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Corynebacterium striatum (C. striatum) is a Gram-positive bacterium commonly

colonizing the skin and mucosa in healthy individuals and hospitalized patients.

Traditionally regarded as a contaminant, C. striatum is now increasingly recognized

as a potential cause of clinical infections, especially after the coronavirus disease

pandemic. It has emerged as a pathogen implicated in severe infections, including

pneumonia, bacteremia, meningitis, artificial joint infections, abdominal infections,

and endocarditis. C. striatum has been reported in lower respiratory tract infections,

mostly as a conditioned pathogen in immunocompromised individuals, particularly

in thosewith chronic structural lung diseases, such as chronic obstructive pulmonary

disease, leading to severe pneumonia or exacerbation of the existing disease and

high mortality. Additionally, C striatum has been implicated in the community-

acquired pneumonia among immunocompetent individuals and nosocomial lung

infections, with evidence of person-to-person transmission through caregivers.

C. striatum may exhibit multidrug resistance. Vancomycin, alone or in

combination, is currently considered the most effective treatment for C. striatum.

This review highlights the epidemiological characteristics, drug resistance

mechanisms, diagnostics approaches, and treatment options for C. striatum lower

respiratory tract infections to enhance clinician awareness and improve patient

management strategies.
KEYWORDS

Corynebacterium striatum, drug resistance, lower respiratory tract infections,
vancomycin therapy, multidrug resistance mechanisms, bacteriophage therapy
1 Introduction

Corynebacterium species are characterized by the presence of arabinose, galactose, and

meso-diaminovaleric acid in their cell walls. Some strains may also contain corynomycolic

acids and metachromatic granules, which serve as reserves of the high-energy phosphate.

Corynebacterium striatum (C. striatum) is a non-diphtheriae corynebacterium that is Gram-
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positive, non-lipophilic, glucose-fermentative or non-fermentative,

aerobic or facultatively anaerobic, non-sporulating, and non-motile

bacilli. Under a light microscope, it can appear in various forms,

including ball, rod-like, and filamentous shapes, occurring singly, in

pairs, and/or palisade (Funke et al., 1997; Silva-Santana et al., 2021).

C. striatum is typically a normal flora of the skin and oropharynx and

is rarely pathogenic. However, it can opportunistically cause infections

in hospitalized patients with underlying conditions (Martinez-

Martinez et al., 1997). However, it can be isolated from wound

swabs, respiratory specimens, tissue and bone samples, and blood

cultures (Funke et al., 1997). In recent decades, there has been

increasing reports of invasive infections caused by C. striatum,

including lower respiratory tract infections, intracranial infections,

joint infections, and abdominal infections. While they primarily affect

immunocompromised individuals, cases have also been reported in

patients with normal immune function, albeit rarely (Martinez-

Martinez et al., 1997; Lee et al., 2005; Otsuka et al., 2006).

C. striatum mainly causes severe infections in patients with

immunocompromised state, including those with end-stage renal

disease, structural lung diseases, and advanced cancers. In addition,

surgical or invasive procedures, long hospital stays, advanced age,

neoplastic disease, organ transplantation, acquired immune deficiency

syndrome (AIDS), diabetes, long-term antibiotic use, and procedures

requiring continuous or long-term medical devices, such as

catheterization, heart valve implantation, and prosthesis placement,

for chronic diseases, long intensive care unit stays and reduced

hemoglobin levels have also been identified as risk factors associated

with C. striatum infection (Martinez-Martinez et al., 1997; Superti

et al., 2009; Chen et al., 2012; Verroken et al., 2014; Carvalho et al.,

2018; Silva-Santana et al., 2021). There have been documented cases of

C. striatum transmission between patients, leading to serious

nosocomial outbreaks. Typically, the isolation of C. striatum from a

culture is regarded as contamination unless repeated cultures yield

consistent results (Kang et al., 2018). Among reported cases of invasive

C. striatum infections, the most commonly isolated specimens were

blood, followed by bone and joint tissues, sputum, and others. The

most commonly employed detection method was biochemical

analysis alone. However, 16S rRNA gene sequencing and mass

spectrometry (mostly via the MALDI-TOF system) were also used

as stand alone methods in approximately 17% and 20% of cases,

respectively. Biochemical methods combined with MALDI-TOF, or

MALDI-TOF combined with 16S rRNA sequencing were also used as

detection methods in some cases. In one case, invasive infection

caused by C. striatum was confirmed using all three methods.

