al., 2023).

Testicular cancer survivors are at risk of experiencing acute and

long-term treatment-induced toxicity (Figure 2). A study involving

142 TGCT survivors found that patients with higher levels of

sCD14, a co-receptor for bacterial lipopolysaccharide (LPS) linked

to gut microbial translocation, exhibited reduced cognitive

functions compared to those with lower sCD14 levels (Chovanec

et al., 2023). Recently, the national, multicenter phase-III registered

clinical trial aims to analyze physical activity and cancer-related

fatigue in enrolled metastatic TGCT patients treated with cisplatin-

based chemotherapy combined with etoposide+/-bleomycin.

Moreover, the authors will assess how the gut microbiome affects

the connection between physical activities and sequelae (Noh et al.,

2024). The long-term goal of the clinical trial NCT05819827 was to

investigate associations between chemotherapy-induced nausea and

changes in the gut microbiome as well as metabolic pathways in

patients with testicular cancer, as well as other genitourinary

malignancies such as bladder and prostate cancer. However, this

clinical trial has been recently suspended due to lack of funding.
6 Discussion and future directions

Emerging evidence highlights the role of the gut microbiome in

male infertility, and several associations outline the possible link

between the microbiome and TGCTs. However, studies directly

analyzing gut or testicular microbiome composition are rare.

Identifying microbial biomarkers might help to develop non-

invasive screening methods for the analysis of biological material

from blood, urine, seminal fluid, and/or stool, that could potentially

serve as both diagnostic and prognostic tools for patients with

testicular tumors. Moreover, a comprehensive comparison of

microbiomes from malignant and benign testicular tissues would

bring crucial insights into the dynamics of microbiomes in this area.

Current research struggles to isolate the causal influence of the

gut microbiome from confounding factors such as genetics,

treatment, and environmental variables. Additionally, the high

variability in human microbiome data due to individual

differences, together with limitations in sequencing methods,

complicates the ability to draw clear conclusions about the

microbiome’s functional roles. Most microbiome studies rely on

16S rRNA sequencing, which provides valuable insights into

community composition by identifying bacterial taxa but lacks a

functional dimension. In contrast, shotgun metagenomic analysis

captures genetic information of the entire microbial community,

offering critical data on metabolic pathways, virulence factors, and

resistance genes. Despite its tremendous potential, standard

research and clinical use face significant challenges, including

high cost, the need for robust bioinformatics capabilities, and the

complexity of interpreting functional profiles for poorly

characterized microbial genes. Regardless, a broader application

of metagenomic analysis and its combination with other omics

approaches could significantly enhance our understanding of

dynamic host-microbiome interactions. This comprehensive
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approach is particularly relevant for personalized medicine, as

identifying correlations between microbial functions and specific

patient outcomes could facilitate the implementation of more

precise and tailored microbiota-based interventions.

Overcoming cisplatin resistance remains a critical hurdle in

clinical settings of TGCTs. Research focusing on the personalized

analysis of the gut and tumor microbiome composition in TGCT

patients could help uncover new microbial biomarkers correlated

with disease prognosis and/or toxicity of anti-cancer therapy. A

comprehensive investigation of interactions between the microbial

community and biological processes associated with tumorigenesis

could provide important insights that could help to better predict

disease progression, response to therapy, or identify risk factors

leading to adverse effects of treatment. Thus, a personalized

approach could open up new possibilities not only in predicting
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treatment outcomes but also in designing targeted interventions

aimed at modulating the microbial environment for the benefit of

the patient. This is particularly important for cisplatin-treated

tumors, given the documented effects of microorganisms on the

efficacy of platinum-based chemotherapy.

Several strategies can effectively modulate the gut microbiome,

including probiotic supplementation, FMT, dietary changes, and

regular physical activity. These approaches can restore microbial

diversity and promote intestinal homeostasis. Clinical research

involving large patient cohorts could provide relevant insights to

enhance the clinical benefits of anti-cancer therapy in TGCT

refractory patients. Further investigation is needed to fully

understand the interplay between the gut microbiome, the testes,

and the testicular and seminal plasma microbiomes, emphasizing

the potential benefit for refractory TGCT patients.
FIGURE 2

Exploring the impact of gut and testicular microbiomes on treatment outcomes in testicular cancer. While the exact role of microbial communities
in testicular germ cell tumors (TGCTs) requires further investigation, existing evidence suggests that the microbiome-gut-testis axis may influence
chemotherapy efficacy and contribute to both acute and late treatment-induced toxicity.
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