Different detection methods can not only identify C. striatum as the

dominant bacterium causing invasive infection but also determine its

drug resistance and virulence genes, providing valuable insights for

treatment strategies. One study reported C. striatum as the

predominant bacterium, with a detection rate of 11.76% in patients
Abbreviations: AIDS, Acquired Immune Deficiency Syndrome; C. striatum,

Corynebacterium striatum; COPD, Chronic Obstructive Pulmonary Disease;

COVID-19, Coronavirus Disease; FEV1%, Forced Expiratory Volume;

cgMLST, Core Genome Multilocus Sequence Typing; MALDI-TOF MS,

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass

Spectrometry; MLS, Macrolide-lincosamide-streptogramin B.
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with pulmonary infections in the intensive care unit (Zhang et al.,

2023). Osawa R and colleagues reported that among patients with

bacteremia caused by C. striatum, the 90-day mortality rate reached

34% (Yamamuro et al., 2021). Another study indicated that the overall

30-day mortality rate was 34.7% (Abe et al., 2021). Currently, there is

no established standard for the treatment of C. striatum infections.

Given the invasive nature of the bacterium and its high rates of drug

resistance—including cases of multidrug resistance—antibiotic

selection should be guided by drug resistance gene detection.

Vancomycin can be used as a treatment for multidrug-resistant

C. striatum infections. However, no consensus exists regarding the

duration of treatment, which should be tailored based on the severity

of the infection and the affected site (Milosavljevic et al., 2021).

In this review, we conducted a comprehensive search of the

MEDLINE (PubMed), EBSCO (Discovery Service), SCOPUS,

SCIndex (Serbian Citation Index), and Cochrane Central (Wiley

Online Library) databases. The search terms included:

“corynebacterium striatum”[Supplementary Concept] OR

“corynebacterium striatum”[All Fields] OR “corynebacterium

striatum”[All Fields]) AND (((“invasibility”[All Fields] OR

“invasible”[All Fields] OR “invasion”[All Fields] OR “invasions”[All

Fields] OR “invasive”[All Fields] OR “invasively”[All Fields] OR

“ invasiveness”[All Fie lds] OR “ invasives”[All Fie lds]

OR “invasivity”[All Fields]) AND (“lower airway infect”[All Fields]

OR “lower airway infection”[All Fields] OR “lower airway

infective”[All Fields] OR”lung infect”[All Fields] OR “lung

infection”[All Fields] OR “lung infective”[All Fields] OR

“pneumonia”[All Fields]).We summarize the literature on the

clinical characteristics, diagnosis, and treatment of C. striatum-

associated lower respiratory tract infections.
2 Clinical characteristics of respiratory
infections caused by
Corynebacterium striatum

In recent years, the incidence of C. striatum lower respiratory

tract infections has increased, likely owing to advancements in

detection technology. Studies have revealed that, following the

coronavirus disease (COVID-19) pandemic, the infection rate of

C. striatum in the lower respiratory tract has markedly increased

(Orosz et al., 2022). Furthermore, C. striatum, somtimes presented

as a superdominant pathobiontic bacterial genus (defined as a genus

comprising more than 50% of nasopharyngeal swab sequences),

within the nasopharyngeal microbiota, may contribute to severe

secondary infections in affected patients (Qin et al., 2020). Common

pathogens detected in cases of aspiration pneumonia are

C. striatum, Pseudomonas aeruginosa, Klebsiella pneumoniae, and

Candida albicans (DiBardino and Wunderink, 2015; Neill and

Dean, 2019; Xu et al., 2024). Nosocomial infections and outbreaks

caused by C. striatum primarily occur in the respiratory tract.

Research from various countries has confirmed that mechanical

ventilation is a risk factor for nosocomial infections (Campanile

et al., 2009; Wong et al., 2010). A recent review (1976–2020)

analyzing the clinical epidemiology and microbiology of 218
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studies confirmed the emergence of multidrug-resistant and

multidrug-sensitive C. striatum strains in 254 reported cases

worldwide, which can cause hospital - and community-acquired

infections (Silva-Santana et al., 2021). Prolonged hospital stays,

advanced chronic obstructive pulmonary disease, recent antibiotic

use, and invasive diagnostic procedures are the most common risk

factors for patients with C. striatum pneumonia. A positive

correlation has been observed between C. striatum infections and

decreased lung function in chronic obstructive pulmonary disease

(forced expiratory volume [FEV1]%) (Renom et al., 2014; Verroken

et al., 2014). C. striatum resists infection control measures, as it can

adhere to non-living surfaces and form biofilms on various medical

devices, such as feeding tubes, endotracheal tubes, and ventilators

(Souza et al., 2015; Ramos et al., 2019; Lee et al., 2022). The

incidence rates of C. striatum lower respiratory tract infections

are as follows: hospital-acquired pneumonia accounts for 96.3%,

including healthcare-associated pneumonia (14.8%) and ventilator-

associated pneumonia (11.1%), while community-acquired

pneumonia represents 3.7%. C. striatum can cause severe

pneumonia, which has a mortality rate of up to 60% and is likely

to develop into solid cancers, diabetes, and structural lung diseases

such as chronic obstructive onary disease (Lee et al., 2022).

Patients with positive cultures from sputum, airway extracts, or

bronchoalveolar lavage fluid are typically referred to infectious disease

physicians for consultation to determine whether they are pathogenic

bacteria. This evaluation includes repeated culture testing, evaluation

of infection symptoms and markers, and identification of pathogenic

bacteria based on infection guidelines from the Centers for Disease

Control and Prevention (Martinez-Martinez et al., 1997; Yamamuro

et al., 2021). Invasive infections caused by C. striatumare reported

more frequently in men than women, with a median patient age of 72

years in cases of severe pneumonia. Notably, 51.9% of the patients are

immunocompromised, especially those with structural lung diseases

(Martinez-Martinez et al., 1997; Lee et al., 2022). Common clinical

symptoms (Table 1) include fever (in 80% of cases), dyspnea,

productive cough, and phlegm. Serum leukocyte and procalcitonin

levels in peripheral blood are often significantly elevated. Pulmonary
Frontiers in Cellular and Infection Microbiology 03
computed tomography may reveal various nonspecific changes,

including nodules and large solid shadows with cavity formation

(Severo et al., 2014). Among reported cases of C. striatum invasive

infections, 75.3% of patients underwent antimicrobial susceptibility

testing, primarily due to critical and progressively worsening

conditions (Milosavljevic et al., 2021). Many hospitals also conduct

routine antimicrobial susceptibility testing on positive pathogenic

cultures to guide appropriate clinical therapy. In addition, according

to European Committee for Antimicrobial Susceptibility Testing

(EUCAST) guidelines, laboratory antimicrobial susceptibility testing

for C. striatum requires special Settings, as well as brothmicrodilution,

MIC assessment and AGAR diffusion using equine defibrination

blood and beta-NAD (Marino et al., 2022).Among patients with

severe pneumonia, a high proportion (67%) experienced septic

shock, and the 30-day mortality rate was as high as 40.7%. Further

analysis of deceased patients revealed a mean FEV1% of 33%,

suggesting that decreased lung function may be associated with

poor prognosis (Lee et al., 2022).
3 Examination method

C. striatum is most frequently identified in cultures from

clinical specimens, including blood, pus, urine, and pleural

effusion (Bao et al., 2017). C. striatum as a cause of infection was

most often identified exclusively by biochemical methods

(Milosavljevic et al., 2021). However, several reports indicate that

C. striatum may be misidentified or not identified at all using

biochemical methods alone. In such cases, alternative techniques

like 16S rRNA sequencing are used to confirm the diagnosis (Iaria

et al., 2007; Milosavljevic et al., 2021). Application of the VITEK 2

system (bioMerieux,USA), a biochemical method commonly used

in clinical practice to detect C. striatum, has shown instances of

misidentification, including cases where C. striatum was mistaken

for other bacteria like Clostridium striatum. However, the reliability

of detection can be improved by including the pathogen in the

VITEK system (VITEK®2 ANC ID card) database. It can be used to

identify C. striatum, especially if no alternative test is available (Lee

et al., 2011).With advancements in molecular technology, C.

striatum can be identified using various methods, including

16SrRNA sequencing, complex infection detection chips,

metagenomic next-generation sequencing, high-resolution melting

analysis, and conventional microbiological tests. These techniques

provide simple, rapid, sensitive, and specific options for detecting C.

striatum, supporting early diagnosis, epidemiological surveillance,

and rapid outbreak response (Xu et al., 2021). Mass spectrometry

techniques, such as matrix-assisted laser desorption ionization,

combined with time of flight and mass spectrometry (MALDI-

TOF MS), are also used for bacterial species identification,

providing faster and more practical diagnostic solutions (Gomila

et al., 2012; Diez-Aguilar et al., 2013). In a hospital outbreak in

Belgium, biochemical methods and 16sRNA sequencing techniques

were used to identify C. striatum. Additionally, MALDI-TOF MS

and combined 16S rRNA sequencing have been successfully used in

other cases (Verroken et al., 2014). In one case, invasive C. striatum

infection was identified using a combination of biochemical,
TABLE 1 Clinical characteristics of respiratory infections caused by
Corynebacterium striatum.

Gender Male >Female

Average Age 72 years

Signs and Symptoms fever (in 80% of cases), dyspnea, productive cough,
and phlegm

Blood Routine white cell count elevated

PCT elevated

Chest CT nonspecific changes, including nodules and large solid
shadows with cavity formation

Hospital-
acquired pneumonia

96.3% to all pneumonia

Community-
acquired pneumonia

3.7% to all pneumonia

Poor prognosis FEV1% lower than 33%
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MALDI-TOF, and 16S rRNA sequencing techniques. Several

studies have shown that gene sequencing is the most reliable

method for identifying C. striatum (Gomila et al., 2012; Alibi

et al., 2015; Suh et al., 2019). Additionally, MALDI-TOF mass

spectrometry offers a cost-effective, simple, and reliable alternative

for identifying C. striatum (Gomila et al., 2012; Suh et al., 2019).

The development of gene sequencing technology has increased

detection sensitivity enabling identification of virulence and

resistance genes as well as the dominant cloning of bacteria. The

core genome multilocus sequence typing (cgMLST) method, based

on whole-genome sequencing, can be used to track transmission

routes of C. striatum infections in hospital settings, which holds

significant clinical and epidemiological value (Trost et al., 2011;

Torres Lde et al., 2013; Kang et al., 2023). Whole-genome

sequencing has also been applied to characterize multidrug-

resistant and non-multidrug-resistant clinical isolates of

C. striatum, providing insights into molecular epidemiology,

global transmission, and virulence mechanisms of pathogens

(Nudel et al., 2018; Ramos et al., 2018; Wang et al., 2021).
4 Virulence and resistance

4.1 Virulence

C. striatum is highly invasive and exhibits strong genetic plasticity,

with a robust iron acquisition genetic library, independent

determinants, and antimicrobial resistance genes (Jesus et al., 2022).

C. striatum strains from different sources demonstrate high diversity,
Frontiers in Cellular and Infection Microbiology 04
with those isolated from skin tissues being relatively stable and more

conserved. The pan-genome analysis of an emerging multi-drug-

resistant C. striatum isolate showed an open pan-genome, consisting

of 5,692 gene families, 1,845 core gene families, 2,362 auxiliary gene

families, and 1,485 unique gene families (Figure 1). This analysis

further identified 53 resistance genes and 42 virulence factors.

Notably, 77.7% of these strains carried two or more resistance genes

exhibiting resistance to aminoglycosides, tetracycline, lincomycin,

macrolides, and streptomycin. Virulence factors are primarily

associated with the survival of pathogenic bacteria in the host, iron

uptake, and early biofilm formation (Qiu et al., 2023). The SpaD and

SpaE genes are involved in the formation of pili, which allow the strain

to adhere specifically to human pharyngeal epithelial cells (Kang et al.,

2014). Additionally, SrtC and SrtB genes were identified in 48.7% of the

strains. SrtC is a sorting enzyme associated with pili production

through a sorting enzyme mechanism. The SrtB gene encodes a

collagen-binding protein that binds to the human complement C1q,

potentially involved in host immune escape mechanisms and playing

an important role in early biofilm formation (Donahue et al., 2014;

Chambers et al., 2015). Biofilms have been identified on various human

tissues and abiotic surfaces, including medical devices such as catheters,

central venous catheters, and endoscopes. The formation of biofilms

enhances the survivability of microorganisms under adverse conditions

(Ramirez de Arellano et al., 1995; Al Akhrass et al., 2012; Ocalan et al.,

2023). Bacteria within biofilms are highly resistant to components of

the human immune system and a variety of antibiotics. Moreover, the

ability of bacterial cells to transfer genes horizontally is enhanced in

biofilm communities, which can promote the spread of antibiotic

resistance. The formation of biofilms allows bacteria to adhere to
FIGURE 1

Pan-genome of Corynebacterium striatum. This figure illustrates the pan-genome of recently isolated C. striatum, highlighting key mechanisms of
virulence. C. striatum – Corynebacterium striatum.
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different substrates, enabling their survival in hospital environments.

Studies have confirmed that increased biofilm production in C.

striatum infection group is a common virulence factor, and it has

been observed that C. striatum isolates adhere to various abiotic

surfaces to form biofilms in vitro, which is the cause of hospital

infection outbreak (Souza et al., 2015; Alibi et al., 2021; Ocalan et al.,

2023). Research indicates that at 37°C, C. striatum is capable of

producing biofilms on abiotic surfaces, including polystyrene, glass,

and tracheostomy tubes made of polyvinyl chloride, silicone, and

stainless steel. These biofilms adhere to both human epithelial cells

and abiotic surfaces, enhancing the viability of C. striatum in host

tissues and the hospital environment. The ability to form biofilms

increases the likelihood of hospital-acquired infections while

simultaneously elevating bacterial resistance to antimicrobial agents

and immune responses (Alibi et al., 2021).Furthermore, several virus-

associated proteins, including acyl-CoA carboxylase b-subunits (DtsR1,
DtsR2, and AccD3), cell wall-associated hydrolase (CwlH),

nonribosomal peptide synthetase (NrpS2), nitric oxide reductase

(Nor), resuscitation promoting factors RpfA and RpfB, subtilisin-like

serine protease (MycP), SGNh-hydrolase (SgnH), and venom serine

protease (Vsp2) identified in C. striatum strains are also associated with

their pathogenicity (Sangal et al., 2024).
4.2 Resistance

Drug-susceptibility testing through bacterial culture remains a

widely used classical method for selecting antimicrobial agents

against C. striatum. Gene sequencing technology can identify

drug resistance genes of bacteria, facilitating the understanding of

resistance mechanisms in C. striatum isolates and the selection of

appropriate antimicrobial agents. In the following paragraphs, we

discuss the drug resistance mechanisms identified in C. striatum
Frontiers in Cellular and Infection Microbiology 05
isolates reported in this study and the antimicrobial agents to which

resistance has been observed.
(A) Efflux pump: The ATP-binding cassette transporter

encoded by the tetA/B gene transports antibiotics out

of the cell membrane, leading to tetracycline and beta-

lactam resistance (Kono et al., 1983) (Figure 2). Specific

major facilitator superfamily transporters and cmx

genes encoded efflux pumps are associated with

chloramphenicol resistance (Leyton et al., 2021).

(B) Biofilm formation: C. striatum produces mature biofilms

in vitro, similar to other pathogenic organisms (Souza

et al., 2015). These isolates also exhibited enhanced

biofilm formation in the presence of human fibrinogen.

Multidrug-resistant strains are strong biofilm producers.

Interestingly, isolates from intubated patients showed the

highest biofilm production. Other clinical studies on C.

striatum have also confirmed the production of biofilms

(Galimand et al., 2015; Wang et al., 2016; Shariff et al.,

2018). The SrtB gene encodes a collagen-binding protein

in Clostridium difficile, which binds to the human

complement C1q and may be involved in the host

immune escape mechanisms while playing an

important role in early biofilm formation (Chambers

et al., 2015; Kang et al., 2020; Qiu et al., 2023).

(C) Changing the target of antibiotics: Changes in drug targets

due to gyrA mutations, including mutations in the

quinolone resistance-determining region of the gyrA gene

(Nudel et al., 2018; Ramos et al., 2018; Asgin and Otlu,

2020), mutations at positions 87 and 91 in the gyrA peptide

sequence (including those in Ser87Phe, Asp91Ala, and

Asp91Gly) (Ramos et al., 2018; Dragomirescu et al., 2020;

Ramos et al., 2020). Newmutation sites er95Thr, Asp94Ala,
FIGURE 2

Antibiotic resistance mechanisms in Corynebacterium striatum. This figure presents the identified mechanisms contributing to antibiotic resistance.
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Fron
Glu88Ala, and Asp87Gly (Qin et al., 2020) convert polar

amino acids to nonpolar (except at the 95th position),

thereby reducing affinity for fluoroquinolones and

preventing their binding to topoisomerase (Nudel et al.,

2018). Resistance tomacrolides is due tomodification of the

target by the erm gene, which methylates the 23S subunit of

the ribosome. Similarly, the tet gene, which encodes the

ribosome-protective protein tet, confers resistance to

tetracycline drugs.

(D) Antibiotic inactivation: The aminoglycoside N-

acetyltransferase-coding genes AAC(6) and AAC(6 ‘)-Ib-

cr, which inactivate aminoglycoside antibiotics by

acetylating their 6-amino groups, were identified in 57%

of the strains (Smith et al., 2017). The APH(6’) and APH

(3’) genes encoding aminoglycoside O-phosphotransferase

were detected in 32% of strains, which can inactivate

antibiotics, especially streptomycin. The ANT(3”) gene

family, which encodes a class of aminoglycoside O-

nucleotidyl transferases, that are regionally specific

according to the 3”-hydroxyl modification of antibiotics,

was detected in 38.9% of strains (Qiu et al., 2023). These

enzymes inactivate aminoglycoside antibiotics by

transferring the AMP group from the ATP substrate to

the 3”-hydroxyl group of the compound (Ramirez and

Tolmasky, 2010). Beta-lactam resistance is attributed to

beta-lactamases encoded by the bla and ampC genes,

which degrade beta-lactam antibiotics (Leyton et al., 2021).

(E) Prevention of antibiotic binding to bacteria: In Bacillus

subtilis, the loss of phosphoglyceride (PG) in membranes

can be fatal; thus, PG is essential for membrane integrity

(Hachmann et al., 2011). The pgsA2 gene of Fusarium

striatum encodes phosphatidylglycerol synthetase A,

responsible for synthesizing diglyceride diphosphate in the

PG synthesis pathway (Hines et al., 2017; Goldner et al.,

2018; Hagiya et al., 2019). A mutation in the pgsA2 gene

leads to a deficiency of glycerol phosphate in the membrane,

preventing daptomycin from binding to the cell membrane.

However, Goldner et al. (2018). demonstrated that the

striatal C. HLDR phenotype was sufficient in the absence

of functional loss of the pgsA2 gene. This suggests that C.

striatum is a more persistent and adaptable bacterium than

B. subtilis. Other resistance mechanisms include various

ARGs associated with mobile genetic elements such as

plasmids, integrons, insertion sequences, and transposons

(Nesvera et al., 1998; Tauch et al., 2003; Hennart et al.,

2020). The resistance of C. striatum is primarily determined

by transposons, insertion sequences, and plasmids. The

Macrolide-lincosamide-streptogramin B (MLS) phenotype

is a common resistance mechanism in coagulase-negative

staphylococci and also in C. striatum related to the erm(X)

gene transported by the transposon Tn5432 (Szemraj et al.,

2018; Szemraj et al., 2019).
The resistance in C. striatum is dynamic and expansive, which is

also related to the transposon Tn5432, the MLS phenotype, and the

insertion sequence, among others (Nesvera et al., 1998; Hennart
tiers in Cellular and Infection Microbiology 06
et al., 2020). This leads to cross-infection, spread, and evolution of

pathogenic bacteria in hospitals, necessitating that hospital staff be

aware of nosocomial infections caused by C. striatum (Souza et al.,

2020; Wang et al., 2022).
5 Treatment

Several studies have documented resistance in isolated strains of

C. striatum. As mentioned earlier, bacterial culture and drug

susceptibility testing can be effective methods for guiding

antibiotic selection. Additionally, gene sequencing technology can

accurately identify drug-resistance genes in isolated strains and is

increasingly being utilized to inform clinical decisions regarding

antibiotic selection.

In China, isolates were collected from three hospitals across three

regions, with 260 isolates from patients with respiratory infections.

Nearly all isolates (96.2%, 250/260) showed multidrug resistance,

although they remained sensitive to vancomycin or linezolid, which

aligns with findings from other countries (Zhang et al., 2023). Of

these strains, 77.7% harbored two or more resistance genes and

showed primary resistance to aminoglycosides, tetracycline,

lincomycin, macrolides, and streptomycin (Qiu et al., 2023).

Another study reported that 54 C. striatum isolates exhibited

multidrug resistance to three or more antibiotics, with a resistance

rate of 85.2% to lincomines and 93.5% to quinolones and

tetracyclines. Sensitivity to vancomycin and linezolid was 100%

(Wang et al., 2022).

Given its efficacy, vancomycin should be considered the

antibiotic of choice for treating C. striatum infections.

Vancomycin monotherapy, or combined with other antibiotics,

such as piperacillin-tazobactam, may be the most prudent

approach for multidrug-resistant C. striatum lung infections.

Based on resistance predictions, vancomycin may remain one of

the few effective agents currently in use by 2030 (Tarr et al., 2003;

Babay and Kambal, 2004; Orosz et al., 2022). Alternatively,

linezolid, teicoplanin, or daptomycin may be considered for

treating severe lung infections caused by C. striatum, while

amoxicillin-clavulanate may be used in mild infection cases

(Milosavljevic et al., 2021).

However, a study has reported no difference in hospital

mortality among patients with severe pneumonia who received

antimicrobials targeting C. striatum, including vancomycin and

linezolid. This outcome was similar to that in patients who did not

receive anti-infective treatment. This may be attributed to the

severity of illness in the C. striatum infection group, which

included more critically ill patients with APACHE II scores >15.

A subgroup analysis indicated that vancomycin or linezolid use

reduced all-cause mortality (Zhang et al., 2023).

Daptomycin is also effective in resistant Gram-positive bacterial

infections; however, reports of daptomycin-resistant C. striatum

strains have emerged, potentially leading to treatment failure

(Chauvelot et al., 2020).

Dalbavancin may serve as a successful and safe alternative for

C. striatum infections, particularly in soft tissue infections.

Approved for bacterial skin and soft tissue infections,
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dalbavancin’s optimal dosing and interval remain to be determined,

and therapeutic drug monitoring may help in guiding treatment

(Soderquist et al., 2023; Camara-Rodriguez et al., 2024).

Recently, new treatments for multidrug-resistant C. striatum

infections have also shown promise. CSP1, a novel temperate

bacteriophage and the first phage identified to target C. striatum

strains could offer new possibilities in bacteriophage therapy

research (Wang et al., 2024). Niclosamide, which reduces biofilm

viability in a dose-dependent manner, has been approved for

degrading biofilm biomass, and drastically reducing cell viability.

Therefore, niclosamide is emerging as a promising therapeutic

agent against multidrug-resistant C. striatum infections (Folliero

et al., 2022).
6 Conclusion

Reports indicate that C. striatum lower respiratory tract

infections are increasing, particularly during the COVID-19

pandemic. C. striatum can cause both community-acquired and

hospital-acquired pneumonia in healthy and immunocompromised

individuals. It can lead to severe pneumonia with high mortality,

particularly in patients with structural lung diseases, such as chronic

obstructive pulmonary disease. The prognosis of C. striatum

pneumonia correlates with a decline in FEV1%. Despite potential

detection errors, biochemical methods remain reliable for clinical

identification of C. striatum. It has been reported that gene

sequencing technology (16sRNA) is the most reliable method for

detection of invasive infections caused by this pathogen, and can be

considered as the gold standard for diagnosis. Whole-genome

sequencing offers additional insights by identifying bacterial

virulence factors and drug resistance genes. Furthermore,

MALDI-TOF mass spectrometry is increasingly being used in

clinical settings due to its rapid, cost-effective, and reliable

detection capabilities. Isolated strains of C. striatum exhibit high

rates of drug resistance, complex resistance mechanisms, including

efflux pumps, biofilm formation, target modification of antibiotics,

antibiotic inactivation, and prevention of antibiotic binding to

bacteria. These factors also contribute to its potential for

nosocomial transmission. At present, there is no standardized

antibiotic regimen for treating lower respiratory tract infections

caused by C. striatum. Antibiotic selection should be guided by the

severity of the patient’s condition, as well as the virulence and drug

resistance profile of the isolated strain. Vancomycin remains the

most effective treatment, either alone or in combination with other

agents. For mild cases, drugs such as piperacillin and sulbactam
Frontiers in Cellular and Infection Microbiology 07
may be considered. New therapies, including temperate

bacteriophages such as CSP1, hold promise for managing drug-

resistant C. striatum in the future.
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